Building A Better Battery for America … In America – Is Lithium Iron Phosphate (LIP) Making a ‘Comeback’ in North America?


Credit: David Giral Photography | Nano One Materials’s Montreal factory, originally commissioned in 2012, is the only facility in North America that can produce meaningful quantities of lithium iron phosphate.

SUMMARY: BRIEF

Electric car companies in North America plan to cut costs by adopting batteries made with the raw material lithium iron phosphate (LFP), which is less expensive than alternatives made with nickel and cobalt.

Many carmakers are also trying to reduce their dependence on components from China, but nearly all LFP batteries and the raw materials used to make them currently come from China. A number of companies are now planning the first large-scale LFP factories in North America. Some are partnering with established companies, and others hope to introduce new technologies that will leapfrog Chinese competitors.

THE REST OF THE STORY

On a bookshelf in his home near Montreal, Denis Geoffroy keeps a small vial of lithium iron phosphate, a slate gray powder known as LFP. He made the material nearly 20 years ago while helping the Canadian firm Phostech Lithium scale up production for use in cathodes, which is the positive end of a battery and represents the bulk of its cost.

At the time, Phostech was making only about 1 metric ton (t) of LFP per year. Geoffroy mixed the precursors at a facility in Quebec and cooked the mixture in a kiln in Ontario, more than 700 km away. “Then I would put it in my car and drive home,” he says. “I would go to FedEx to ship it to customers.”

Eventually, Phostech graduated to bigger LFP factories, culminating in a 2,400 t per year plant near Montreal in 2012. Despite the progress, LFP never caught on as a chemistry for electric vehicle batteries in North America. Carmakers in the region opted instead for cathodes made with nickel and cobalt, which offer higher energy density and more range. In 2021, Johnson Matthey, which acquired the Montreal facility in 2015, put the plant up for sale.

Nickel and cobalt prices have increased substantially in the past few years, however, and nonprofit watchdogs say mining for the metals is connected to environmental problems and child labor. Nickel-based batteries are also more likely to catch fire and can’t be recharged as many times as LFP batteries.

After initially snubbing the chemistry, several big carmakers are now turning to LFP as a way to cut lithium-ion battery costs.

Ford, Rivian, and Volkswagen have all unveiled plans to use LFP in North American cars, and General Motors is interested as well. A turning point came in October 2021, when Tesla, which accounted for two-thirds of US electric car registrations last year, revealed that it would switch to LFP batteries for all its standard-range vehicles globally.

Western carmakers also want to reduce their dependence on materials from China. At the moment, China is the source of nearly all LFP batteries and the cathode powders required to make them, but several companies are trying to change that.

In October, the Israeli chemical maker ICL Group announced plans to build an LFP cathode powder factory in Missouri. The Norwegian start-up Freyr Battery and Utah-based American Battery Factory plan to make LFP cathode material in the US for their battery factories in Georgia and Arizona, respectively. Meanwhile, China’s Gotion High-Tech hopes to establish LFP cathode material production in Michigan. Other Chinese manufacturers are also weighing how to leverage their expertise in North America.

In November, the start-up Nano One Materials finalized the purchase of the old Phostech LFP plant in Montreal, promising to introduce a manufacturing process that will require less energy and produce less waste than existing methods. Geoffroy, now Nano One’s chief commercialization officer, has returned to the factory to pilot the new process and scale it up.

“I designed it, built it, managed it, left it . . . and now we’re rebuilding,” Geoffroy says. “For me, it’s a chance to do what I planned on doing with a process that I believe in.”

BORN IN THE USA

The energy powering an electric car is released when electrons from a lithium-​ion battery’s negatively charged electrode, called the anode, flow through the motor into the battery’s positively charged cathode. To balance the electrons leaving the anode, the cathode must simultaneously accept positively charged lithium ions from an electrolyte solution.

Batteries with anodes that produce lots of electrons, and cathodes that are eager to suck them up, have a high voltage, which allows them to store more energy in a given volume. Energy density can be increased by using cathode and anode materials that can store more lithium ions.

Because nickel and cobalt cathode materials can store lots of lithium and generate a high voltage, they were used in some of the first commercial lithium-ion batteries. But even in the early days of battery development, researchers saw room for improvement.

A stainless steel reactor that produces lithium iron phosphate at Nano One's factory in Montreal.

Nano One Materials must scale up its new production process from 100 L glass tanks to much larger factories. Initial trials started this month. Credit: David Giral Photography

“We wanted to reduce the cost, so we pursued cathodes based on iron, which is abundant and a cheaper metal,” says Arumugam Manthiram, a University of Texas at Austin researcher who worked with the battery trailblazer John Goodenough for decades and laid the groundwork for the class of cathodes that includes LFP.

In the mid-1990s, other researchers from Goodenough’s lab proposed using LFP, arguing that it was cheap and nontoxic. But the material wasn’t very conductive, which limited its utility. A few years later, building on the Goodenough lab’s initial discovery, scientists at Hydro-Québec and the University of Montreal solved the conductivity problem by coating LFP with carbon. Though LFP batteries still couldn’t match the energy density of nickel-based batteries, their lower cost made them appealing.

In 2003, Hydro-Québec and the University of Montreal gave Phostech the first license to manufacture LFP commercially. But investors backing North American projects were cautious, and progress was slow. “We had half a million dollars to survive for 3 years,” Geoffroy recalls. “I was paying myself by selling samples.”

Things accelerated for Phostech in 2005, when the German chemical company Süd-Chemie, which was developing a different LFP manufacturing process, bought a majority stake in Phostech. Süd-Chemie financed pilot facilities and the 2,400 t plant near Montreal, but the German firm’s hydrothermal process turned out to be more expensive than Phostech’s solid-state method. Clariant acquired Süd-Chemie in 2012 and promptly sold the LFP business to Johnson Matthey.

