Eco-Friendly Desalination using MOF’s could Supply the Lithium needed to Manufacture Batteries required to Mainstream EV’s


A new water purification (desalination) technology could be the key to more electric cars. How?

“Eco-Friendly Mining” of world’s the oceans for the vast amounts of lithium required for EV batteries, could “mainstream” our acceptance (affordability and accessibility) of Electric Vehicles and provide clean water – forecast to be in precious short supply in many parts of the World in the not so distant future.

energy_storage_2013-042216-_11-13-1Humanity is going to need a lot of lithium batteries if electric cars are going to take over, and that presents a problem when there’s only so much lithium available from conventional mines.

A potential solution is being researched that turns the world’s oceans into eco-friendly “Lithium supply mines.”

Scientists have outlined a desalination technique that would use metal-organic frameworks (sponge-like structures with very high surface areas) with sub-nanometer pores to catch lithium ions while purifying ocean water.

The approach mimics the tendency of cell membranes to selectively dehydrate and carry ions, leaving the lithium behind while producing water you can drink.

Fourth Industrial Revo 012016 AAEAAQAAAAAAAAZqAAAAJGM1YzM0NGYxLWIxZTMtNGYyNi1iMjIyLTM1MjUwNDRjYjIyYQ

While the concept of extracting lithium from our oceans certainly isn’t new, this new technology method would be much more efficient and environmentally friendly.

Instead of tearing up the landscape to find mineral deposits, battery makers would simply have to deploy enough filters.

It could even be used to make the most of water when pollution does take place — recovering lithium from the waste water at shale gas fields.

This method will require more research and development before it’s ready for real-world use.

However, the implications are already clear. If this desalination approach reaches sufficient scale, the world would have much more lithium available for electric vehicles, phones and other battery-based devices. It would also reduce the environmental impact of those devices. storedot-ev-battery-21-889x592 (1)

While some say current lithium mining practices negates some of the eco-friendliness of an EV, this “purification for Lithium” approach could let you drive relatively guilt-free

Reposted from Jonathan Fingas – Engadget

Advertisements

“Crumpled” Graphene Balls Could Improve Batteries’ Performance by Preventing Lithium Dendrite Growth: Northwestern University


 

Crumpled Graphene NewsImage_36035Jiaxing Huang discovered crumpled graphene balls six years ago. (Image credit: Jiaxing Huang)

Lithium metal-based batteries have the potential to revolutionize the battery sector. With the theoretically ultra-high capacity of lithium metal used by itself, this new type of battery can be employed to power everything from personal gadgets to cars.

“In current batteries, lithium is usually atomically distributed in another material such as graphite or silicon in the anode,” explains Northwestern Engineering’s Jiaxing Huang. “But using an additional material ‘dilutes’ the battery’s performance. Lithium is already a metal, so why not use lithium by itself?”

The answer is a research challenge that scientists have spent years attempting to overcome. As lithium gets charged and discharged in a battery, it begins to grow dendrites and filaments, “which causes a number of problems,” Huang said. “At best, it leads to rapid degradation of the battery’s performance. At worst, it causes the battery to short or even catch fire.”Northwestern-Hero

One existing solution to avoid lithium’s destructive dendrites is to employ a porous scaffold, such as those made from carbon materials, on which lithium preferentially deposits. Then during battery charging, lithium can deposit along the surface of the scaffold, bypassing dendrite growth. This, however, introduces a new issue. As lithium deposits onto and then dissolves from the porous support as the battery cycles, its volume wavers significantly. This volume fluctuation causes stress that could break the porous support.

Huang and his collaborators have deciphered this problem by choosing a different approach — one that even makes batteries lighter weight and able to contain more lithium.

The answer lies in a scaffold composed of crumpled graphene balls, which can stack with ease to form a porous scaffold, because of their paper ball-like shape. They not only prevent dendrite growth but can also survive the stress from the wavering volume of lithium. The research was featured on the cover of the January edition of the journal Joule.

