MIT Technolgy Review: This battery advance could make electric vehicles far cheaper


Sila Nanotechnologies has pulled off double-digit performance gains for lithium-ion batteries, promising to lower costs or add capabilities for cars and phones.

For the last seven years, a startup based in Alameda, California, has quietly worked on a novel anode material that promises to significantly boost the performance of lithium-ion batteries.

Sila Nanotechnologies emerged from stealth mode last month, partnering with BMW to put the company’s silicon-based anode materials in at least some of the German automaker’s electric vehicles by 2023.

A BMW spokesman told the Wall Street Journal the company expects that the deal will lead to a 10 to 15 percent increase in the amount of energy you can pack into a battery cell of a given volume. Sila’s CEO Gene Berdichevsky says the materials could eventually produce as much as a 40 percent improvement (see “35 Innovators Under 35: Gene Berdichevsky”).

For EVs, an increase in so-called energy density either significantly extends the mileage range possible on a single charge or decreases the cost of the batteries needed to reach standard ranges. For consumer gadgets, it could alleviate the frustration of cell phones that can’t make it through the day, or it might enable power-hungry next-generation features like bigger cameras or ultrafast 5G networks.

Researchers have spent decades working to advance the capabilities of lithium-ion batteries, but those gains usually only come a few percentage points at a time. So how did Sila Nanotechnologies make such a big leap?

Berdichevsky, who was employee number seven at Tesla, and CTO Gleb Yushin, a professor of materials science at the Georgia Institute of Technology, recently provided a deeper explanation of the battery technology in an interview with MIT Technology Review.

Sila co-founders (from left to right), Gleb Yushin, Gene Berdichevsky and Alex Jacobs.

An anode is the battery’s negative electrode, which in this case stores lithium ions when a battery is charged. Engineers have long believed that silicon holds great potential as an anode material for a simple reason: it can bond with 25 times more lithium ions than graphite, the main material used in lithium-ion batteries today.

But this comes with a big catch. When silicon accommodates that many lithium ions, its volume expands, stressing the material in a way that tends to make it crumble during charging. That swelling also triggers electrochemical side reactions that reduce battery performance.

In 2010, Yushin coauthored a scientific paper that identified a method for producing rigid silicon-based nanoparticles that are internally porous enough to accommodate significant volume changes. He teamed up with Berdichevsky and another former Tesla battery engineer, Alex Jacobs, to form Sila the following year.

The company has been working to commercialize that basic concept ever since, developing, producing, and testing tens of thousands of different varieties of increasingly sophisticated anode nanoparticles. It figured out ways to alter the internal structure to prevent the battery electrolyte from seeping into the particles, and it achieved dozens of incremental gains in energy density that ultimately added up to an improvement of about 20 percent over the best existing technology.

Ultimately, Sila created a robust, micrometer-size spherical particle with a porous core, which directs much of the swelling within the internal structure. The outside of the particle doesn’t change shape or size during charging, ensuring otherwise normal performance and cycle life.

The resulting composite anode powders work as a drop-in material for existing manufacturers of lithium-ion cells.

With any new battery technology, it takes at least five years to work through the automotive industry’s quality and safety assurance processes—hence the 2023 timeline with BMW. But Sila is on a faster track with consumer electronics, where it expects to see products carrying its battery materials on shelves early next year.

Venkat Viswanathan, a mechanical engineer at Carnegie Mellon, says Sila is “making great progress.” But he cautions that gains in one battery metric often come at the expense of others—like safety, charging time, or cycle life—and that what works in the lab doesn’t always translate perfectly into end products.

Companies including Enovix and Enevate are also developing silicon-dominant anode materials. Meanwhile, other businesses are pursuing entirely different routes to higher-capacity storage, notably including solid-state batteries. These use materials such as glass, ceramics, or polymers to replace liquid electrolytes, which help carry lithium ions between the cathode and anode.

BMW has also partnered with Solid Power, a spinout from the University of Colorado Boulder, which claims that its solid-state technology relying on lithium-metal anodes can store two to three times more energy than traditional lithium-ion batteries. Meanwhile, Ionic Materials, which recently raised $65 million from Dyson and others, has developed a solid polymer electrolyte that it claims will enable safer, cheaper batteries that can operate at room temperature and will also work with lithium metal.

Some battery experts believe that solid-state technology ultimately promises bigger gains in energy density, if researchers can surmount some large remaining technical obstacles.

But Berdichevsky stresses that Sila’s materials are ready for products now and, unlike solid-state lithium-metal batteries, don’t require any expensive equipment upgrades on the part of battery manufacturers.

As the company develops additional ways to limit volume change in the silicon-based particles, Berdichevsky and Yushin believe they’ll be able to extend energy density further, while also improving charging times and total cycle life.

This story was updated to clarify that Samsung didn’t invest in Ionic Material’s most recent funding round.

Read and Watch More:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL! YouTube Video:

Advertisements

NREL’s collaboration with Purdue University’s School of Mechanical Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level, which can lead to improvements in electric vehicle (EV) battery performance and lifespan.