Geoffroy left Johnson Matthey in 2019 without seeing the plant become big enough to meaningfully supply the auto industry. “When we bought the land in 2007 there was expansion planned,” he recalls. “We never expanded.”

Other North American companies also sought to capitalize on the discovery of LFP, with limited success. In 2009, the Massachusetts Institute of Technology spinout A123 Systems raised $350 million in an initial public offering, aiming to manufacture a modified version of LFP in Michigan. But not enough carmakers were interested, and A123 went bankrupt in 2012. Most of the firm’s assets were acquired by China’s Wanxiang Group.

MADE IN CHINA

LFP was invented and developed in North America, but Chinese companies were the first to place a big bet on the technology, according to Karim Zaghib, a battery scientist at Concordia University who worked for Hydro-Québec in the 1990s.

After successfully installing LFP batteries on buses ahead of the 2008 Beijing Olympics, China, impressed by the chemistry’s improved fire safety compared with nickel-based batteries, made LFP production a national project, Zaghib says. “The Chinese government and Chinese companies invested a lot in LFP.”

And the material has been a hit. In 2021, more than 40% of electric vehicles sold in China had LFP in their batteries, according to the market research firm Adamas Intelligence. “In China, small electric vehicles . . . with a range of 120 km are very popular,” says Alla Kolesnikova, head of data analytics at Adamas. “The majority of them are powered by LFP.”

Most factories in China produce LFP using a solid-state process that starts with the reaction of iron sulfate and phosphoric acid to produce iron phosphate. Usually the iron phosphate is then mixed with lithium carbonate and a source of carbon that forms the conductive coating.

An employee works on machinery at an Aleees factory producing lithium iron phosphate.

Taiwan’s Aleees has been producing lithium iron phosphate outside China for decades and is now helping other firms set up factories in Australia, Europe, and North America. Credit: Aleees

That mixture is then sent in a ceramic crucible into a kiln, where it reaches temperatures of 700–800 °C. The heat sinters the material, changing it from an amorphous mixture into the olivine structure that allows it to function as a cathode.

Between 2010 and 2016, China’s capacity to make LFP cells, or individual battery units, increased 100-fold, according to Cormac O’Laoire, managing director of the Hong Kong–based battery consulting firm Electrios Energy. By 2021, he says, Chinese companies were producing over 90% of the world’s LFP powder.

In a little over 10 years, one Chinese company, Shenzhen Dynanonic, increased its annual LFP capacity from 500 t to 265,000 t. Unlike other firms in China, Dynanonic uses a solution-based production method that resembles the hydrothermal process Süd-Chemie used in Montreal.

Suki Zhang, Dynanonic’s account manager for overseas markets, says most of its growth has come in the past 2 years, a period when Chinese battery manufacturers, such as Contemporary Amperex Technology Co. Limited (CATL), were investing heavily in LFP. “We have so many batteries here,” she says. “The demand is a big reason why we built LFP in China.”

Chinese factories are able to make LFP cheaply, in part because the consortium of organizations that owned the relevant patents—including France’s National Center for Scientific Research, Hydro-Québec, Johnson Matthey, and the University of Montreal—agreed not to charge Chinese companies licensing fees if they sold only in China, according to an International Energy Agency report. In contrast, the Taiwan-based LFP maker Aleees says it paid about 10% of its sales in licensing fees until recently.

The intellectual property was held more closely in other parts of the world. “That may have limited some of the development of LFP in the US and Europe,” says Anantha Desikan, ICL’s chief technology officer.

James Frith, a principal at the venture capital firm Volta Energy Technologies, points out that China has other advantages. Iron sulfate is cheap there because it’s available as a by-product of titanium dioxide production, which isn’t the case outside China, where most makers of the pigment use a different process. Frith says less-stringent environmental regulations in China can also reduce costs.

Over the past few years, the core patents behind LFP manufacturing have expired, removing a barrier for non-Chinese companies interested in producing LFP. O’Laoire says the expirations also make it easier for Chinese companies to serve markets where the patents were previously enforced.

Zhang says Dynanonic is now considering an overseas expansion, though the company hasn’t yet disclosed a specific location. Any such project would depend on the strength of battery manufacturing in other countries as well as on the rules for implementing clean energy policies like the Inflation Reduction Act, the landmark US legislation that is projected to inject $142 billion into companies making batteries or battery components in the US.

Other Chinese battery companies have already started expanding overseas. Gotion High-Tech, which has been producing LFP batteries and cathode materials in China since 2007, plans to build 100 GW h of battery cell capacity outside China over the next 3 years. In June 2022, Gotion, whose biggest shareholder is Volkswagen, announced plans for its first LFP battery factory in Europe.

A scanning electron microscope image of Aleees’s lithium iron phosphate powder. Credit: Aleees

A few months later, an economic development agency in Michigan awarded Gotion’s US subsidiary grants and tax incentives to help construct a $2.4 billion plant in Big Rapids, Michigan. If built as planned, the factory will produce 150,000 t of LFP cathode material per year.

“The companies that understand how to make the product are looking to expand in other regions,” Chuck Thelen, a Gotion vice president, said at a December informational meetinghosted by Big Rapids officials.

HOMECOMING

Some Western firms setting up LFP cathode production in North America plan to work with partners and use established processes. Others hope to outcompete Chinese firms with new technologies.

ICL, which produces industrial phosphates and other chemicals, has been on the periphery of the LFP industry for years. It analyzed cathode materials from A123 before the company went bankrupt and began providing phosphate raw materials to LFP firms in China in 2021. In early 2022, ICL decided LFP had gained enough momentum outside China to warrant venturing into battery materials on its own.

