Flow Batteries Struggle in 2019 as Lithium-Ion Marches On h


Save for a few rare announcements, the promising technology class has gone quiet.

October’s SoftBank-led investment in iron flow battery startup ESSrepresented an unusual event in 2019: a piece of good news for the flow battery sector. The $30 million cash injection was a rare sign that there may still be life in an energy storage technology class that had almost faded from view in recent months.

Leading players such as Sumitomo Electric and Dalian Rongke Power, the latter of which once boasted the world’s largest vanadium flow battery project, have gone silent. EnSync Energy Systems pivoted away from flow batteries last year and folded in March.

CellCube Energy Storage Systems has also run into problems this year. In October it advised shareholders that “each division is suffering from a lack of working capital” and added that management was “reviewing strategic alternatives focused on maximizing shareholder value.”

Go Big: This factory produces vanadium redox-flow batteries destined for the world’s largest battery site: a 200-megawatt, 800-megawatt-hour storage station in China’s Liaoning province.

Even those companies still touting contract wins in 2019 have hardly set the world on fire. RedT Energy installed Australia’s largest commercial energy storage system, a 1-megawatt-hour system at Monash University, but more recently announced a merger with Avalon following reported losses.

Meanwhile, UniEnergy Technology’s sole deal-related press release this year was to celebrate the commissioning of a 7.5-kilowatt, 30-kilowatt-hour flow battery in Brussels.

Despite this, a smattering of players, including Avalon, Lockheed Martin and U.S. Vanadium, remain bullish. And Dan Finn-Foley, head of energy storage at Wood Mackenzie Power & Renewables, cautions against writing the sector off just yet.

“We haven’t seen much activity from the flow battery space in terms of deployments or major announcements,” he acknowledged, “but there are key steps happening behind the scenes.”

Researchers advancing flow battery technology are either partnering with companies with large balance sheets or securing insurance to back up their claims of long system lifetimes and low degradation, he said.

“The next steps will be continued pilot programs and strategic targeting of favorable market niches, all critical stepping stones toward true commercialization,” Finn-Foley said.

Image: Vanadium Redox Flow Batteries 

Flow battery vendors could benefit from state-level 100 percent clean or renewable energy policies in the U.S., Finn-Foley noted, since it is remains unclear whether lithium-ion batteries alone can meet storage needs beyond durations of approximately eight hours.

Flow batteries are seen as ideal for large-scale, long-duration storage because they can store large amounts of energy using scalable tanks of relatively cheap electrolyte. The problem is that nobody seems to need this long-duration capacity just yet.

Finn-Foley said the biggest unknowns for the flow battery sector “are the timing of when these long-duration needs will emerge and how low vendors will be able to drive costs by then with few other opportunities to scale.”

This is emerging as a significant issue in 2019. While flow battery technology is waiting for prime time, its main competitor, lithium-ion, is already racing ahead on scale and cost-competitiveness thanks to the growth of the electric vehicle industry.

In March, QY Research Group predicted the global redox flow battery market would be worth $370 million by 2025, based on a roughly 14 percent compound annual growth rate (CAGR) from 2018.

For comparison, a May study by Prescient & Strategic Intelligence estimated the lithium-ion market would be worth close to $107 billionby 2024, with a CAGR of almost 22 percent.

Even ignoring the fact that the lithium-ion industry is on a quest to use lower-cost materials, it is hard to see how flow batteries will be able to compete on price against such a thoroughly commoditized rival.

The state of play was perhaps best summed up by Rebecca Kujawa, chief financial officer and executive vice president of finance at NextEra Energy, during an earnings call in October.

Asked by Pavel Molchanov, an analyst at Raymond James & Associates, whether NextEra had found any storage technologies other than lithium-ion that are worth commercializing, she said: “We always remain technology-agnostic.”

But she added: “What we continue to see, and what we are currently signing contracts for with our customers, is predominantly lithium-ion. Those producing lithium-ion batteries are investing in manufacturing scale, which is producing significant cost improvements.”

Kujawa concluded: “In the middle part of the next decade, you’re talking about a $5 to $7 per megawatt-hour added to get to a nearly firm wind or solar resource, and that’s a pretty attractive price.