NREL LI Batt 1 2018018-thsc-micromodelElectrochemical simulation within a 3D nickel manganese cobalt electrode microstructure during a 20-minute fast charge. Streamlines represent Li-ion current in the electrolyte phase as ions travel through pores between the solid active material particles. Colors represent current magnitude. Illustration by Francois Usseglio-Viretta and Nicholas Brunhart-Lupo, NREL.

NREL’s collaboration with Purdue University’s School of Mechanical Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level, which can lead to improvements in electric vehicle (EV) battery performance and lifespan. A stochastic algorithm developed by Purdue University, as part of NREL’s Advanced Computer-Aided Battery Engineering Consortium, is prominently displayed on the cover of the 10th anniversary issue of American Chemical Society’s Applied Materials and Interfaces. The NREL/Purdue team’s corresponding article, “Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes” detailing the research and resulting discoveries, is showcased inside.

This work builds on earlier phases of the U.S. Department of Energy’s Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) program. NREL’s energy storage team has led key research projects since CAEBAT’s inception in 2010, resulting in the creation of software tools for cell and battery design, as well as advancements in crash simulations used by many automakers.

This next phase of CAEBAT focuses on Li-ion electrode microstructure applications (accurately simulating the physics and geometric complexity of a battery) to better understand the impact materials and manufacturing controls have on cell performance. Li-ion batteries represent a complex non-linear system and considering EVs use larger batteries with more complex configurations, it is imperative to understand the interplay between electrochemical, thermal, and mechanical physics.

Says Kandler Smith, NREL co-author on the article, “Batteries are an exceedingly complex system—both in terms of their physics and geometry. In a real battery, it’s difficult to get a clear view of what’s going on inside, because so few measurements are possible. Models are a place where all physics can come together and the advantage of the model is that everything can be measured and probed. As we build an increasingly accurate physical understanding of batteries, we can expect that technological advances will follow.”

The secondary phase in Li-ion electrodes, comprised of inert binder and electrical conductive additives, has been found to critically influence various forms of microstructural resistances. This phase has benefits for improved electronic conductivity and mechanical integrity but may block access to electrochemical active sites and introduce additional transport resistances in the pore (electrolyte) phase, thus, canceling out its original advantages.

Because the secondary phase is important for electrode mechanical integrity and electronic conductivity, its recipe and morphology will have a strong impact on battery kinetics and transport. The algorithm created and explained in the journal article explores morphologies for this phase. Stochastics comes into play as each microstructure variant is numerically generated multiple times using random seeds to ensure statistically relevant conclusions. By simulating battery electrochemistry on the various microstructure geometries, researchers can calculate the pore size of an electrode’s microstructure geometry as well as the lithium displacement within an electrode to evaluate the difficulty of movement. Finding ways to overcome resistances via electrode microstructural modifications can greatly improve overall Li-ion battery performance.

The value of this work is that improvements to Li-ion batteries—the most expensive and complex component in EVs—is helping to overcome the concerns consumers have that limit EV adoption, including restricted driving range and high costs.

MIT: Finding a New Way to Design and Analyze Better Battery Materials: Discoveries could accelerate the development of high-energy lithium batteries


Diagram illustrates the crystal lattice of a proposed battery electrolyte material called Li3PO4. The researchers found that measuring how vibrations of sound move through the lattice could reveal how well ions – electrically charged atoms or molecules – could travel through the solid material, and therefore how they would work in a real battery. In this diagram, the oxygen atoms are shown in red, the purple pyramid-like shapes are phosphate (PO4) molecules. The orange and green spheres are ions of lithium.
Image: Sokseiha Muy

Design principles could point to better electrolytes for next-generation lithium batteries.

A new approach to analyzing and designing new ion conductors — a key component of rechargeable batteries — could accelerate the development of high-energy lithium batteries and possibly other energy storage and delivery devices such as fuel cells, researchers say.

The new approach relies on understanding the way vibrations move through the crystal lattice of lithium ion conductors and correlating that with the way they inhibit ion migration. This provides a way to discover new materials with enhanced ion mobility, allowing rapid charging and discharging.

At the same time, the method can be used to reduce the material’s reactivity with the battery’s electrodes, which can shorten its useful life. These two characteristics — better ion mobility and low reactivity — have tended to be mutually exclusive.

The new concept was developed by a team led by W.M. Keck Professor of Energy Yang Shao-Horn, graduate student Sokseiha Muy, recent graduate John Bachman PhD ’17, and Research Scientist Livia Giordano, along with nine others at MIT, Oak Ridge National Laboratory, and institutions in Tokyo and Munich. Their findings were reported in the journal Energy and Environmental Science.

The new design principle has been about five years in the making, Shao-Horn says. The initial thinking started with the approach she and her group have used to understand and control catalysts for water splitting, and applying it to ion conduction — the process that lies at the heart of not only rechargeable batteries, but also other key technologies such as fuel cells and desalination systems.

While electrons, with their negative charge, flow from one pole of the battery to the other (thus providing power for devices), positive ions flow the other way, through an electrolyte, or ion conductor, sandwiched between those poles, to complete the flow.