“One general philosophy for making something that can maintain high stress is to make it so strong that it’s unbreakable,” said Huang, professor of materials science and engineering in Northwestern’s McCormick School of Engineering. “Our strategy is based on an opposite idea. Instead of trying to make it unbreakable, our scaffold is made of loosely stacked particles that can readily restack.”

Huang discovered crumpled graphene balls six years ago.  Crumpled graphene balls are novel ultrafine particles that look like crumpled paper balls. He formed the particles by atomizing a dispersion of graphene-based sheets into minute water droplets. When the water droplets evaporated, they produced a capillary force that crumpled the sheets into miniaturized paper balls.

crumpling-graphene-electronics-Illinois-img_assist-350x197In Huang’s team’s battery, the crumpled graphene scaffold houses the fluctuation of lithium as it cycles between the cathode and anode. The crumpled balls can travel apart when lithium deposits and then freely assemble back together when the lithium is depleted. Since minute paper balls are conductive and allow lithium ions to flow quickly along their surface, the scaffold forms a continuously conductive, porous, dynamic network for lithium.

“Closely packed, the crumpled graphene balls operate like a highly uniform, continuous solid,” said Jiayan Luo, the paper’s co-corresponding author and professor of chemical engineering at Tianjin University in China. “We also found that the crumpled graphene balls do not form clusters but instead are quite evenly distributed.”

Formerly advised by Huang, Luo received his PhD in materials science and engineering in 2013. Currently as a professor and researcher at Tianjin University, Luo continues to partner with Huang.

In contrast to batteries that use graphite as the host material in the anode, Huang’s solution is a lot lighter in weight and can stabilize a higher load of lithium during cycling. While typical batteries encapsulate lithium that measures only tens of microns in thickness, Huang’s battery holds lithium stacked 150 µm high.

Huang and his collaborators have filed a provisional patent via Northwestern’s Innovation and New Ventures Office (INVO).

The National Natural Science Foundation of China, the Natural Science Foundation of Tianjin, China, the State Key Laboratory of Chemical Engineering, and the Office of Naval Research supported the research.

 

Next-generation Lithium-Sulphur smart battery inspired by Our Stomachs: Proof of Principle for Now


new-lithium-battery-102616-id44921A new prototype of a lithium-sulphur battery – which could have five times the energy density of a typical lithium-ion battery – overcomes one of the key hurdles preventing their commercial development by mimicking the structure of the cells which allow us to absorb nutrients.

Researchers have developed a prototype of a next-generation lithium-sulphur battery which takes its inspiration in part from the cells lining the human intestine. The batteries, if commercially developed, would have five times the energy density of the lithium-ion batteries used in smartphones and other electronics.

 

 

The new design, by researchers from the University of Cambridge, overcomes one of the key technical problems hindering the commercial development of lithium-sulphur batteries, by preventing the degradation of the battery caused by the loss of material within it. The results are reported in the journal Advanced Functional Materials (“Advanced Lithium-Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush”).

 

Computer visualisation of villi-like battery material
Computer visualisation of villi-like battery material. (Image: Teng Zhao)
 

 