Image: 100% Renewable Energy

To beat that, you’d have to see a pretty big step change in where some of these other technologies are.”

Post-Lithium Technology: High-Energy-Density Next-Generation Rechargeable Batteries


High-energy-density polymeric cathode for fast-charge sodium- and multivalent-ion batteries.

Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions. A major challenge, however, is the development of stable electrodes that combine high energy densities with fast charge and discharge rates. In the journal Angewandte Chemie, US and Chinese scientists report a high-performance cathode made of an organic polymer to be used in low-cost, environmentally benign, and durable sodium-ion batteries.

Lithium-ion batteries are the state-of-the-art technology for portable devices, energy storage systems, and electric vehicles, the development of which has been awarded with this year’s Nobel prize.

Nevertheless, next-generation batteries are expected to provide higher energy densities, better capacities, and the usage of cheaper, safer, and more environmentally benign materials. New battery types that are most explored employ essentially the same rocking-chair charging-discharging technology as the lithium battery, but the lithium-ion is substituted with cheap metal ions such as sodium, magnesium, and aluminum ions.

Unfortunately, this substitution brings along major adjustments to the electrode materials.

Organic compounds are favorable as electrode materials because, for one, they do not contain harmful and expensive heavy metals, and they can be adapted to different purposes. Their disadvantage is that they dissolve in liquid electrolytes, which makes electrodes inherently unstable.

Chunsheng Wang and his team from the University of Maryland, USA, and an international team of scientists have introduced an organic polymer as a high-capacity, fast-charging, and insoluble material for battery cathodes.

For the sodium ion, the polymer outperformed current polymeric and inorganic cathodes in capacity delivery and retention, and for multivalent magnesium and aluminum ions, the data did not lag far behind, according to the study.

As a suitable cathodic material, the scientists identified the organic compound hexaazatrinaphthalene (HATN), which has already been tested in lithium batteries and supercapacitors, where it functions as a high-energy-density cathode that rapidly intercalates lithium ions.

However, like most organic materials, HATN dissolved in the electrolyte and made the cathode unstable during cycling.

The trick was now to stabilize the material’s structure by introducing linkages between the individual molecules, the scientists explained. They obtained an organic polymer called polymeric HATN, or PHATN, which offered fast reaction kinetics and high capacities for sodium, aluminum, and magnesium ions.

After assembling the battery, the scientists tested the PHATN cathode using a high-concentrated electrolyte. They found excellent electrochemical performances for the non-lithium ions.

The sodium battery could be operated at high voltages up to 3.5 volts and maintained a capacity of more than 100 milliampere hours per gram even after 50,000 cycles, and the corresponding magnesium and aluminum batteries were close behind these competitive values, reported the authors.

The researchers envision these polymeric pyrazine-based cathodes (pyrazine is the organic substance upon which HATN is based; it is an aromatic benzol-like, nitrogen-rich organic substance with a fruity flavor) to be employed in environmentally benign, high-energy-density, fast and ultrastable next generation rechargeable batteries.

Reference: “A Pyrazine‐Based Polymer for Fast‐Charge Batteries” by Dr. Minglei Mao, Prof. Chao Luo, Travis P. Pollard, Singyuk Hou, Dr. Tao Gao, Dr. Xiulin Fan, Chunyu Cui, Jinming Yue, Yuxin Tong, Gaojing Yang, Tao Deng, Prof. Ming Zhang, Prof. Jianmin Ma, Prof. Liumin Suo, Dr. Oleg Borodin and Prof. Chunsheng Wang, 30 September 2019, Angewandte Chemie.
DOI: 10.1002/anie.201910916

Dr. Chunsheng Wang holds the Robert Franklin and Frances Riggs Wright Distinguished Chair in the Department of Chemical and Biomolecular Engineering at the University of Maryland, College Park, Maryland, USA. His group’s research interests span the development and improvement of nonflammable water-in-salt, all-fluorinated or solid electrolytes, and organic active materials for alkali-ion and multivalent batteries.