Typically, that electrolyte is a liquid. A lithium salt dissolved in an organic liquid is a common electrolyte in today’s lithium-ion batteries. But that substance is flammable and has sometimes caused these batteries to catch fire. The search has been on for a solid material to replace it, which would eliminate that issue.

A variety of promising solid ion conductors exist, but none is stable when in contact with both the positive and negative electrodes in lithium-ion batteries, Shao-Horn says.

Therefore, seeking new solid ion conductors that have both high ion conductivity and stability is critical. But sorting through the many different structural families and compositions to find the most promising ones is a classic needle in a haystack problem. That’s where the new design principle comes in.

The idea is to find materials that have ion conductivity comparable to that of liquids, but with the long-term stability of solids. The team asked, “What is the fundamental principle? What are the design principles on a general structural level that govern the desired properties?” Shao-Horn says. A combination of theoretical analysis and experimental measurements has now yielded some answers, the researchers say.

“We realized that there are a lot of materials that could be discovered, but no understanding or common principle that allows us to rationalize the discovery process,” says Muy, the paper’s lead author. “We came up with an idea that could encapsulate our understanding and predict which materials would be among the best.”

The key was to look at the lattice properties of these solid materials’ crystalline structures. This governs how vibrations such as waves of heat and sound, known as phonons, pass through materials. This new way of looking at the structures turned out to allow accurate predictions of the materials’ actual properties. “Once you know [the vibrational frequency of a given material], you can use it to predict new chemistry or to explain experimental results,” Shao-Horn says.

The researchers observed a good correlation between the lattice properties determined using the model and the lithium ion conductor material’s conductivity. “We did some experiments to support this idea experimentally” and found the results matched well, she says.

They found, in particular, that the vibrational frequency of lithium itself can be fine-tuned by tweaking its lattice structure, using chemical substitution or dopants to subtly change the structural arrangement of atoms.

The new concept can now provide a powerful tool for developing new, better-performing materials that could lead to dramatic improvements in the amount of power that could be stored in a battery of a given size or weight, as well as improved safety, the researchers say.

Already, they used the method to find some promising candidates. And the techniques could also be adapted to analyze materials for other electrochemical processes such as solid-oxide fuel cells, membrane based desalination systems, or oxygen-generating reactions.

The team included Hao-Hsun Chang at MIT; Douglas Abernathy, Dipanshu Bansal, and Olivier Delaire at Oak Ridge; Santoshi Hori and Ryoji Kanno at Tokyo Institute of Technology; and Filippo Maglia, Saskia Lupart, and Peter Lamp at Research Battery Technology at BMW Group in Munich.

The work was supported by BMW, the National Science Foundation, and the U.S. Department of Energy.

Watch a YouTube Video on New Nano-Enabled Super Capacitors and Batteries

Step Towards Better ‘Beyond Lithium’ Batteries: University of Bath


beyond Lio Batts batteriesA step towards new “beyond lithium” rechargeable batteries with superior performance has been made by researchers at the University of Bath.

We increasingly rely on rechargeable batteries for a host of essential uses; from mobile phones and electric cars to electrical grid storage. At present this demand is taken up by lithium-ion batteries. As we continue to transition from fossil fuels to low emission energy sources, new battery technologies will be needed for new applications and more efficient energy storage.

One approach to develop batteries that store more energy is to use “multivalent” metals instead of lithium. In lithium-ion batteries, charging and discharging transfers lithium ions inside the battery. For every lithium ion transferred, one electron is also transferred, producing electric current. In multivalent batteries, lithium would be replaced by a different metal that transfers more than one electron per ion. For batteries of equal size, this would give multivalent batteries better energy storage capacity and performance.

The team showed that titanium dioxide can be modified to allow it to be used as an electrode in multivalent batteries, providing a valuable proof of concept in their development.

The scientists, an international team from the University of Bath, France, Germany, Holland, and the USA, deliberately introduced defects in titanium dioxide to form high concentrations of microscopic holes, and showed these can be reversibly occupied by magnesium and aluminium; which carry more than one electron per ion.

The team also describes a new chemical strategy for designing materials that can be used in future multivalent batteries.

The research is published in the journal Nature Materials.

Dr Benjamin Morgan, from the Department of Chemistry at the University of Bath, said: “Multivalent batteries are a really exciting direction for battery technology, potentially offering higher charge densities and better performance. New battery technologies are going to be more and more important as we wean ourselves off fossil fuels and adopt greener energy sources.

“There are quite a few technical hurdles to overcome, including finding materials that are good electrodes for multivalent ions. We’ve shown a way to modify titanium dioxide to turn it into a multivalent electrode.

“In the long term, this proof of concept is a possible step towards “beyond lithium” batteries with superior performance.”

MIT: Researchers clarify mystery about proposed battery material – More “Energy Per Pound”- EV’s and Lithium-Air Batteries


MIT-Lithium-i-1_0Study explains conflicting results from other experiments, may lead to batteries with more energy per pound.