A graph showing BloombergNEF's prediction that US demand for lithium iron phosphate batteries will far exceed local production capacity.

RISING DEMAND

US demand for lithium iron phosphate (LFP) batteries in passenger electric vehicles is expected to continue outstripping local production capacity. Source: BloombergNEF.

In October 2022, the company received a $200 million US Department of Energy grant to build a 30,000 t per year LFP cathode material factory at its Saint Louis site, which has been producing phosphorus chemicals for more than a century. “We’ve been making phosphate salts since 1876,” says Tom Murray, ICL’s director of R&D. “Lithium iron phosphate is not very different.”

One potential difference from Chinese factories could be ICL’s starting materials. The company is evaluating using iron oxide rather than iron sulfate, which can be difficult to procure outside China. Iron oxide is more expensive, but Murray says the process produces higher-quality LFP.

At the Missouri plant, ICL will use technology from Aleees, which has been manufacturing LFP materials for nearly 2 decades. Murray says the partnership combines Aleees’s deep experience in high-quality LFP production with ICL’s expertise in large-scale chemical manufacturing. “Without them, it would be a struggle for us to jump into this and make any headway,” he says.

We’ve been making phosphate salts since 1876. Lithium iron phosphate is not very different.” Thomas Murray, director of R&D, ICL Group

Eric Chang, president of Aleees’s licensing business, says the company is eager to partner with companies like ICL because its ability to expand in Taiwan is limited by the price of land. Over the last 6 months, the company has also agreed to provide its cathode manufacturing technology to Norway’s Freyr and Australia’s Avenira.

In November, Freyr announced that it would build a $1.7 billion, 34 GW h battery factory in Georgia, and Chang says Aleees plans to help Freyr make LFP cathode materials to supply that plant.

American Battery Factory, a Utah-based company that hopes to serve the stationary energy storage market, is also partnering with an established cathode manufacturer, as yet unnamed, to set up production of LFP cathode materials in the US. The powder it makes would supply the company’s proposed cell factory in Arizona and could also be sold to other companies.

Denis Geoffroy stands in front of machinery at Nano One's lithium iron phosphate facility in Montreal.

Denis Geoffroy helped build two lithium iron phosphate factories in Canada, but the material never caught on in North America. He’s now trying again with Nano One Materials. Credit: David Giral Photography

Frith says China’s cheap labor, energy, and raw materials will make it difficult for Western firms to match the country’s low cost of production, but provisions in the Inflation Reduction Act may give companies in the US enough of a boost. “Without that, I think you’re unlikely to find LFP production moving outside of China,” he says. “The economics just aren’t really there to promote it.”

While Aleees’s product costs more than LFP made in China, Chang argues that the firm is better than Chinese competitors at customizing its output for specific customers. “They lack the flexibility to fine-tune the parameters or the characteristics or properties of LFP,” he says. “They make it more like a commodity rather than a specialty chemical.”

NEXT GENERATION

Some Western companies are hoping to beat Chinese competitors with new technologies that can produce high-quality LFP with a lower environmental footprint.

Nano One CEO Dan Blondal says imitating China’s solid-state process in North America could be challenging because it creates lots of sulfate waste. “China largely sweeps it under the rug,” he says. “As you try to bring that out of China to everywhere else, it’s a big impediment. It’s gonna be hellish to permit that.”

Instead, Nano One plans to use pure iron metal as an LFP precursor, eliminating the sulfate waste stream. The company also claims that this method makes the cooking step more efficient, saving energy.

Nano One is just starting to set up shop at its recently purchased Montreal factory. Temporary banners with the company’s name hang from the ceiling, but the plant’s handful of employees still wear Johnson Matthey uniforms, and bags of LFP left over from the transition bear the Johnson Matthey logo.

On the factory floor, the 100 L glass reactor Nano One currently uses for its process looks small in front of the 20 m3 stainless steel reactor Johnson Matthey used to make LFP.

Geoffroy’s task is to retrofit that reactor and the rest of the Montreal facility to work with the process. The next step is to build a new factory next door to demonstrate the technology at a larger scale. While the two plants will be substantial, they will largely serve as a blueprint for still-larger plants Nano One wants to build through joint ventures or licensing deals with bigger companies.

The Montreal plant was designed for an entirely different process, so scaling up will be a long road. Pointing to a hatch at the top of a large reactor, Geoffroy says testing the Nano One process may initially require dumping raw materials in by hand.

But Geoffroy points out that he, along with much of his team, went through this twice when they built a solid-state plant for Phostech and the hydrothermal plant for Süd-Chemie. The only difference now is that the size will be much bigger. “All the LFP made in North America commercially was really made here,” he says. “All that knowledge is there. We inherit that.”

Rio Tinto's iron mine in Newfoundland.

Nano One hopes to use iron powder from Rio Tinto’s metal processing facility in Sorel-Tracy, Quebec. Credit: Rio Tinto

The Massachusetts start-up 6K also wants to challenge established Chinese players with a cathode material manufacturing process that uses less energy and produces less waste.

“We have to leapfrog because we can’t compete directly with the same technology,” 6K CEO Aaron Bent says. In the US, “the workforce is more expensive, electricity is more expensive,” he says. “You’ve got to have a massively differentiated approach.”

6K’s approach involves injecting a precursor mixture containing lithium, iron, and phosphorus chemicals into a microwave plasma reactor that reaches 5,700 °C. The company says the heat and reactive ions in the plasma turn the precursors into a cathode material in a matter of seconds, eliminating the need for a kiln baking step, and most of the by-products can be recycled back into the process to reduce waste.