The Future Of Lithium Batteries, According To Their Co-Inventor – A Podcast


Nearly all your devices run on lithium batteries. They have revolutionised the way we use, manufacture and charge our devices. Here’s a Nobel Prizewinner on his part in their invention – and their future.

British-born scientist M. Stanley Whittingham, of Binghamton University, was one of three scientists who won the 2019 Nobel Prize in Chemistry for their work developing lithium-ion batteries.

Maybe you know exactly what a lithium-ion battery is but even if you don’t, chances are you’re carrying one right now. They’re the batteries used to power mobile phones, laptops and even electric cars. 

When it comes to energy storage, they’re vastly more powerful than conventional batteries and you can recharge them many more times.

Their widespread use has driven global demand for the metal lithium – demand that Opposition Leader Anthony Albanese this week saidAustralia should do more to meet. 

Lithium ion batteries revolutionised the way we use, manufacture and charge our devices. They’re used to power mobile phones, laptops and even electric cars. 

The University of Queensland’s Mark Blaskovich, who trained in chemistry and penned this article about Whittingham’s selection for the chemistry Nobel Prize, sat down with the award-winner this week.

They discussed what the future of battery science may hold and how we might address some of the environmental and fire risks around lithium-ion batteries.

He began by asking M. Stanley Whittingham how lithium batteries differ from conventional, lead-acid batteries, like the kind you might find in your car.

New to podcasts?

Podcasts are often best enjoyed using a podcast app. All iPhones come with the Apple Podcasts app already installed, or you may want to listen and subscribe on another app such as Pocket Casts.

To listen on “Trust Me I’m An Expert” Follow the Link provided below).

Podcast on Trust Me I’m An Expert

Additional credits

Recording and production assistance by Thea Blaskovich

Kindergarten by Unkle Ho, from Elefant Traks.

Announcement of the Nobel Prize in Chemistry 2019

Rice University: Li-Ion Components for High-Temperature Aerospace, Industrial Apps


batteryheat

A toothpaste-like composite with hexagonal boron nitride developed by researchers at Rice University is an effective electrolyte and separator in lithium-ion batteries intended for high-temperature applications in a number of industries, including aerospace and oil and gas. (Source: Jeff Fitlow/Rice University)

One major and dangerous problem with lithium-ion batteries is that they can catch fire when heated to high temperatures, an issue that has caused damage and even death when devices ignited without warning.

Now researchers at Rice University have come up with a solution to this very serious safety problem in the form of a combined electrolyte and separator for rechargeable lithium-ion batteries that supplies energy at usable voltages and in high temperatures. The material is a toothpaste-like composite that is capable of performing well at and withstanding high temperatures without combusting.

The problem with most current lithium-battery chemistries is that they present safety concerns when heated beyond 50C (122F) due to the electrolyte/separator combination used in them, explained Marco-Tulio Rodrigues, a Rice graduate student and one of the authors of a paper on the research published in Advanced Materials Science.

 

“The separator is usually a thin polymer film and may deform at high temperatures, causing a short circuit,” Rodrigues told Design News. “The electrolytes are based on organic solvents, which tend to boil at high temperatures, increasing the internal pressure of the cell. Although commercial batteries implement some protection mechanisms to avoid these problems, any damages to the cell case may potentially lead to ignition, since the electrolyte is also highly flammable.”

 

The work of the Rice team addresses both the issue of developing a separator that will not cause a short circuit and an electrolyte that doesn’t have the tendency to catch fire, he said.

The batteries made with the components they developed functioned as intended in temperatures of 50C (122F) for more than a month without losing efficiency, according to researchers. Moreover, test batteries consistently operated from room temperature to 150C (302F), setting one of the widest temperature ranges ever reported for such devices, they said.

To solve the electrolyte problem, researchers used solutions based on ionic liquids in the electrolytes, which have largely been proposed as substitutes for organic solvents in the electrolyte of lithium-ion batteries because they present a much higher thermal stability, Rodrigues explained.

“These chemicals are basically special salts with a very low melting point, in such a way that they are liquid at room temperatures,” he said. “They are completely nonflammable and they do not evaporate at all until they decompose, which occurs beyond 350C (662F).”