Battery researchers agree that one of the most promising possibilities for future battery technology is the lithium-air (or lithium-oxygen) battery, which could provide three times as much power for a given weight as today’s leading technology, lithium-ion batteries. But tests of various approaches to creating such batteries have produced conflicting and confusing results, as well as controversies over how to explain them.

Now, a team at MIT has carried out detailed tests that seem to resolve the questions surrounding one promising material for such batteries: a compound called lithium iodide (LiI). The compound was seen as a possible solution to some of the lithium-air battery’s problems, including an inability to sustain many charging-discharging cycles, but conflicting findings had raised questions about the material’s usefulness for this task. The new study explains these discrepancies, and although it suggests that the material might not be suitable after all, the work provides guidance for efforts to overcome LiI’s drawbacks or find alternative materials.battery-5001

The new results appear in the journal Energy and Environmental Science, in a paper by Yang Shao-Horn, MIT’s W.M. Keck Professor of Energy; Paula Hammond, the David H. Koch Professor in Engineering and head of the Department of Chemical Engineering; Michal Tulodziecki, a recent MIT postdoc at the Research Laboratory of Electronics; Graham Leverick, an MIT graduate student; Yu Katayama, a visiting student; and three others.

The promise of the lithium-air battery comes from the fact one of the two electrodes, which are usually made of metal or metal oxides, is replaced with air that flows in and out of the battery; a weightless substance is thus substituted for one of the heavy components. The other electrode in such batteries would be pure metallic lithium, a lightweight element.

But that theoretical promise has been limited in practice because of three issues: the need for high voltages for charging, a low efficiency with regard to getting back the amount of energy put in, and low cycle lifetimes, which result from instability in the battery’s oxygen electrode. Researchers have proposed adding lithium iodide in the electrolyte as a way of addressing these problems. But published results have been contradictory, with some studies finding the LiI does improve the cycling life, “while others show that the presence of LiI leads to irreversible reactions and poor battery cycling,” Shao-Horn says.

Previously, “most of the research was focused on organics” to make lithium-air batteries feasible, says Michal Tulodziecki, the paper’s lead author. But most of these organic compounds are not stable, he says, “and that’s why there’s been a great focus on lithium iodide [an inorganic material], which some papers said helps the batteries achieve thousands of cycles. But others say no, it will damage the battery.” In this new study, he says, “we explored in detail how lithium iodide affects the process, with and without water,” a comparison which turned out to be significant.

lithium-air-battery (1)

The team looked at the role of LiI on lithium-air battery discharge, using a different approach from most other studies. One set of studies was conducted with the components outside of the battery, which allowed the researchers to zero in on one part of the reaction, while the other study was done in the battery, to help explain the overall process.

They then used ultraviolet and visible-light spectroscopy and other techniques to study the reactions that took place. Both of these processes foster the production of different lithium compound such as LiOH (lithium hydroxide) in the presence of both LiI and water, instead of Li2O(lithium peroxide).  LiI can enhance water’s reactivity and make it lose protons more easily, which promotes the formation of LiOH in these batteries and interferes with the charging process. These observations show that finding ways to suppress these reactions could make compounds such as LiI work better.

This study could point the way toward selecting a different compound instead of LiI to perform its intended function of suppressing unwanted chemical reactions at the electrode surface, Leverick says, adding that this work demonstrates the importance of “looking at the detailed mechanism carefully.”

Shao-Horn says that the new findings “help get to the bottom of this existing controversy on the role of LiI on discharge. We believe this clarifies and brings together all these different points of view.”

But this work is just one step in a long process of trying to make lithium-air technology practical, the researchers say. “There’s so much to understand,” says Leverick, “so there’s not one paper that’s going to solve it. But we will make consistent progress.”

“Lithium-oxygen batteries that run on oxygen and lithium ions are of great interest because they could enable electric vehicles of much greater range. However, one of the problems is that they are not very efficient yet,” says Larry Curtiss, a distinguished fellow at Argonne National Laboratory, who was not involved in this work. In this study, he says, “it is shown how adding a simple salt, lithium iodide, can potentially be used to make these batteries run much more efficiently. They have provided new insight into how the lithium iodide acts to help break up the solid discharge product, which will help to enable the development of these advanced battery systems.”Nissan-Leaf

Curtiss adds that “there are still significant barriers remaining to be overcome before these batteries become a reality, such as getting long enough cycle life, but this is an important contribution to the field.”

The team also included recent MIT graduates Chibueze Amanchukwu PhD ’17 and David Kwabi PhD ’16, and Fanny Bardé of Toyota Motor Europe. The work was supported by Toyota Motor Europe and the Skoltech Center for Electrochemical Energy Storage, and used facilities supported by the National Science Foundation.

Volvo goes ALL EV/ Hybrid by 2019 ~ Is it a BIG Deal? + Video NextGen ‘Battery Pack’ that could propel Tesla ‘S’ 2X farther at 1/2 the Cost


Still from animation - Mild hybrid, 48 volts

Original Report from IDTechEX

Volvo Cars has been in the news recently in relation to their announcement this Wednesday on their decision to leave the internal combustion engine only based automotive industry.   The Chinese-European company announced that from 2019 all their vehicles will be either pure electric or hybrid electric. In this way it has been argued the company is making a bold move towards electrification of vehicles. Volvo to capture potential market in China The company will launch a pure electric car in 2019 and that is a great move indeed, considering that the company has been owned by Chinese vehicle manufacturer Geely since 2010.