Like ICL, 6K received a DOE grant in October. Its research center can currently produce up to 400 t of cathode material annually, and the firm hopes to build a 10,000 t plant by 2026. 6K is also working with the US battery firm Our Next Energy to install LFP cathode production capacity at a cell factory in Michigan.

“We have to leapfrog because we can’t compete directly with the same technology.” Aaron Bent, CEO, 6K

Zaghib, the Concordia University battery scientist, is skeptical that new technology is the key to building an LFP ecosystem in North America. He says the solid-state process works well, and new technologies will struggle to match its price. “If we want to accelerate LFP we need GM, Ford . . . Tesla, or some government to start putting up money,” he says.

Ford hopes to partner with CATL to build LFP battery capacity locally, but in January, Virginia governor Glenn Youngkin said he had nixed a proposal for a CATL factory in his state, according to the Virginia Mercury. For now, Ford and other carmakers will rely on batteries produced in China.

RANGE ANXIETY

The companies planning to make LFP materials in North America are betting that the lower cost of LFP-powered cars will help overcome US consumers’ anxieties about their limited range, but that’s far from a guarantee. US drivers love road trips and SUVs, which typically require large-capacity batteries.

“Our driving patterns are so different from what you see in Asia and in Europe,” says Michael Sanders, a battery industry analyst with Avicenne Energy. “I think range anxiety is going to play a much bigger role here in North America.”

There are several ways around the problem. CATL and BYD Auto, another Chinese battery maker, have engineered their LFP battery packs to be hyperefficient, increasing capacity by cramming extra cathode material into the same amount of space. Ford wants to use that technology in its LFP vehicles.

It’s also possible to use a combination of battery chemistries. Our Next Energy hopes to combine a primary LFP battery suitable for everyday use with a small lithium-metal battery that could boost a car’s range when needed. Lithium-metal batteries carry more energy than other battery chemistries, but they have yet to be commercialized, in part because they degrade after a small number of charge-discharge cycles.

Large lithium iron phosphate batteries inside Our Next Energy's manufacturing facility.

6K is hoping to set up its new cathode manufacturing technology at a battery plant operated by Our Next Energy. Until then, Our Next Energy will rely on cathode material from overseas. Credit: Our Next Energy

Another approach is simply to make iron-based batteries better. That’s what the California start-up Mitra Chem is trying to do. The company uses machine learning to create new cathode materials that combine iron with other metals, such as manganese, to increase the energy density. “We ultimately want to get to . . . LFP 2.0, LFP 3.0, higher-energy-density products that can compete . . . with nickel,” says Vivas Kumar, cofounder and CEO of Mitra Chem.

Despite LFP’s lower energy density, many analysts, including Sanders, say technology improvements and low costs mean the battery chemistry will find a place in North America. BloombergNEF says there were no US cars powered by LFP in 2020, but it expects demand for LFP-powered cars to exceed 160 GW h by the end of the decade, representing 40% of the total demand for electric cars.

When those data were published in September 2022, only a handful of companies had announced plans to build LFP factories in the US. Several have since stepped up, and Yayoi Sekine, head of energy storage at BloombergNEF, says she thinks more will come, especially as the Inflation Reduction Act encourages battery makers to build a US supply chain.

Geoffroy remembers when demand for LFP-powered cars was near zero in North America. About 10 years ago, when he was working at one of Phostech’s early plants, he decided to buy something made with LFP from his facility. Unfortunately, a car wasn’t an option. “I bought some small LFP batteries to power my electric trolling motor when I go fishing,” he says. “So I’m powered by LFP.”

As Nano One and other companies start building LFP factories in North America, Geoffroy is hoping for something more substantial. The moment a car built with LFP from his facility becomes available, he’s going to buy it.

CORRECTION:

This story was updated on Jan. 30, 2023, to correctly spell the name of Nano One Materials’ CEO. It is Dan Blondal, not Don Blondal.

New Sodium-Sulfur Battery is cheaper than lithium-ion with 4X the Capacity


It could help solve the renewable energy storage problem.

A new type of low-cost battery could help solve the renewable energy storage problem, giving us a better way to bank solar and wind energy for when the sun isn’t shining and the wind isn’t blowing.

The challenge: A whopping 30% of global CO2 emissions are produced by coal-fired power plants, and decarbonizing the electric grid is a vital part of combating climate change.

We can speed the transition to a clean electric grid by storing excess energy in batteries, but lithium-ion ones are expensive.

Solar and wind power have become dramatically cheaper over the past couple of decades. However, these sources still depend on environmental conditions — without wind, turbines can’t spin, and if the sun isn’t shining, solar panels (usually) can’t harvest energy.null

That makes these sources less consistent than fossil fuels, which can be dispatched on demand, and so even while solar and wind continue to grow, utilities continue to rely on gas to fill gaps and keep the electric grid stable.

Energy storage: We can speed the transition to renewable power by storing excess energy in batteries and then deploying it when the sun and wind aren’t cooperating with demand. Many newer renewable energy plants are being paired with big banks of lithium-ion batteries, but lithium is expensive, and mining it is bad for the environment in other ways.

“Storage solutions that are manufactured using plentiful resources like sodium … have the potential to guarantee greater energy security.”SHENLONG ZHAO

Room-temperature sodium-sulfur (RT Na-S) batteries are a promising alternative for renewable energy storage. They rely on chemical reactions between a sulfur cathode and a sodium anode to store and deploy electrical energy, and they use low-cost materials, which can even be easily extracted from saltwater.null

“Storage solutions that are manufactured using plentiful resources like sodium … have the potential to guarantee greater energy security more broadly and allow more countries to join the shift towards decarbonisation,” said Shenlong Zhao, an energy storage researcher at the University of Sydney.

