Nanosys announces 2000kg quantum dot production milestone for high performance consumer displays

Sufficient material shipped to bring perfect color with high energy efficiency to millions of devices.

A shipment of Nanosys Quantum Dot Concentrate bound for a new generation of consumer devices with brighter, more colorful displays this fall. Nanosys just announced that it has reached 2,000 kg production milestone for quantum dots used high performance consumer displays.  (PRNewsFoto/Nanosys)
A shipment of Nanosys Quantum Dot Concentrate bound for a new generation of consumer devices with brighter, more colorful displays this fall. Nanosys just announced that it has reached 2,000 kg production milestone for quantum dots used high …

SEOUL, Korea, Sept. 30, 2013 /PRNewswire/ — Nanosys, enabling a new generation of perfect-color fidelity, energy-efficient displays with its quantum-dot technology, today announced that it has passed a major production milestone at its recently opened 60,000 square foot manufacturing facility in Milpitas, CA. The shipment of more than 2000kg of Nanosys Quantum Dot Concentrate™, used to make Quantum Dot Enhancement Film (QDEF™), represents a significant step forward in the adoption of quantum dot technology for displays.

Nanosys is demonstrating a 55-inch 4K TV utilizing QDEF technology at the IHS E&M Quantum Dot Seminar in Seoul, Korea this week. A drop-in optical component for LCDs, QDEF creates a richer, more lifelike color experience while consuming significantly less power. Based on a new generation of quantum dots from Nanosys, the 55-inch set on display in Korea achieves about 40% higher color gamut than commercially available white-LED based 4k televisions while reducing power consumption by more than 35%.

“QDEF is enabling LCD makers to really challenge the newest OLED technology,” said Jason Hartlove, President and CEO of Nanosys. “We are working with display makers to create a new, perfect color display experience that is more cost effective, efficient and reliable than anything else currently on the market. This is fundamentally changing the economics of high performance displays back in favor of LCD technology, and demand for QDEF has grown to the point that we’ve significantly expanded our manufacturing to keep up.”

Nanosys is working closely with supply chain partners to continue ramping deliveries as demand for QDEF from global display manufacturers increases.

Media Contacts: Nanosys Jeff Yurek (408) 240-6745

About Nanosys, Inc. Nanosys, Inc. is an advanced material architect, harnessing the fundamental properties of inorganic materials into process ready systems that can integrate into existing manufacturing to produce vastly superior products in lighting, electronic displays and energy storage. For more information, visit

SOURCE  Nanosys

Making Inorganic Solar Cells with an Airbrush Spray


Nano Particles for Steel 324x182(Nanowerk Spotlight) There is currently a tremendous  amount of interest in the solution processing of inorganic materials. Low cost,  large area deposition of inorganic materials could revolutionize the fabrication  of solar cells, LEDs, and photodetectors. The use of inorganic nanocrystals to  form these structures is an attractive route as the ligand shell that surrounds  the inorganic core allows them to be manipulated and deposited using organic  solvents.

The most common methods currently used for film formation are  spin coating and dip coating, which provide uniform thin films but limit the  geometry of the substrate used in the process. The same nanocrystal solutions  used in these procedures can also be sprayed using an airbrush, enabling larger  areas and multiple substrates to be covered much more rapidly.

The trade-off is  the roughness and uniformity of the film, both of which can be substantially  higher.    Reporting their findings in a recent online edition of ACS  Applied Materials & Interfaces (“Inorganic Photovoltaic Devices Fabricated Using  Nanocrystal Spray Deposition”), researchers have now attempted to quantify  these differences for a single-layer solar cell structure, and found the main  difference to be a reduction in the open circuit voltage of the device.            deposited films of CdTe nanocrystals SEM  images of the top surface of the deposited films following deposition and  sintering, showing (a) CdTe spin coated and (b) CdTe spray coated. The scale bar  in both images represents 200 nm. (Reprinted with permission from American  Chemical Society)

“Our work was motivated by a desire to coat larger substrate  areas more efficiently,” Edward Foos, a research scientists in the Materials  Synthesis and Processing Section of the Chemistry Division at the Naval  Research Laboratory, and first author of the paper, tells Nanowerk. “Our initial  work indicated that if the layers were thick enough to cover the substrate  completely and avoid pinhole formation that would lead to shorting of the  device, then the increased surface roughness might be tolerable.”

He adds that this is the first time the impact of this surface  roughness on the performance characteristics has been directly compared for  these types of devices.