With the electrolyte situation solved, researchers turned their attention to finding a new separator, which they addressed with a material called hexagonal boron nitride, also known as white graphene.

Lithium Battery Dreams Get a Rude Awakening in South America


  • Argentina, Brazil, Bolivia, Chile seek to join industry boom
  • They hold 70% of reserves, but don’t make a single battery

South America controls about 70% of the world’s reserves of lithium, the metal used in rechargeable batteries for mobile phones and electric vehicles, but none of the infrastructure needed to put it to work.

Lithium refining and battery-assembling facilities could help kick start industries in economies that are largely dependent on commodities for revenue, putting them at risk from sharp price swings.

But so far, public and private initiatives in Argentina, Bolivia, Brazil and Chile have failed to deliver even a single lithium cell factory. And none are set to be built through 2025.

Chile, the world’s second-largest lithium producer behind Australia, offers perhaps the best example of an effort gone off track. A $285 million lithium-cell project by two Korea-based companies was canceled in June when plunging lithium prices undercut government incentives on the metal.

Meanwhile, a local company that assembles batteries using components from abroad is struggling to get lithium cells to support their sales in Chile.

“The size of the opportunity is huge,” said James Ellis, the head of Latin America research at BloombergNEF. “It makes sense to try to move up the value chain. But when you look at what’s planned globally, there are no battery manufacturing assets in Latin America.”

Other countries in the region face their own challenges. Here’s a breakdown:

Argentina

The third-largest lithium producer also saw a state-sponsored initiative stall.

Last year, Italy’s Seri Industrial SpA formed a joint venture with state-owned JEMSE, or more formally the Jujuy Energy and Mining State Society. The plan was to build a plant to make lithium cathodes and cells, and assemble battery parts, using raw lithium mined in Argentina’s Jujuy province.

But Argentina’s economic crisis and the possibility that Peronist candidate Alberto Fernandez could win the upcoming presidential elections has, in the words of JEMSE President Carlos Oehler, “cooled all investment projects in Argentina, including building a battery factory.”

The land and permits are ready, Oehler said, “and we were starting to look for financing, but the project is frozen now.”

Brazil

In Latin America’s biggest economy, former Tesla Inc. executive Marco Krapels and former SunEdison Inc. executive Peter Conklin founded MicroPower-Comerc with the initial goal of providing rechargeable batteries to commercial and industrial facilities. But Brazil offers almost no government subsidies for renewable energy, and import taxes add about 65% to the cost of the batteries.

That’s driven the company, which is backed by Siemens AG, to consider buying components abroad and assembling them in Brazil as a way to lower their costs.

While the nation’s market for big batteries barely exists, Krapels sees opportunity in a place with an occasionally unstable power grid and a robust market for wind and solar. “This is not for the faint of heart,” he said in an interview last month. “But I think there’s an advantage on being the first to move into a market.”

Bolivia

Bolivia hasn’t managed to produce significant volumes of lithium or lithium products. But it is home to the world’s largest salt flat, covering 6,437 kilometers (4,000 square miles), and holding more than 15% of the world’s unmined lithium resources.

A machine loads soil into a truck during the construction at the Uyuni salt flat in Bolivia. Photographer: Marcelo Perez del Carpio/Bloomberg

A pilot plant run by state-owned Yacimientos de Litio Bolivianos, or YLB, produced close to 250 tons of lithium carbonate in 2018, and the country’s goal is to generate 150,000 tons within five years, partnered with German and Chinese companies. If it succeeds, Bolivia would become one of the top-producing nations.

Last month, Industrias Quantum Motors SA began sales of the first car ever built in the country, an electric vehicle that answered President Evo Morales’s once-cited wish to see a lithium-powered car “made in Bolivia.”

The problem? Eager buyers aren’t allowed to drive the cars on Bolivia highways until the government can change some existing regulations.

Chile

The lithium producer tried to encourage battery companies to build factories in the country by forcing miners to sell lithium at a discount. That attracted interest from giants including Samsung SDI Co. and Posco in 2017, when lithium prices were at historic highs.

But since then, prices have fallen by a third, and earlier this year the companies abandoned their plans to build.