Working with collaborators at the Beijing Institute of Technology, the Cambridge researchers based in Dr Vasant Kumar’s team in the Department of Materials Science and Metallurgy developed and tested a lightweight nanostructured material which resembles villi, the finger-like protrusions which line the small intestine. In the human body, villi are used to absorb the products of digestion and increase the surface area over which this process can take place.
In the new lithium-sulphur battery, a layer of material with a villi-like structure, made from tiny zinc oxide wires, is placed on the surface of one of the battery’s electrodes. This can trap fragments of the active material when they break off, keeping them electrochemically accessible and allowing the material to be reused.
“It’s a tiny thing, this layer, but it’s important,” said study co-author Dr Paul Coxon from Cambridge’s Department of Materials Science and Metallurgy. “This gets us a long way through the bottleneck which is preventing the development of better batteries.”
A typical lithium-ion battery is made of three separate components: an anode (negative electrode), a cathode (positive electrode) and an electrolyte in the middle. The most common materials for the anode and cathode are graphite and lithium cobalt oxide respectively, which both have layered structures. Positively-charged lithium ions move back and forth from the cathode, through the electrolyte and into the anode.
The crystal structure of the electrode materials determines how much energy can be squeezed into the battery. For example, due to the atomic structure of carbon, each carbon atom can take on six lithium ions, limiting the maximum capacity of the battery.
Sulphur and lithium react differently, via a multi-electron transfer mechanism meaning that elemental sulphur can offer a much higher theoretical capacity, resulting in a lithium-sulphur battery with much higher energy density. However, when the battery discharges, the lithium and sulphur interact and the ring-like sulphur molecules transform into chain-like structures, known as a poly-sulphides. As the battery undergoes several charge-discharge cycles, bits of the poly-sulphide can go into the electrolyte, so that over time the battery gradually loses active material.
The Cambridge researchers have created a functional layer which lies on top of the cathode and fixes the active material to a conductive framework so the active material can be reused. The layer is made up of tiny, one-dimensional zinc oxide nanowires grown on a scaffold. The concept was trialled using commercially-available nickel foam for support. After successful results, the foam was replaced by a lightweight carbon fibre mat to reduce the battery’s overall weight.
“Changing from stiff nickel foam to flexible carbon fibre mat makes the layer mimic the way small intestine works even further,” said study co-author Dr Yingjun Liu.
This functional layer, like the intestinal villi it resembles, has a very high surface area. The material has a very strong chemical bond with the poly-sulphides, allowing the active material to be used for longer, greatly increasing the lifespan of the battery.
“This is the first time a chemically functional layer with a well-organised nano-architecture has been proposed to trap and reuse the dissolved active materials during battery charging and discharging,” said the study’s lead author Teng Zhao, a PhD student from the Department of Materials Science & Metallurgy. “By taking our inspiration from the natural world, we were able to come up with a solution that we hope will accelerate the development of next-generation batteries.”
For the time being, the device is a proof of principle, so commercially-available lithium-sulphur batteries are still some years away. Additionally, while the number of times the battery can be charged and discharged has been improved, it is still not able to go through as many charge cycles as a lithium-ion battery. However, since a lithium-sulphur battery does not need to be charged as often as a lithium-ion battery, it may be the case that the increase in energy density cancels out the lower total number of charge-discharge cycles.
“This is a way of getting around one of those awkward little problems that affects all of us,” said Coxon. “We’re all tied in to our electronic devices – ultimately, we’re just trying to make those devices work better, hopefully making our lives a little bit nicer.”
Source: University of Cambridge

 

The battery of the future: Scientists investigate extremely fast ion conductors


id31611(Nanowerk News) Only since April of this year have  experts been researching batteries of the future at the Christian-Doppler (CD)  Laboratory for lithium batteries at the Institute of Chemistry and Technology of  Materials of Graz University of Technology – and they are already attracting  attention with their pioneering results. Using detailed magnetic resonance  measurements, they were able to prove the ultra-fast lithium ion dynamics of a  superb conductor being suitable, e.g., for solid-state batteries. Solid-sate  lithium-ion batteries are the great white hope in terms of storage capacity,  durability and safety. The results of the doctoral thesis of Viktor Epp were  recently published in the prestigious Journal of Physical Chemistry  Letters (“Highly Mobile Ions: Low Temperature NMR Directly  Probes Extremely Fast Li+ Hopping in Argyrodite-type Li6PSe5Br”).
Not only the sustainability of the success of electro-mobility,  but also the development of high-performance cell phones and notebooks make high  demands on battery systems. Higher storage capacities, safety and  ever-increasing durability are some of the demands they have to live up to.  Solid-state lithium-ion batteries are one of the great white hopes in battery  research. Compared to conventional lithium-ion batteries with liquid  electrolytes, these so-called “all-solid-state“ batteries are ahead of the game  as regards safety, operational life span and thermal stability. For this reason,  researchers all over the world in the fields of solid-state chemistry, physics  and materials science have been under pressure to find suitable, solid-state ion  conductors for use in such batteries.
In his doctoral thesis, Viktor Epp, from Graz University of  Technology’s Institute of Chemistry and Technology of Materials, looked more  closely at the sulphide Li6PSe5Br  which was prepared in the well-known working group of Hans-Jörg Deiseroth at the  University of Siegen. Using lithium nuclear magnetic resonance spectroscopy, as  it is carried out in the CD Laboratory in Martin Wilkening’s group, he came to a  remarkable result which confirmed earlier preliminary work: the lithium ions in  the investigated sulphide move extremely quickly. This qualifies Li6PS5Br as a  front runner among solid-state electrolytes which could be used in solid-state  batteries.
“Hopping” atoms: a billion jumps per second
The observed “hopping process” of the lithium ions in Li6PS5Br  have proved to be remarkable. With ambient-temperature rates of more than one  billion jumps per second, the ions in the investigated sulphide show an  extremely high mobility. Such mobility has also been shown in other lithium  compounds, however, many of the materials are not only ionically but also  electronically conductive – and can thus be excluded as solid-state  electrolytes. At first glance, the basic principle of electrochemical energy  storage in a lithium-ion battery is relatively easily to understand. During  charging and discharging of the battery, the ions move between both poles, thus  passing through structurally different materials. In the case of a solid-state  lithium-ion battery, a solid, such as a lithium-containing oxide or a sulphide,  takes on the role of a conductive electrolyte.
“The more we know about the nature of the charge carrier  transport in solids, the more evident it will become, which materials are most  suitably for the future development of batteries“, explains Martin Wilkening,  who, along with his team in the CD Laboratory, is dedicated to the investigation  of microstructures and dynamic processes in new battery materials.
Source: Technical University Graz