The Chinese electric vehicle market has been booming in the last years reaching a sales level of 350,000 plug-in EVs (pure electric and plug-in hybrid electric cars) in 2016. The Chinese plug-in EV market grew 300% from 2014 to 2015 but cooled down to 69% growth in 2016 vs 2015, still pushing a triple digit growth in pure electric cars. The Chinese government has announced that in 2017 sales will reach 800,000 NEV  (new energy vehicles including passenger and bus, both pure electric and hybrid electric).   IDTechEx believes that China will not make it to that level, but will definitely push the figures close to that mark.

We think that the global plug-in electric vehicle market will surpass 1 million sales per year for the first time at the end of 2017.   Until recently this market has been mostly dominated by Chinese manufacturers, being BYD the best seller of electric cars in the country with 100,000 plug-in EVs sold in 2016. Tesla polemically could not penetrate the market but in 2016 sold around 11,000 units.  

Whilst the owner of Volvo Cars, Geely, is active in China selling around 17,000 pure electric cars per year, it might be that Volvo has now realized that they can leverage on their brand in the Chinese premium market to catch the huge growth opportunity in China and need to participate as soon as possible.   More information on market forecasts can be found in IDTechEx Research’s report Electric Vehicles 2017-2037: Forecasts, Analysis and Opportunities.

Volvo 4 Sedan volvo-40-series-concepts-16-1080x720

Is Volvo Cars’ move a revolutionary one? Not really, as technically speaking the company is not entirely making a bold movement to only 100% “strong” hybrid electric and pure electric vehicles.   This is because the company will launch in 2019 a “mild” hybrid electric vehicles, this is also known in the industry as 48V hybrid electric platform. This is a stepping stone between traditional internal combustion engine companies and “strong” hybrid electric vehicles such as the Toyota Prius.

The 48V platform is being adopted by many automotive manufacturers, not only Volvo. OEMs like Continental developed this platform to provide a “bridge technology”  towards full EVs for automotive manufacturers, providing 6 to 20 kW electric assistance. By comparison, a full hybrid system typically offers 20-40-kW and a plug-in hybrid, 50-90 kW.   Volvo had already launched the first diesel plug-in hybrid in 2012 and the company will launch a new plug-in hybrid platform in 2018 in addition to the launch of the 2019 pure electric vehicle platform.   Going only pure electric and plug-in hybrid electric would be really revolutionary.   See IDTechEx Research’s report Mild Hybrid 48V Vehicles 2017-2027 for more information on 48V platforms.

Tesla Model 3hqdefaultAdditional Information: The Tesla Model ‘S’

The Tesla Model S is a full-sized all-electric five-door, luxury liftback, produced by Tesla, Inc., and introduced on 22 June 2012.[14] It scored a perfect 5.0 NHTSA automobile safety rating.[15] The EPA official rangefor the 2017 Model S 100D,[16] which is equipped with a 100 kWh(360 MJbattery pack, is 335 miles (539 km), higher than any other electric car.[17] The EPA rated the 2017 90D Model S’s energy consumption at 200.9 watt-hours per kilometer (32.33 kWh/100 mi or 20.09 kWh/100 km) for a combined fuel economy of 104 miles per gallon gasoline equivalent (2.26 L/100 km or 125 mpg‑imp).[18] In 2016, Tesla updated the design of the Model S to closely match that of the Model X. As of July 2017, the following versions are available: 75, 75D, 90D, 100D and P100D.[19]

 

Tesla Battery Pack 2014-08-19-19.10.42-1280

 

For more specific details on the updated Tesla Battery Pack go here:

Teardown of new 100 kWh Tesla battery pack reveals new cooling system and 102 kWh capacity

 

 

 

Volvo 3 Truck imagesA radical move would be to drop diesel engines On-road diesel vehicles produce approximately 20% of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM and ozone precursors.   Diesel emission pollutions has been confirmed as a major source of premature mortality. A recent study published in Nature  by the Environmental Health Analytics LLC and the International Council on Clean Transportation both based in Washington, USA found that whilst regulated NOx emission limits in leading markets have been progressively tightened, current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. The authors show that across 11 markets, representing approximately 80% of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits.   These emissions were associated with about 38,000 premature deaths globally in 2015.

The authors conclude that more stringent standards are required in order to avoid 174,000 premature deaths globally in 2040.   Diesel cars account for over 50 percent of all new registrations in Europe, making the region by far the world’s biggest diesel market. Volvo Cars, sells 90 percent of its XC 90 off roaders in Europe with diesel engines.   “From today’s perspective, we will not develop any more new generation diesel engines,” said Volvo’s CEO Hakan Samuelsson told German’s Frankfurter Allgemeine Zeitung in an interview .   Samuelsson declared  that Volvo Cars aims to sell 1 million “electrified” cars by 2025, nevertheless he refused to be drawn on when Volvo Cars will sell its last diesel powered vehicle.