Even those embarked in less ambitious initiatives are facing hurdles. In Chile’s south, Andesvolt currently imports battery components from abroad and assembles them in the southern city of Valdivia.

It supplies lithium-ion batteries for electricity companies including Enel Americas SA, which installs them as back-up power in industrial, commercial and residential facilities across the country.

Andesvolt expects to produce 1,000 kilowatt-hour this year, up from 200 kilowatt-hour last year. But he is finding it so difficult to import lithium cells that he is considering building South America’s first lithium-cell factory.

Dealing with the hiccups of importing the cells from China is just too much, founder and Chief Executive Officer David Ulloa said.

Lithium cells are highly volatile and can explode if not handled properly, which means shipping companies are often reluctant to transport them. Even when they do, there’s no guarantee the cargo will arrive on time — or arrive at all.

“We’ve seen it all,” Ulloa said in an interview. “Once a Chinese supplier didn’t do any of the paperwork needed for Chilean customs and later offered to disguise the cargo as shoes — we’re a serious company, we couldn’t accept that and we lost that shipment.”

First Fully Rechargeable Carbon Dioxide Battery is Seven Times More Efficient Than Lithium Ion


CO2 Battery 1 Unmarked-Batteries-Public-Domain-via-Pxhere

Carbon Dioxide Battery is Seven Times More Efficient Than Lithium Ion

Lithium-carbon dioxide batteries are attractive energy storage systems because they have a specific energy density that is more than seven times greater than commonly used lithium-ion batteries. Until now, however, scientists have not been able to develop a fully rechargeable prototype, despite their potential to store more energy.

Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

Their findings are published in the journal Advanced Materials.

“Lithium-carbon dioxide batteries have been attractive for a long time, but in practice, we have been unable to get one that is truly efficient until now,” said Amin Salehi-Khojin, associate professor of mechanical and industrial engineering at UIC’s College of Engineering.

MOREExciting New Study Says That Crops Thrive Underneath Solar Panels—and the Panels Produce More Energy

Traditionally, when a lithium-carbon dioxide battery discharges, it produces lithium carbonate and carbon. The lithium carbonate recycles during the charge phase, but the carbon just accumulates on the catalyst, ultimately leading to the battery’s failure.

rechargeable-carbon-dioxide-battery

Lithium–CO2 batteries are attractive energy‐storage systems for fulfilling the demand of future large‐scale applications such as electric vehicles due to their high specific energy density.

“The accumulation of carbon not only blocks the active sites of the catalyst and prevents carbon dioxide diffusion, but also triggers electrolyte decomposition in a charged state,” said Alireza Ahmadiparidari, first author of the paper and a UIC College of Engineering graduate student.

Salehi-Khojin and his colleagues used new materials in their experimental carbon dioxide battery to encourage the thorough recycling of both lithium carbonate and carbon. They used molybdenum disulfide as a cathode catalyst combined with a hybrid electrolyte to help incorporate carbon in the cycling process.

CHECK OUT: This Revolutionary Blast Furnace Vaporizes Trash and Turns It into Clean Energy (Without Any Emissions)

Specifically, their combination of materials produces a single multi-component composite of products rather than separate products, making recycling more efficient.

“Our unique combination of materials helps make the first carbon-neutral lithium carbon dioxide battery with much more efficiency and long-lasting cycle life, which will enable it to be used in advanced energy storage systems,” Salehi-Khojin said.

This research was supported, in part, by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and a grant from the National Science Foundation.

Reprinted from the University of Illinois-Chicago

Stretchy Plastic Electrolytes could Enable NEW lithium-ion Battery Design – Replaces Expensive metals and traditional liquid Electrolyte with Lower Cost transition metal fluorides and a Solid Polymer Electrolyte


stretchyplas
A lithium-ion battery is shown using a promising new cathode and electrolyte system that replaces expensive metals and traditional liquid electrolyte with lower cost transition metal fluorides and a solid polymer electrolyte. Credit: Allison Carter

The growing popularity of lithium-ion batteries in recent years has put a strain on the world’s supply of cobalt and nickel—two metals integral to current battery designs—and sent prices surging.