Read more: http://www.nanowerk.com/news2/green/newsid=31458.php#at_pco=tcb-1.0&at_ord=5#ixzz2bERY6yns

Better Batteries May Spark New Consumer Devices, Cars


QDOTS imagesCAKXSY1K 8BASF (BASFY), Toyota  (TM) and IBM  (IBM) are among companies placing sizable  early bets on next-generation batteries that could better power things big or  small, such as electric cars or maybe wristwatch computers, according to Lux  Research analyst Cosmin Laslau. But not for a while.

First the new batteries might get a real-world test powering unmanned aerial  vehicles — drones and microvehicles — for the military, he says, as it’s a case  where the customer might be willing to pay double for a 10% improvement in power  for the weight. Several new technologies could deliver up to 10 times more  energy than today’s batteries, Lux Research says in a new report.

The current Lithium-ion (Li-ion) battery market is worth north of $10  billion, Laslau says. But for now applications are limited at the small end by  how much power output the batteries have for their size — think of how much  space the battery of an Apple (AAPL)  iPhone takes up. On the big end of applications are electric cars, where the  cost of a large-enough battery to provide a useful number of miles in driving  range is a limiting factor. Size is an issue there, too.

“When you get to large size like say a Tesla (TSLA)  electric vehicle, in order to get the range people want … it might cost  $30,000 for the battery alone,” Laslau said.

The report, “Beyond Lithium-Ion: A Roadmap for Next-Generation Batteries,”  that Laslau put together with two contributors sees military users as the entry  point for next-gen batteries around 2020 and consumer electronics adopting new  solid-state batteries by 2030, but it’s a hard sell for next-gen batteries in  transportation to unseat Li-ion batteries. Meanwhile, research and other kinds  of gains are expected to continue improving those and push down costs.

The next-gen battery types that could be Li-ion alternatives go by names such as Lithium-air, Lithium-sulfur, Solid-state (ceramic or polymer) and Zinc-air. They have different safety and power profiles, with solid-state having a safety edge. Several startups, such as PolyPlus, Sion Power and Oxis Energy, are working on next-gen types, and Laslau says one hard part is translating them from prototype to production. BASF has put $50 million into Sion, he adds.

The report notes that giants such as IBM, Bosch, Toyota and BMW are active in  battery research — and the last two recently partnered on it.

Some government-backed battery startups “have failed spectacularly,” Laslau  said, with A123 Systems the prime example.

“Now the U.S. has changed tack and put $120 million into Argonne National  Lab’s JCESR, the Joint Center for Energy Storage Research,” he said. It will  focus on fundamental R&D rather than making bets on startups.