What’s new? Existing RT Na-S batteries have had limited storage capacity and a short life cycle, which has held back their commercialization, but there’s now a new kind of RT Na-S battery, developed by Zhao’s team.

According to their paper, the device has four times the storage capacity of a lithium-ion battery and an ultra-long life — after 1,000 cycles, it still retained about half of its capacity, which the researchers claim is “unprecedented.”

“This is a significant breakthrough for renewable energy development.”SHENLONG ZHAO

This leap was possible thanks to the incorporation of carbon-based electrodes and the use of a process called “pyrolysis” to improve the reactivity of the sulfur and the reactions between the sulfur and sodium.null

“This is a significant breakthrough for renewable energy development which, although reduces costs in the long term, has had several financial barriers to entry,” said Zhao.

The big picture: So far, the Sydney researchers have only created and tested lab-scale versions of their RT Na-S battery. They now plan to focus on scaling up and commercializing the tech, which will likely take several years.

There are many other alternatives to lithium-ion batteries that can be used for renewable energy storage today, though, including long-living flow batteries, massive water batteries, and batteries that store electricity as heat in bricks, sand, and other solid materials.

The sooner we scale up our use of renewables and deploy more of these batteries — and innovative newcomers, like the University of Sydney’s creation — the better our chances of avoiding the worst possible effects of climate change.

We’d love to hear from you! If you have a comment about this article leave your thoughts below.

New Solid State (Read Safer) Battery Holds More Energy and Maintains Capacity Even After Multiple Charging Cycles (And Will Cost Less)


Charging in five minutes? Almost the same as filling up your gas tank! Image Credit: Blue Planet

Scientists claim to have created a new type of battery that does not lose capacity after charging cycles, according to new research. The positive electrode material could pave the way for new electric car batteries that don’t suffer one of the greatest problems such cars currently face, which is a constantly diminishing lifespan and subsequently, expensive and ecologically-damaging replacements. 

If the world is going to be free of the crude oil chains that currently prevent us from becoming net zero, we must move away from the use of petrol and diesel cars. Generally considered our best bet in doing so is electric cars, which have come a long way in just a few years, but continue to be limited by battery technology. Lithium-ion batteries are heavy, expensive, relatively short-lived, and don’t offer the range needed to persuade many petrol-heads away from their beloved pistons. Not to mention some of the horrifying Safety Headlines in the news lately! If the world is to adopt electric cars, battery lifespans and much improved safety need to go up and costs need to go down. 

Enter solid-state batteries (SSBs), a promising new tech that may do just that. Lithium-ion batteries rely on a liquid electrolyte to facilitate the flow of charged ions during charging and discharging, while solid-state batteries are made of entirely solid materials. These batteries can:

  • Charge Faster,
  • Don’t pose a safety risk if the contents spill out, and
  • Can store more energy than their liquid counterparts

So … too good to be true, right? What’s the catch? Well … SSB’s are currently limited by the damage that occurs to the electrodes when lithium ions move through them. This is because the electrodes expand and shrink with ion movement as their structure changes, and if SSBs are to become viable, they need a way to stop this movement and the resulting damage. 

The Solution

To combat this, a team of researchers at Yokohama National University looked at a new type of SSB material that has incredible stability, preventing electrode damage. This material is useful for one main reason: it has the same volume when ions move out of or into it. Therefore, the battery can be used over and over without regular degradation of the material – technically, it could be charged and discharged indefinitely.

The team tested it and found no degradation across 400 charge/discharge cycles, which you certainly wouldn’t get with lithium-ion batteries. It isn’t quite perfect yet, but lead author Professor Naoaki Yabuuchi believes they are on track to make it so. (Yokohama National University)

“The absence of capacity fading over 400 cycles clearly indicates the superior performance of this material compared with those reported for conventional all-solid-state cells with layered materials,” co-author Associate Professor Neeraj Sharma said in a statement

“This finding could drastically reduce battery costs. The development of practical high-performance solid-state batteries can also lead to the development of advanced electric vehicles.” 

According to the team, this battery could mean an electric vehicle that charges in just five minutes, with higher capacity than current batteries – all at a much cheaper cost.  

The research was published in Nature Materials.

Leave Us a Comment and Let Us Know YOUR Thoughts!

Carbon Nanotubes Could Revolutionize Everything from Batteries and Water Purifiers to Auto Parts and Sporting Goods: Update from Lawrence Livermore National Laboratory


Carbon-Nanotubes-Growing-From-Catalytic-NanoparticlesVertically aligned carbon nanotubes growing from catalytic nanoparticles (gold color) on a silicon wafer on top of a heating stage (red glow). Diffusion of acetylene (black molecules) through the gas phase to the catalytic sites determines the growth rate in a cold-wall showerhead reactor. Credit: Image by Adam Samuel Connell/LLNL

Scientists at the Department of Energy’s Lawrence Livermore National Laboratory (LLNL)  are scaling up the production of vertically aligned single-walled carbon nanotubes (SWCNT). This incredible material could revolutionize diverse commercial products ranging from rechargeable batteries, sporting goods, and automotive parts to boat hulls and water filters. The research was published recently in the journal Carbon.

Most carbon nanotube (CNT) production today is unorganized CNT architectures that is used in bulk composite materials and thin films. However, for many uses, organized CNT architectures, like vertically aligned forests, provide critical advantages for exploiting the properties of individual CNTs in macroscopic systems.

“Robust synthesis of vertically-aligned carbon nanotubes at large scale is required to accelerate deployment of numerous cutting-edge devices to emerging commercial applications,” said LLNL scientist and lead author Francesco Fornasiero. “To address this need, we demonstrated that the structural characteristics of single-walled CNTs produced at wafer scale in a growth regime dominated by bulk diffusion of the gaseous carbon precursor are remarkably invariant over a broad range of process conditions.”