In a bid to develop alternative designs for lithium-based batteries with less reliance on those , researchers at the Georgia Institute of Technology have developed a promising new  and  system that replaces expensive metals and traditional liquid electrolyte with lower cost transition metal fluorides and a .

“Electrodes made from transition metal fluorides have long shown stability problems and rapid failure, leading to significant skepticism about their ability to be used in next generation batteries,” said Gleb Yushin, a professor in Georgia Tech’s School of Materials Science and Engineering. “But we’ve shown that when used with a solid polymer electrolyte, the metal fluorides show remarkable stability—even at —which could eventually lead to safer, lighter and cheaper lithium-ion batteries.”

In a typical lithium-ion battery, energy is released during the transfer of lithium ions between two electrodes—an anode and a cathode, with a cathode typically comprising lithium and transition metals such as cobalt, nickel and manganese. The ions flow between the electrodes through a liquid electrolyte.

For the study, which was published Sept. 9 in the journal Nature Materials and sponsored by the Army Research Office, the research team fabricated a new type of cathode from iron fluoride active material and a solid polymer electrolyte nanocomposite. Iron fluorides have more than double the lithium capacity of traditional cobalt- or nickel-based cathodes. In addition, iron is 300 times cheaper than cobalt and 150 times cheaper than nickel.

To produce such a cathode, the researchers developed a process to infiltrate a solid polymer electrolyte into the prefabricated iron fluoride electrode. They then hot pressed the entire structure to increase density and reduce any voids.

Stretchy plastic electrolytes could enable new lithium-ion battery design

Gleb Yushin, a professor in Georgia Tech’s School of Materials Science and Engineering and Kostiantyn Turcheniuk, research scientist in Yushin’s lab, inspect a battery using a new cathode design that replaces expensive metals and traditional liquid electrolyte with lower cost transition metal fluorides and a solid polymer electrolyte. Credit: Allison Carter

Two central features of the polymer-based electrolyte are its ability to flex and accommodate the swelling of the iron fluoride while cycling and its ability to form a very stable and flexible interphase with iron fluoride. Traditionally, that swelling and massive side reactions have been key problems with using iron fluoride in previous battery designs.

“Cathodes made from iron fluoride have enormous potential because of their high capacity, low material costs and very broad availability of ,” Yushin said. “But the volume changes during cycling as well as parasitic side reactions with liquid electrolytes and other degradation issues have limited their use previously. Using a solid electrolyte with elastic properties solves many of these problems.”

The researchers then tested several variations of the new solid-state batteries to analyze their performance over more than 300 cycles of charging and discharging at elevated temperature of 122 degrees Fahrenheit, noting that they outperformed previous designs using metal  even when these were kept cool at room temperatures.

The researchers found that the key to the enhanced battery performance was the solid polymer electrolyte. In previous attempts to use metal fluorides, it was believed that metallic ions migrated to the surface of the cathode and eventually dissolved into the liquid electrolyte, causing a capacity loss, particularly at elevated temperatures. In addition,  fluorides catalyzed massive decomposition of liquid electrolytes when cells were operating above 100 degrees Fahrenheit. However, at the connection between the solid electrolyte and the cathode, such dissolving doesn’t take place and the solid electrolyte remains remarkably stable, preventing such degradations, the researchers wrote.

“The polymer electrolyte we used was very common, but many other solid electrolytes and other battery or electrode architectures—such as core-shell particle morphologies—should be able to similarly dramatically mitigate or even fully prevent parasitic side reactions and attain stable performance characteristics,” said Kostiantyn Turcheniuk, research scientist in Yushin’s lab and a co-author of the manuscript.

In the future, the researchers aim to develop new and improved solid electrolytes to enable fast charging and also to combine solid and liquid electrolytes in new designs that are fully compatible with conventional cell manufacturing technologies employed in large battery factories.


Explore further

Study: New solvent-free, single lithium-ion conducting covalent organic framework

Tesla Battery Guru Jeff Dahn Claims New FB m derfdjLithium-Ion Thomx gr Cell Outperforms Solid-State morningioujniioatteriesyou svbnygtegdgd


Jeff-Dahn-red-Model-S-frunk

Tesla watchers know that Jeff Dahn and his team at Dalhousie University near Halifax, Nova Scotia, are world leaders in lithium-ion battery research. For years, Dahn worked exclusively for 3M, but when that arrangement ended, Tesla swooped in and signed a contract for Dahn to work for the Silicon Valley car/tech/energy company.