The team prepared single-layer Schottky-barrier solar cells  using spray deposition of inorganic (CdTe) nanocrystals with an airbrush. The  spray deposition results in a rougher film morphology that manifests itself as a  2 orders of magnitude higher saturation current density compared to spin  coating.   “We’re currently working to improve the spray coating process to  improve the layer uniformity,” says Foos. “If the surface roughness can be  reduced, then the overall device performance should increase.”   The team is confident that further optimization of the spray  process to reduce this surface roughness and limit the Voc suppression should be possible and eventually lead  to comparable performances between the two deposition techniques.   “Importantly” Foos points out, “the spray-coating process  enables larger areas to be covered more efficiently, reducing waste of the  active layer components, while enabling deposition on asymmetric substrates.

These advantages should be of substantial interest as inorganic  nanocrystal-based solar cells become increasingly competitive as  third-generation devices.”   The team’s next step will be the fabrication of more complex  device architectures that incorporate multiple solution processed layers. These  structures will have an even smaller tolerance for variation. In addition, the  deposition chemistry used must not interfere with the material applied in the  previous step.

By Michael Berger. Copyright © Nanowerk

Read more:


3M to Challenge OLED Displays with Quantum Dots

The giant industrial company says it will commercialize a quantum-dot optical film that dramatically improves LCD color.


OLED TVs: on sale soon
OLED TVs: on sale soon

3M’s optical systems business division is to collaborate with the venture-backed company Nanosys on a new quantum-dot technology that promises to help conventional liquid crystal displays (LCDs) hold off the challenge of organic LEDs (OLEDs).

OLED televisions will be launched this year by LG Display and, in all likelihood, Samsung, while other TV companies such as Panasonic and Sony are expected to follow suit. One of the big selling points of the technology is its more vibrant representation of colors, thanks to the fact that OLEDs are direct emitters of colored light – whereas LCDs are effectively filters of white light.

In an announcement timed to coincide with the Society for Information Display (SID) 2012 “Display Week” meeting – traditionally the event where new display technologies are first reported – Nanosys and 3M said that they intend to commercialize what is known as “quantum dot enhancement film” (QDEF) technology.

“QDEF is a drop-in film that LCD manufacturers can integrate with existing production processes,” say the two companies, meaning that the technology is directly compatible with existing LCD production – where 3M’s optical films already play a major role. “It utilizes the light-emitting properties of quantum dots to create an ideal backlight for LCDs.”

Rather than actively creating light, the quantum dot films developed by Nanosys effectively work like a phosphor. When exposed to blue emission provided by a phosphor-less gallium nitride LED backlight, the dots produce narrow-linewidth red and green light, which can be combined with the original blue emission to generate a high-quality white backlight.

Atomic behaviour Because they are so tiny, quantum dots behave in a similar manner to individual atoms, rather than bulk solids. And the precise color of the light that they produce when illuminated by blue LEDs is determined purely by their size. So by tightly controlling the size of the dots, they can be “tuned” to produce either red or green light at a precise and narrow range of wavelengths.

In an LCD display, what that translates to is a white backlight with a much wider color “gamut”, meaning a much more life-like representation of images on the screen is possible. “Current LCDs are limited to displaying 35 percent or less of the visible color spectrum,” the companies say. “This means the viewing experience on an LCD is vastly different than what a person sees in the real world.”

By increasing that color range by a claimed 50 percent, the QDEF technology offers a challenge to one of the key selling points associated with OLED displays – the vivid color reproduction that results from using direct light emitters in the pixels of the display.

Jason Hartlove, the CEO of Nanosys, said: “We are working together to improve an area of display performance that has been largely neglected for the last decade. Improving color performance for LCDs with drop-in solutions will bring a stunning new visual experience to the consumer and a competitive advantage to the LCD manufacturer against new display technologies such as OLED.”

SID “Gold” award for QDEF LED-backlit TVs and monitors are now commonplace, but one of the original commercial claims for using the technology was identical to that now being heralded by 3M and Nanosys – that it would improve color gamut dramatically, compared with the white fluorescent backlights that initially dominated in LCD TVs.

As things turned out, it was not color gamut but the ability to make TVs much slimmer and lighter that propelled LED backlights into the mainstream, largely thanks to the intervention of Samsung.

And as the world’s leading producer of active-matrix OLED screens – largely for its own mobile phone and tablet offerings – Samsung has a foot in both camps when it comes to improving color representation in the next generation of TV technologies.

Interestingly, the Korean company’s venture wing – Samsung Venture Investment Corporation – led Nanosys’ series E round of financing, which raised $31 million in late 2010.

The QDEF technology was also recognized at SID’s annual Display Industry Awards ceremony earlier this week, winning the SID Gold Award in the category of “display component of the year” at the Boston conference and show.

According to 3M, the quantum-dot film being commercialized by the two firms will simply replace a similar film already found inside LCD backlights, and for display manufacturers would require no new equipment or process changes.