Carbon-Nanotubes-Growing-From-Catalytic-Nanoparticles

The team of researchers discovered that the vertically oriented SWCNTs retained very high quality when increasing precursor concentration (the initial carbon) up to 30-fold, the catalyst substrate area from 1 cm2 to 180 cm2, growth pressure from 20 to 790 Mbar and gas flowrates up to 8-fold.

LLNL scientists derived a kinetics model that shows the growth kinetics can be accelerated by using a lighter bath gas to aid precursor diffusion. In addition, byproduct formation, which becomes progressively more important at higher growth pressure, could be greatly mitigated by using a hydrogen-free growth environment. The model also indicates that production throughput could be increased by 6-fold with carbon conversion efficiency of higher than 90% with the appropriate choice of the CNT growth recipe and fluid dynamics conditions.

“These model projections, along with the remarkably conserved structure of the CNT forests over a wide range of synthesis conditions, suggest that a bulk-diffusion-limited growth regime may facilitate preservation of vertically aligned CNT-based device performance during scale up,” said LLNL scientist and first author Sei Jin Park.

The team concluded that operating in a growth regime that is quantitatively described by a simple CNT growth kinetics model can facilitate process optimization and lead to a more rapid deployment of cutting-edge vertically-aligned CNT applications.

Applications include lithium-ion batteries, supercapacitors, water purification, thermal interfaces, breathable fabrics, and sensors.

Reference: “Synthesis of wafer-scale SWCNT forests with remarkably invariant structural properties in a bulk-diffusion-controlled kinetic regime” by Sei Jin Park, Kathleen Moyer-Vanderburgh, Steven F. Buchsbaum, Eric R. Meshot, Melinda L. Jue, Kuang Jen Wu and Francesco Fornasiero, 29 September 2022, Carbon.
DOI: 10.1016/j.carbon.2022.09.068

Other LLNL authors are Kathleen Moyer-Vanderburgh, Steven Buchsbaum, Eric Meshot, Melinda Jue and Kuang Jen Wu. The work is funded by the Chemical and Biological Technologies Department of the Defense Threat Reduction Agency.

Ionic liquids give a push to next-gen solid-state lithium metal batteries


Ionic liquids give push to next-gen solid-state lithium metal batteries. Credit: Tokyo Metropolitan University

Since their first commercialization, rechargeable Li-ion batteries have dominated the portable electronicsmarket for the last three decades. But as we look for better solutions with higher energy density, scientists have been turning to solid-state lithium metal batteries.

Li metal batteries potentially have a much higher energy density than their Li-ion counterparts, but technical issues keep solid-state lithium metal batteries from making their way into demanding applications. It is difficult to achieve good contact between electrodes and solid electrolytes. Any surface roughness on either side leads to high interfacial resistance, which plagues battery performance.

Researchers at Japan’s Tokyo Metropolitan University have been developing new ways of improving the contact between the cathode and solid-state electrolyte in solid-state lithium metal batteries. And now, they have succeeded in creating a new quasi-solid-state cathode, with significantly reduced problematic resistance between key components. The new quasi-solid-state lithium cobalt oxide (LiCoO2) cathode contains a room-temperature ionic liquid, which is salt in a liquid state.

By adding an ionic liquid, their modified cathode could maintain excellent contact with the electrolyte.

The addition of an ionic liquid to the cathode material fills structural voids and provides a better interface with the solid electrolyte.

The addition of an ionic liquid to the cathode material fills structural voids and provides a better interface with the solid electrolyte. Credit: Tokyo Metropolitan University

Ionic liquids consist of positive and negative ions; they can also transport ions and fill tiny voids at the cathode and the solid electrolyte interface. With the voids filled, the interfacial resistance was significantly reduced. Ionic liquids are not only ionically conductive but almost non-volatile and usually non-flammable.

The team demonstrated a prototype battery featuring this novel, quasi-solid-state cathode that showed impressive stability, with 80% capacity retention after 100 charge and discharge cycles at an elevated temperature of 60°C.

Though finding a better ionic liquid that doesn’t degrade as easily remains challenging, the idea promises new directions in solid lithium battery development for practical applications.

Amprius Ships the World’s Highest Energy Density Battery Cells to HAPS Company – 450 Wh/kg, 1150 Wh/L with Proprietary Silicon Nanowire Technology


Californian company Amprius Technologies has announced the shipment of the first batch of its 450 Wh/kg, 1150 Wh/L lithium-ion battery cells to an industry leader of a new generation of High-Altitude Pseudo Satellites (HAPS). The company claims these are the most energy-dense lithium batteries commercially available today.

The batteries’ impressive performance is the result is Amprius Technologies’ silicon nanowire anode (Si-Nanowire platform), which offers a unique combination of performance metrics, including fast charge (under 10 minutes), high power (10C rates), high energy density (over 400 Wh/kg) and long life (over 500 cycles). The company was able to achieve 450 Wh/kg just a few months after announcing the 405 Wh/kg product in November 2021. In December, we also learned about the 370 Wh/kg version, which can be recharged to 80% from 0% state of charge in just about 6 minutes.

“This advancement from the 405 Wh/kg product highlights the acceleration of our roadmap towards delivering products with unrivaled performance,” said Jon Bornstein, COO of Amprius Technologies. “Our proprietary Si-Nanowire platform and the comprehensive solutions we have developed enable unparalleled performance and continue to sustain our product leadership.”

This shipment represents the culmination of collaborative development and testing for this latest design win. Currently, Amprius Technologies, which has been in commercial manufacturing since 2018, produces the battery cells at a limited scale at its facility in Fremont, California. The company has embarked on constructing its first high-volume manufacturing facility located in the United States. A mass production site will be selected in the first quarter of 2022.