Goldman Sachs believes  a regulatory crackdown could add 300 euros ($325) per engine to diesel costs that are already some 1,300 euros above their petrol-powered equivalents, as carmakers race to bring real NOx emissions closer to their much lower test-bench scores. Scandinavia’s vision of a CO2-free economy Volvo’s decision should also be placed in a wider context regarding the transition to an environmentally sustainable economy.

Scandinavia’s paper industry has made great strides towards marketing itself as green and eco-aware in the last decades, so much so that countries like Norway have tripled the amount of standing wood in forests compared to 100 years ago. Energy supply is also an overarching theme, with each one of the four Scandinavian countries producing more than 39% of their electricity with renewables (Finland 39%, Sweden and Denmark 56%, Norway 98%). Finally, strong public incentives have made it possible for electric vehicles to become a mainstream market in Norway, where in 2016, one in four cars sold was a plug-in electric, either pure or hybrid.   It is then of no surprise that the first battery Gigafactory announcement in Europe came from a Swedish company called Northvolt (previously SGF Energy).

The Li-ion factory will open in 4 steps, with each one adding 8 GWh of production capacity. This gives a projected final output of 32 GWh, but if higher energy cathodes are developed, 40-50 GWh capacity can be envisioned. A site has not yet been identified, but the choice has been narrowed down to 6-7 locations, all of them in the Scandinavian region. The main reasons to establish a Gigafactory there boil down to the low electricity prices (hydroelectric energy), presence of relevant mining sites, and the presence of local know-how from the pulp & paper industry.   After a long search for a European champion in the EV market, it finally seems that Sweden has accepted to take the lead, and compete with giants like BYD and rising stars like Tesla. This could be the wake-up call for many other European car makers, which have been rather bearish towards EV acceptance despite many bold announcements.   To learn more about IDTechEx’s view on electric vehicles, and our projections up to 2037, please check our master report on the subject http://www.IDTechEx.com/ev .

Top image source: Volvo Cars Learn more at the next leading event on the topic: Business and Technology Insight Forum. Korea 2017 on 19 – 21 Sep 2017 in Seoul, Korea hosted by IDTechEx.

More Information on ‘NextGen Magnum SuperCap-Battery Pack’ that could propel a Tesla Model ‘S’ 90% farther (almost double) and cost 1/2 (one-half) as much: Video

 

World’s Largest Lithium-Ion Battery System to be Built in Australia by Tesla + Video


AS TESLA MODEL 3 PRODUCTION BEGINS, ELON MUSK ANNOUNCES BIGGEST BATTERY ON OTHER SIDE OF THE WORLD 

You’d think the biggest Tesla news today would be surrounding landmark production of Tesla Model 3 SN1 — aka serial number 1. 



However, news emerged that Elon Musk was on the other side of the world. Wall Street Journal* reports, “Tesla Inc.’s Elon Musk has agreed to build the world’s largest lithium-ion battery system in Australia, an ambitious project that he hopes will show how the technology can help solve energy problems.”


Above: Tesla is planning the world’s biggest battery installation in South Australia (Image: Tesla)




It’s reported that, “The plan is to build a 100-megawatt storage system in the state of South Australia—which has been hit by a string of blackouts over the past year—that will collect power generated by a wind farm built by French energy company Neoen.” Musk emphasized the magnitude of the project, explaining: ““This is not a minor foray into the frontier, this is like going three times further than anyone has gone before.”

Above: More on Tesla’s project in South Australia (Youtube: Jay Weatherill)
It turns out that “Tesla was selected from more than 90 bids to build a storage system for the state, said South Australia Premier Jay Weatherill. The value of the project wasn’t disclosed. The origins of the deal trace back to a Twitter exchange in March between Mr. Musk and local entrepreneur Mike Cannon-Brookes, which led to conversations between Mr. Musk and Mr. Weatherill and Australian Prime Minister Malcolm Turnbull.”

Above: Tesla CEO Elon Musk and South Australia Premier Jay Weatherill (Twitter: Jay Weatherill)

True to his word, “Mr. Musk pledged to complete the project—which he said will be three times more powerful than any other battery system in the world—within 100 days of signing an agreement or it would be free.” In addition, “Once the project is completed, which Tesla expects will happen by the start of the Australian summer in December, it will be larger than a storage facility in the Southern California desert also built on Tesla batteries.”


Above: Tesla Powerpack installation (Image: Tesla)
According to Tesla, “The project will provide enough power for more than 30,000 homes, about equal to the number of homes that lost power during the blackouts.” Back in Fremont, the Tesla factory will get started on the first-ever production Model 3. Coming off historic rocket launches at SpaceX, chalk up another landmark milestone (or two) for Tesla today — just another week of work for the Iron Man, Elon Musk.