“We think this is a very promising development,” Laslau said, noting that the  lab is also partnering “with really well-established companies like Johnson  Controls (JCI) that have the expertise to  mass-produce any prototypes.” Other partners include Dow  Chemical (DOW) and Applied  Materials (AMAT).

Read More At Investor’s Business Daily: http://news.investors.com/technology/032013-648660-next-generation-batteries-might-power-smartwatches-electric-cars.htm#ixzz2QpxswlBF Follow us: @IBDinvestors on Twitter | InvestorsBusinessDaily on Facebook

Hybrid ribbons a gift for powerful batteries: Vanadium oxide – graphene material works well for lithium-ion storage


hybridribbon

Hybrid ribbons a gift for powerful batteries: Vanadium oxide – graphene material works well for lithium-ion storage

QDOTS imagesCAKXSY1K 8The Rice University lab of materials scientist Pulickel Ajayan determined that the well-studied material is a superior cathode for batteries that could supply both high energy density and significant power density. The research appears online this month in the American Chemical Society journal Nano Letters. The ribbons created at Rice are thousands of times thinner than a sheet of paper, yet have potential that far outweighs current materials for their ability to charge and discharge very quickly. Cathodes built into half-cells for testing at Rice fully charged and discharged in 20 seconds and retained more than 90 percent of their initial capacity after more than 1,000 cycles. “This is the direction battery research is going, not only for something with high energy density but also high power density,” Ajayan said. “It’s somewhere between a battery and a supercapacitor.”

1-hybridribbon

Hydrothermal processing of vanadium pentoxide and graphene oxide creates graphene-coated ribbons of crystalline vanadium oxide, which show great potential as ultrafast charging and discharging electrodes for lithium-ion batteries. Credit: Ajayan Group/Rice University

The ribbons also have the advantage of using relatively abundant and cheap materials. “This is done through a very simple hydrothermal process, and I think it would be easily scalable to large quantities,” he said. Ajayan said vanadium oxide has long been considered a material with great potential, and in fact vanadium pentoxide has been used in lithium-ion batteries for its special structure and high capacity.

But oxides are slow to charge and discharge, due to their low electrical conductivity. The high-conductivity graphene lattice that is literally baked in solves that problem nicely, he said, by serving as a speedy conduit for electrons and channels for ions.

The atom-thin graphene sheets bound to the crystals take up very little bulk. In the best samples made at Rice, fully 84 percent of the cathode’s weight was the lithium-slurping VO2, which held 204 milliamp hours of energy per gram. The researchers, led by Rice graduate student Yongji Gong and lead author Shubin Yang, said they believe that to be among the best overall performance ever seen for lithium-ion battery electrodes. “One challenge to production was controlling the conditions for the co-synthesis of VO2 ribbons with graphene,” Yang said.

The process involved suspending graphene oxide nanosheets with powdered vanadium pentoxide (layered vanadium oxide, with two atoms of vanadium and five of oxygen) in water and heating it in an autoclave for hours. The vanadium pentoxide was completely reduced to VO2, which crystallized into ribbons, while the graphene oxide was reduced to graphene, Yang said.

The ribbons, with a web-like coating of graphene, were only about 10 nanometers thick, up to 600 nanometers wide and tens of micrometers in length. “These ribbons were the building blocks of the three-dimensional architecture,” Yang said. “This unique structure was favorable for the ultrafast diffusion of both lithium ions and electrons during charge and discharge processes. It was the key to the achievement of excellent electrochemical performance.”

In testing the new material, Yang and Gong found its capacity for lithium storage remained stable after 200 cycles even at high temperatures (167 degrees Fahrenheit) at which other cathodes commonly decay, even at low charge-discharge rates. “We think this is real progress in the development of cathode materials for high-power lithium-ion batteries,” Ajayan said, suggesting the ribbons’ ability to be dispersed in a solvent might make them suitable as a component in the paintable batteries developed in his lab.

More information: pubs.acs.org/doi/abs/10.1021/nl400001u

Journal reference: Nano Letters