In addition, solid-state batteries are less like to catch fire or explode if they get too hot. That in turn means electric car manufacturers can make simpler, less costly cooling systems for their battery packs, driving down the cost of EVs. It also reassures the public their shiny new electric cars aren’t going to explode in the garage, as recently happened to the owner of a Hyundai Kona EV in Canada.

Research published by Dahn and his team in the journal Nature Energy on July 15 reveals they have created new lithium-ion pouch cells that may outperform solid-state technology battery. Here’s the abstract of that research report:

“Cells with lithium-metal anodes are viewed as the most viable future technology, with higher energy density than existing lithium-ion batteries. Many researchers believe that for lithium-metal cells, the typical liquid electrolyte used in lithium-ion batteries must be replaced with a solid-state electrolyte to maintain the flat, dendrite-free lithium morphologies necessary for long-term stable cycling.

“Here, we show that anode-free lithium-metal pouch cells with a dual-salt LiDFOB/LiBF4 liquid electrolyte have 80% capacity remaining after 90 charge–discharge cycles, which is the longest life demonstrated to date for cells with zero excess lithium. The liquid electrolyte enables smooth dendrite-free lithium morphology comprised of densely packed columns even after 50 charge — discharge cycles. NMR measurements reveal that the electrolyte salts responsible for the excellent lithium morphology are slowly consumed during cycling.”

Jeff-Dahn-Pouch-Cell-Research

Credit: Jeff Dahn, et al./Nature Energy

Those pesky dendrites are the bane of lithium-ion batteries. They are little projections like stalagmites in caves that can poke through the insulating layer inside individual cells, leading to short circuits and potential fires. Eliminating them would be a big step forward, particularly for use in electric vehicles.

img_1343

Is Tesla on the verge of replacing the cylindrical cells in its battery packs with Jeff Dahn’s pouch cells? Not just yet. There is a lot of research and testing left to do before they becomes suitable for commercial production, but they may signal an important step forward for energy storage in the years ahead.

Below is a video of Dahn when he won the prestigious National Sciences and Engineering Research Council of Canada award in 2017. Here is a fellow who knows what he is talking about. If he says pouch cells can outperform solid state cells, we should pay heed.

Nano One (Burnaby, B.C.) granted important Battery Material Patent in the U.S.


NanoOne 1 download

Dr. Stephen Campbell, Chief Technology Officer at Nano One Materials Corporation has announced the issuance of US Patent No. 10,374,232. In the race to commercialize lithium ion battery powered electric vehicles, this patent adds value to Nano One’s high energy cathode materials as it defines the unique physical form of the powdered materials and provides a proprietary means of improving durability, safety, handling and cost.

Dr. Campbell said “This patent is particularly significant as it defines the properties of our high energy NMC cathode powders, rather than the underlying process to make them. These powders have unique physical properties, related to size and nanostructure, that Nano One is exploiting for improved durability, handling, safety and cost. It complements our process patent portfolio and adds substantially to our strategy with recently announced automotive partners to develop a new generation of low cost and durable high energy cathodes.”

NMC cathodes are typically comprised of lithium, nickel, manganese and cobalt. There are global initiatives underway to increase nickel for more energy and reduce cobalt to mitigate supply chain risk. However, this shift to nickel-rich materials compromises stability and safety in the battery, and the air sensitive materials require special handling. Nano One’s unique powders are differentiated from these efforts and they enable an innovative approach to lowering cost and increasing the durability of NMC powders.

NanoOne 2 download

Utilizing proprietary manufacturing technologies, which are themselves protected by patents in the US, Canada, Taiwan, China, Japan and Korea, Nano One is able to carefully control the formation of lithium ion battery materials resulting in unique forms and improved electrical properties. The improved NMC materials themselves are now patent protected in the US and Korea.