*Source: Wall Street Journal

Nanostructured Electrodes from a Molybdenum Disulfide-Carbon Composite may provide Practical Fast-Charging Batteries


Fast Charge batteries vid47065

Electrodes are critical parts of every battery architecture — charge too fast, and you can decrease the charge-discharge cycle life or damage the battery so it won’t charge anymore. Scientists have built a new design and chemistry for electrodes. Their design involves advanced, nanostructured electrodes containing molybdenum disulfide and carbon nanofibers (Advanced Energy Materials, “Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes”). These composite materials have internal atomic-scale pathways. These paths are for both fast ion and electron transport, allowing for fast charging.

Fast Charge batteries vid47065

Battery electrodes made of a molybdenum disulfide nanocrystal composite have internal pathways to allow lithium ions to move quickly through the electrode, speeding up the rate that the battery can charge. The key features in the structure that enable the flow of the lithium ions are the small, 20-40 nanometer, diameter of the nanocrystals (in contrast, human hairs are about 100,000 nanometers in diameter) coupled with the porosity and planar lamellar pathways shown in the electron micrograph. (Image: Sarah Tolbert, University of California, Los Angeles)

 

The new battery electrodes provide several benefits. The electrodes allow fast charging. They also have stable charge/discharge behavior, so the batteries last longer. These electrodes show promise for practical electrical energy storage systems.
New battery electrodes based on nanostructured molybdenum disulfide combine the ability to charge in seconds with high capacity and long cycle life. Typical lithium-ion batteries charge slowly due to slow diffusion of lithium ions within the solid electrode.
Another type of energy storage device (a.k.a., pseudocapacitors), which has similarities to the capacitors found in common electrical circuits, speeds up the charging process by using reactions at or near the electrode surface, thus avoiding slow solid-state diffusion pathways.
Nanostructured electrodes allow the creation of large surface areas so that the battery can work more like a pseudocapacitor. In this work at the University of California, Los Angeles, scientists made nanostructured electrodes from a molybdenum disulfide-carbon composite.
Many electrodes are based on metal oxides, but because sulfur more weakly interacts with lithium than oxygen, lithium atoms can move more freely in the metal sulfide than the metal oxide. The result is a battery electrode that shows high capacity and very fast charging times.
The novel electrodes deliver specific capacities of 90 mAh/g (about half that of a typical lithium-ion battery cathode) charging in less than 20 seconds, and retain over 80 percent of their original capacity after 3,000 charge/discharge cycles. Capacities of greater than 180 mAh/g (similar to cathodes in conventional lithium-ion cells) are achieved at slower charging rates.
The results have exciting implications for the development of fast-charging energy storage systems that could replace traditional lithium-ion batteries.
Source: U.S. Department of Energy, Office of Science

 

Finding Ways to Cure the Energy Dense but Short-Lived Lithium-Sulfur Battery – A ‘First-Time Look’


Lithium Sulfur I chemistsseek

Everyone’s heard the phrase about seeing both the details and the big picture, and that struggle comes into sharp relief for those studying how to create batteries that hold more energy and cost less. It’s difficult to see the details of atomic and topographical changes as a battery operates.

For DOE’s Joint Center for Energy Storage Research (JCESR), Vijay Murugesan and his colleagues at Pacific Northwest National Laboratory and Texas A&M University found a way. The result? They saw the products of the parasitic electrolyte decomposition reactions. The reactions led to a layer that smothers the electrode in energy-dense-but short-lived-lithium-sulfur batteries (Chemistry of Materials, “In-Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li-S Batteries”).
This research is thanks, in part, to a new device that let the team track the progression of sulfur in a vacuum inside a powerful scientific instrument. “We can now realistically probe the reactions happening and view how the products actually spread,” said Murugesan, PNNL researcher.
The Forest, the Trees and Parasitic Reactions in Batteries
The Forest, the Trees and Parasitic Reactions in Batteries. Researchers built a new stage and created a designer electrolyte to obtain both detailed and broad overviews of a troubling layer that causes promising lithium-sulfur batteries to fail. (Image: Nathan Johnson, PNNL)
 

Better batteries affect everything from how you get to work to how long you can work on your laptop computer before finding an outlet. The results from this fundamental study benefit energy storage in two ways. First, to do the work, the team created a new “stage.” This device let scientists determine the atomic composition and electronic and chemical state of the atoms on the electrode while the battery was running. Scientists can use this device to obtain a detailed view of other batteries.