More About Amprius Technologies

Amprius Technologies’ batteries deliver up to 100% higher energy density than standard lithium-ion batteries.  This means our cells provide more energy and power with much less weight and volume.

Research & development

Building on research at Stanford University, Amprius Technologies continually explores new ways to improve battery technology and manufacturing processes. Amprius Technologies’ batteries have established breakthrough performance with new cells approaching 500 Wh/kg over hundreds of cycles.

Real world applications

Amprius Technologies has demonstrated scalable manufacturing and revolutionary performance in real world applications. The company’s game changing battery is a proven solution for advanced products and mission critical applications.

New synthesized PDI-TEMPO molecule boosts lithium-oxygen battery performance – Extends EV Ranges Dramatically – Univerity of Technology Sydney


Credit: Possessed Photography/Unsplash

Researchers at the University of Technology Sydney (UTS) have designed a molecule to boost the performance of lithium-oxygen batteries to give electric vehiclesthe same driving range as petrol-fuelled cars.

Lithium-oxygen batteries employ cutting-edge technology aimed to deliver maximum energy density through breathing air to generate electricity.

To date, however, they have been beset by challenges, including low discharge capacity, poor energy efficiency, and severe parasitic reactions. This new all-in-one molecule can simultaneously tackle those issues.

According to the researchers, their new discovery resolved several existing obstacles and created the possibility of developing a long-life, energy-dense lithium-oxygen battery that was highly efficient.

“Batteries are changing fundamentally,” said UTS Professor Guoxiu Wang, who led the research team. “They will facilitate the transition towards a climate-neutral society and open up new industry opportunities for a country like Australia that is rich in the fundamental elements for building batteries.

They will also help utilities improve power quality and reliability and help governments around the world achieve net-zero carbon emissions.

The study reports a lithium-oxygen battery operated via a new quenching/mediating mechanism that relies on the direct chemical reactions between a versatile molecule and superoxide radical/Li2O2. The battery exhibits a 46-fold increase in discharge capacity, a low charge overpotential of 0.7 V, and an ultralong cycle life greater than 1400 cycles.

“Our rationally designed and synthesized PDI-TEMPO molecule opens a new avenue for developing high-performance Li-O2 batteries,”Professor Wang said. “The capacity of next-generation lithium-oxygen batteries to extend the driving range between charges would be a significant leap forward for the electric vehicle industry. We are confident our all-in-one molecule can dramatically improve the performances of lithium-oxygen batteries and enable new generation lithium-oxygen batteries to be practical.”

StoreDot Makes Ultra-Fast 4680 EV Battery cells – Develops Tech to Extend Batteries’ First and Second Life


StoreDot-cylindrical-cells

StoreDot, an Israel-based electric vehicle extreme fast charging (XFC) battery startup, today announced that it has advanced technology that extends the life span of batteries, making them highly effective not only during the vehicle life span, but also for second-life applications.


The technology combines the electrochemistry system of the company’s silicon dominant cells to ensure that there is minimal drop-off in performance even as the battery ages.

StoreDot reports that a robust performance is maintained even after 1,000 cycles and 80% capacity, the point at which rival lithium-ion fast-charging technologies start to rapidly deteriorate in performance. Even after 1,700 cycles, long after the accepted industry norm, StoreDot claims its batteries can maintain 70% of their original capacity, making them effective in second-life usage for less dynamic applications such as in energy storage and grid load balancing systems.

Dr. Doron Myersdorf, StoreDot CEO, said:

StoreDot is well known for creating extreme fast charging technologies and helping drivers overcome charging anxiety, which is currently the biggest barrier to EV ownership.

But we believe in advancing the entire battery eco-system, ultimately delivering an optimum solution to sustain the transition to full EV electrification. This latest development is proof of that.

We now have the ability to hugely extend the life of our batteries, long after their vehicle service life. This not only has benefits for the drivers of EVs, allowing them to maintain performance of their vehicles for many more years, but also in second-life applications.

Not only will this transformative development encourage more people to drive EVs, but this technology has huge benefits for sustainability, too, reducing the need to retire and recycle an expensive component that can now serve in critical second-life applications.

StoreDot says it’s in advanced talks with global car makers. It also says it’s on track to deliver mass-produced XFC batteries, which provide a 50% reduction in charging time at the same cost, by 2024.

In early September 2021, StoreDot announced that it produced the first 4680 cylindrical cell, that it claims can charge in only 10 minutes.

In November, StoreDot claimed it had become the first company to produce XFC cells for electric vehicles on a mass production line. And on December 1, 2021, StoreDot announced new patented technology that uses a background repair mechanism to allow battery cells to regenerate while they are in use.

Images: StoreDot

The Rapid Cost Decline of lithium-ion batteries’ – Why?


Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March.

But what brought about such an astonishing cost decline, of about 97 percent?

Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

The new findings are being published in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song Ph.D. ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

David Chandler MIT Technology

More information: Determinants of lithium-ion battery technology cost decline, Energy and Environmental Science (2021). DOI: 10.1039/d1ee01313k

Journal information: Energy and Environmental Science

Provided by Massachusetts Institute of Technology

Iron-Flow Battery Technology Breakthrough Could Displace Lithium Batteries as ‘Top Choice’ for Renewable Energy Storage


iron-flow-batteries 2

Iron-flow technology from ESS is being deployed at scale in the U.S.

The world’s electric grids are creaking under the pressure of volatile fossil-fuel prices and the imperative of weaning the world off polluting energy sources. A solution may be at hand, thanks to an innovative battery that’s a cheaper alternative to lithium-ion technology.