“The granting of this patent is great news”, said Dr. Joseph Guy, Director of Nano One and Patent Agent. “Our NMC powders are different because of very fine particles and layered nanostructures. It gives Nano One a sustainable means of differentiating its NMC cathode powder for improved performance and cost in lithium ion batteries. This is an important cornerstone in the execution of Nano One’s business plan and provides valuable leverage going forward.”

S Campbell 1

 

Profile: Dr. Stephen Campbell

New discovery makes fast-charging, better performing lithium-ion batteries possible


New Electrode 23c4a3_036cc463e8e9458d9a2070b7b7bb8c5c_mv2

April –  2019 – Rensselaer Polytechnic Institute – Material Science

Creating a lithium-ion battery that can charge in a matter of minutes but still operate at a high capacity is possible, according to research from Rensselaer Polytechnic Institute just published in Nature Communications. This development has the potential to improve battery performance for consumer electronics, solar grid storage, and electric vehicles.

A lithium-ion battery charges and discharges as lithium ions move between two electrodes, called an anode and a cathode. In a traditional lithium-ion battery, the anode is made of graphite, while the cathode is composed of lithium cobalt oxide.

These materials perform well together, which is why lithium-ion batteries have become increasingly popular, but researchers at Rensselaer believe the function can be enhanced further.

“The way to make batteries better is to improve the materials used for the electrodes,” said Nikhil Koratkar, professor of mechanical, aerospace, and nuclear engineering at Rensselaer, and corresponding author of the paper. “What we are trying to do is make lithium-ion technology even better in performance.”

Vanadium Sulfide download

Vanadium disulfide – a promising new monolayer material for Li-ion batteries

Koratkar’s extensive research into nanotechnology and energy storage has placed him among the most highly cited researchers in the world. In this most recent work, Koratkar and his team improved performance by substituting cobalt oxide with vanadium disulfide (VS2).

“It gives you higher energy density, because it’s light. And it gives you faster charging capability, because it’s highly conductive. From those points of view, we were attracted to this material,” said Koratkar, who is also a professor in the Department of Materials Science and Engineering.

Excitement surrounding the potential of VS2 has been growing in recent years, but until now, Koratkar said, researchers had been challenged by its instability–a characteristic that would lead to short battery life. The Rensselaer researchers not only established why that instability was happening, but also developed a way to combat it.

The team, which also included Vincent Meunier, head of the Department of Physics, Applied Physics, and Astronomy, and others, determined that lithium insertion caused an asymmetry in the spacing between vanadium atoms, known as Peierls distortion, which was responsible for the breakup of the VS2 flakes. They discovered that covering the flakes with a nanolayered coating of titanium disulfide (TiS2)–a material that does not Peierls distort–would stabilize the VS2 flakes and improve their performance within the battery.

“This was new. People hadn’t realized this was the underlying cause,” Koratkar said. “The TiS2 coating acts as a buffer layer. It holds the VS2 material together, providing mechanical support.”

Once that problem was solved, the team found that the VS2-TiS2 electrodes could operate at a high specific capacity, or store a lot of charge per unit mass. Koratkar said that vanadium and sulfur’s small size and weight allow them to deliver a high capacity and energy density. Their small size would also contribute to a compact battery.

When charging was done more quickly, Koratkar said, the capacity didn’t dip as significantly as it often does with other electrodes. The electrodes were able to maintain a reasonable capacity because, unlike cobalt oxide, the VS2-TiS2 material is electrically conductive.

Koratkar sees multiple applications for this discovery in improving car batteries, power for portable electronics, and solar energy storage where high capacity is important, but increased charging speed would also be attractive.

Rensselaer college-photo_3861

Rensselaer Polytechnic Institute

 

Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries Lu Li, Zhaodong Li, Anthony Yoshimura, Congli Sun, Tianmeng Wang, Yanwen Chen, Zhizhong Chen, Aaron Littlejohn, Yu Xiang, Prateek Hundekar, Stephen F. Bartolucci, Jian Shi, Su-Fei Shi, Vincent Meunier, Gwo-Ching Wang & Nikhil Koratkar Nature Communications volume 10, Article number: 1764 (2019)

Rensselaer Polytechnic Institute

#Batteries #Energy #MaterialScience