“Doing this measurement is challenging,” said Vaithiyalingam Shutthanandan, a PNNL scientist who worked on the research. “This is the first time we could access this level of quantity and quality data while batteries were charging and discharging.”
The second benefit of this study is the potential to solve the fading issue in lithium-sulfur batteries. “Sulfur is significantly cheaper than current cathode materials in lithium-ion batteries,” said Murugesan. “So the total cost of a lithium-sulfur battery will be low. Simultaneously, the energy density will be a huge advantage-approximately five times more than lithium-ion batteries.”
The team achieved the results thanks to a combination of scientific innovation and serendipity. The innovation came in building the unique stage for the X-ray photoelectron spectroscopy (XPS) instrument. The researchers needed to track the sulfur in the battery, but sulfur volatilizes in a vacuum. All samples in an XPS are studied under vacuum. Combining the newly designed stage and ionic liquids as electrolyte media let the team operate the battery inside the XPS and monitor the growth of sulfur-based compounds to see the parasitic reactions.
“We designed a completely new capability for the XPS system,” said Ashleigh Schwarz, who performed many of the XPS scans on the battery and helped determine the electrolyte to use on the stage.
The electrolyte’s composition is crucial, as it must survive the vacuum used by XPS. Schwarz and her colleagues tested different compositions to see how well the electrolyte performed in the XPS. The team’s choice contained 20 percent of the traditional solvent (DOL/DME) combined with an ionic solvent.
Using the XPS in analysis or spectroscopy mode, the team obtained the atomic information, including the atoms present and the chemical bonds between them. Switching over to an imaging or microscopic mode, the researchers acquired topological views of the solid-electrolyte interphase (SEI) layer forming. This view let them see where the elements were on the surface and more. The combination of views let them obtain critical information over a wide range of spatial resolutions, spanning from angstroms to micrometers as the battery drained and charged.
The XPS resides in EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility at PNNL.
Lithium Sulfur II bg-applications-1In addition, the team benefited from a serendipitous meeting at a national scientific conference. Murugesan was talking with Perla Balbuena, Texas A&M University, about her research into lithium-sulfur batteries. The pair quickly realized that her work on ab initio molecular dynamics modeling would benefit the experiments. Balbuena and her colleague Luis Camacho-Forero worked with the experimentalists to interpret the results and test new ideas about how the SEI layer forms. Knowing how the layer forms could lead to options that stop its formation altogether and greatly extend the battery life cycle.
As part of JCESR, the team is continuing to answer tough questions necessary to create the next generation of energy storage technologies.
Source: Pacific Northwest National Laboratory

 

NextGen Vanadium Batteries: Berkeley & Texas A&M Scientists may have solved ‘electron bottleneck’


vanadium small batt night-battery-theme-minimalismAs the appetite grows for more efficient vehicles and mobile devices based on cleaner, renewable energy sources, so does the demand for batteries that pack more punch, last longer, and charge or discharge more quickly. The compound vanadium pentoxide has grabbed the spotlight as a way to improve lithium-ion batteries. However, it’s less-than-stellar behavior has been problematic.

 

An international team working at the Molecular Foundry (Berkeley) revealed why the material may not perform as expected. The team discovered how interactions between electrons and ions slow the performance of electrodes made with vanadium pentoxide (Nature Communications, “Mapping polaronic states and lithiation gradients in individual V2O5 nanowires”).

 

This work answers, in part, why the material gets bogged down. Vanadium pentoxide’s layered atomic structure results in a vast surface area, but a bottleneck occurs. If scientists can address the bottleneck, this material may lead to the next generation of batteries, which pack more punch, last longer, and charge or discharge more quickly.
A scanning electron microscopy image of vanadium pentoxide nanowires
A scanning electron microscopy image of vanadium pentoxide nanowires. The inset shows a ball-and-stick model of vanadium pentoxide’s atomic structure before and after inserting lithium ions (green). (Image: Texas A&M University)
An international team of scientists working at the Molecular Foundry has revealed how interactions between electrons and ions can slow down the performance of vanadium pentoxide, a material considered key to the next generation of batteries.
The compound vanadium pentoxide has grabbed the spotlight as a potential nanostructured material for state-of-the-art lithium-ion batteries because it can provide a greater surface area for the arrival and insertion of lithium ions. That quality makes vanadium pentoxide a good candidate as a cathode, the part of a battery where electrons and lithium ions enter.
The speed with which electrons can enter and exit the cathode determines how much power the battery can provide. The entry and exit speed also determine how quickly a battery recharges.
Power density and charging are both critical factors in the world of mobile electronics or electrification of our automotive fleet. But despite vanadium pentoxide’s potential, it has yet to be widely adopted commercially because of its less-than-stellar performance when put to the test in the real world.
The new findings shed light on the slowdown. The results show that the flow of electrons in vanadium pentoxide nanowires gets bogged down as it interacts with lithium ions in a phenomenon known as small polaron formation.
The research group, which involved scientists at Texas A&M University, made 2D maps of the electronic properties of synthesized vanadium pentoxide nanowires serving as a model lithium-ion cathode using scanning transmission x-ray microscopy at the Canadian Light Source. They came to the Molecular Foundry to interpret their findings.
Source: Molecular Foundry, Berkeley Lab

Vanadium Redox Flow Batteries for Large Scale Energy Storage

vanadium batt medium windcarrier_cellcube-281x300Lithium batteries may reign supreme when it comes to cellphones, laptops and electric vehicles. But for larger-scale energy storage, some are looking at alternative metals and technologies.

Enter Vanadium redox batteries. First successfully created by Dr. Maria Skyllas-Kazacos of the University of New South Wales in the 1980’s, Vanadium redox flow batteries use sulfuric solutions to power themselves. A vanadium electrolyte passing through a proton exchange membrane allows the battery to work, with a solution filling two tanks on either side.

Click Here to Read More: What are Vanadium Redox Batteries?

Vanadium Batt large FlowBattery-640x355