SB Energy Corp., a U.S. renewable-energy firm that’s an arm of Japan’s SoftBank Group Corp., is making a record purchase of the batteries manufactured by ESS Inc. The Oregon company says it has new technology that can store renewable energy for longer and help overcome some of the reliability problems that have caused blackouts in California and record-high energy prices in Europe.

Battery Breakthrough May Help End Globe’s Grid Failures
ESS batteries Photographer: Tojo Andrianarivo/Bloomberg

The units, which rely on something called “iron-flow chemistry,” will be used in utility-scale solar projects dotted across the U.S., allowing those power plants to provide electricity for hours after the sun sets. SB Energy will buy enough batteries over the next five years to power 50,000 American homes for a day.

“Long-duration energy storage, like this iron-flow battery, are key to adding more renewables to the grid,” said Venkat Viswanathan, a battery expert and associate professor of mechanical engineering at Carnegie Mellon University.

Battery Breakthrough May Help End Globe’s Grid Failures
Founder: Craig Evans: Credit: Tojo Andrianarivo/Bloomberg

ESS was founded in 2011 by Craig Evans, now president, and Julia Song, the chief technology officer. They recognized that while lithium-ion batteries will play a key role in electrification of transport, longer duration grid-scale energy storage needed a different battery. That’s because while the price of lithium-ion batteries has declined 90% over the last decade, their ingredients, which sometimes include expensive metals such as cobalt and nickel, limit how low the price can fall.

The deal for 2 gigawatt-hours of batteries is worth at least $300 million, according to ESS. Rich Hossfeld, chief executive officer of SB Energy, said the genius of the units lies in their simplicity.

Battery Breakthrough May Help End Globe’s Grid Failures
Julia Song: Credit: Tojo Andrianarivo/Bloomberg

“The battery is made of iron salt and water,” said Hossfeld. “Unlike lithium-ion batteries, iron flow batteries are really cheap to manufacture.”

Every battery has four components: two electrodes between which charged particles shuffle as the battery is charged and discharged, electrolyte that allows the particles to flow smoothly and a separator that prevents the two electrodes from forming a short circuit.

Flow batteries, however, look nothing like the battery inside smartphones or electric cars. That’s because the electrolyte needs to be physically moved using pumps as the battery charges or discharges. That makes these batteries large, with ESS’s main product sold inside a shipping container.

What they take up in space, they can make up in cost. Lithium-ion batteries for grid-scale storage can cost as much as $350 per kilowatt-hour. But ESS says its battery could cost $200 per kWh or less by 2025.

Crucially, adding storage capacity to cover longer interruptions at a solar or wind plant may not require purchasing an entirely new battery. Flow batteries require only extra electrolyte, which in ESS’s case can cost as little as $20 per kilowatt hour.

“This is a big, big deal,” said Eric Toone, science lead at Breakthrough Energy Ventures, which has invested in ESS. “We’ve been talking about flow batteries forever and ever and now it’s actually happening.”

Battery Breakthrough May Help End Globe’s Grid Failures
A worker at the ESS facility in Wilsonville, OR Credit: Tojo Andrianarivo/Bloomberg

The U.S. National Aeronautics and Space Administration built a flow battery as early as 1980. Because these batteries used water, they presented a much safer option for space applications than lithium-ion batteries developed around that time, which were infamous for catching on fire. Hossfeld says he’s been able to get permits for ESS batteries, even in wildfire-prone California, that wouldn’t have been given to lithium-ion versions.

Still, there was a problem with iron flow batteries. During charging, the battery can produce a small amount of hydrogen, which is a symptom of reactions that, left unchecked, shorten the battery’s life. ESS’s main innovation, said Song, was a way of keeping any hydrogen produced within the system and thus hugely extending its life.

“As soon as you close the loop on hydrogen, you suddenly turn a lab prototype into a commercially viable battery option,” said Viswanathan. ESS’s iron-flow battery can endure more than 20 years of daily use without losing much performance, said Hossfeld.

Battery Breakthrough May Help End Globe’s Grid Failures
Plastic sheets are treated with plasma at the ESS manufacturing facility in Wilsonville, OR
Credit: Tojo Andrianarivo/Bloomberg

At the company’s factory near Portland, yellow robots cover plastic sheets with chemicals and glue them together to form the battery cores. Inside the shipping containers, vats full of electrolyte feed into each electrode through pumps — allowing the battery to do its job of absorbing renewable power when the sun shines and releasing it when it gets dark.

It’s a promising first step. ESS’s battery is a cheap solution that can currently provide about 12 hours of storage, but utilities will eventually need batteries that can last much longer as more renewables are added to the grid. Earlier this month, for example, the lack of storage contributed to a record spike in power prices across the U.K. when wind speeds remained low for weeks. Startups such as Form Energy Inc. are also using iron, an abundant and cheap material, to build newer forms of batteries that could beat ESS on price.

So far, ESS has commercially deployed 8 megawatt-hours of iron flow batteries. Last week, after a six-month evaluation, Spanish utility Enel Green Power SpA signed a single deal for ESS to build an equivalent amount. SB Energy’s Hossfeld, who also sits on ESS’s board, said the company would likely buy still more battery capacity from ESS in the next five years.

Even as its order books fill up, ESS faces a challenging road ahead. Bringing new batteries to market is notoriously difficult and the sector is littered with failed startups. Crucially, lithium-ion technology got a head start and customers are more familiar with its pros and cons. ESS will have to prove that its batteries can meet the rigorous demands of power plant operators.

The new order should help ESS as it looks to go public within weeks through a special-purpose acquisition company at a valuation of $1.07 billion. The listing will net the company $465 million, which it plans to use to scale up its operations.

Contributions by Tom Metcalf