Graphene Mass Production, Roll to Roll

Nano Particles for Steel 324x182Graphene, the lightest and thinnest compound known to man at one atom thick, has several amazing and unique properties that make it a very interesting candidate for many futuristic applications. However, its use is presently limited due to a bottleneck in its synthesis and mass production, which are still at an infant stage and expensive.

The project, which is being funded with 10.5 million euros over four years, aims to develop the first roll-based chemical vapour deposition (CVD) machine for the mass production of few-layer graphene for transparent electrodes for LED and display applications, and adapts the process conditions of a wafer-scale carbon nanotube growth system to provide a low-cost batch process for graphene growth on silicon. The project focuses on applications such as transparent electrodes for OLEDs and GaN LEDs, optical switches, plasmonic waveguides, VLSI interconnects, and RF NEMs.

Due to its high carrier mobility,  long ballistic mean free path, a high frequency photoconductivity, and a large thermal conductivity, graphene is being considered as a component in  next-generation electronic, optoelectronics and microsystems. Production of graphene is possible by four main methods, and prototype devices based on graphene (eg. field effect transistors, photo-transistors and detectors, and transparent electrodes for touch screens,) have been demonstrated with very promising results. GRAFOL aims to turn an emerging technology, the on-substrate synthesis of graphene, into a large-scale production technology available to industry as shown conceptually in the figure.


The project aims to develop the first roll-based chemical vapour deposition (CVD) machine for the mass production of few-layer graphene for transparent electrodes for LED and display applications, and

(Photo : GRAFOL) The project aims to develop the first roll-based chemical vapour deposition (CVD) machine for the mass production of few-layer graphene for transparent electrodes for LED and display applications, and adapts the process conditions of a wafer-scale carbon nanotube growth system to provide a low-cost batch process for graphene growth on silicon.

It is important to realize that the advancement of microelectronics today is not only due to the shrinking of device dimensions, which nano-materials allow, but also to the enlargement of wafer size (the unit of measure for production).  The increase of wafer diameter from 50mm in 1970’s to 300mm in early 2000’s, corresponding to a  36 fold increase in area, has made it much more cost effective to manufacture  microelectronics, quite simply because more chips are made simultaneously. It is quoted by  semiconductor companies, that for graphene to be seriously considered for microelectronics, it must be  on at least the 300mm wafer scale, on Si and attain a life cycle production cost (taking into  account source materials, running costs, equipment depreciation) of $1 per square inch of  deposited area on a substrate. Such a competitive cost can only be achieved if the area of graphene  deposited is increased per run, that is, scaling the production to at  least a 300mm wafer scale (another wafer size transition to 450mm is expected towards the end of this decade).

Taking it one step further, for certain applications such as transparent electrodes graphene should be produced in even larger scale than that required for microelectronics. This  truly large-scale production of graphene would become possible with a successful development of roll-based technology.

Despite its attractive properties, graphene will not yet be used in mainstream electronic applications due to two technological obstacles, namely (1) mass production and (2) device integration. Device integration deals with aspects such as physical integration and process integration (material compatibility, thermal budget). Mass production must use the route of chemical vapour deposition (CVD) onto metal surfaces. To tackle mass production, equipment must be developed which addresses economical manufacturing (yield, throughput, equipment reliability and maintainability) as well as quality assurance (process qualification, material consistency /standard characteristics, monitoring). These obstacles are dealt with in this project.

The value-added / high tech applications developed here have been carefully selected to require graphene on surfaces, and to be those which truly benefit from not only the high specifications but also cost effective production of graphene when deposited on the wafer-scale or by a roll-based method.

GRAFOL  started in October 2011, and will run for 4 years. The coordinator is  the University of Cambridge, led by professor John Robertson. Professor  Robertson leads a team of 14 partners, consisting of both academic  research labs as well as businesses like ours. The project benefits from  expertise of the likes of Aixtron (one of the world’s largest  manufacturers of CVD machines, based in Aachen, Germany), Philips, Thales, and Intel. Financing  comes from the European Union’s FP7 research framework, under the  research theme “Nanosciences, nanotechnologies, materials  and new production technologies”, which focuses on projects with a  strong industrial impact. — Graphenea

Related Articles

Continuous Flow Synthesis Method for Fluorescent Quantum Dots

NANOSPHERESQuantum dots have potential applications in fields as diverse as medicine, photovoltaics, and quantum computing. The Center for Applied Nanotechnology (CAN) in Hamburg are making great strides in making high quality quantum dots available for research and large-scale production.

Quantum dots are nano-scale particles of semiconductor material, which are so small that quantum effects start to directly affect the particles’ electrical, optical and magnetic properties. This has many interesting implications on a larger scale – for example, fluorescent quantum dots can be designed which emit different colors depending only on their size.

The properties of quantum dots have been investigated in labs to a fairly high degree, so current research is focusing on very challenging applications, or on bringing the technology into the commercial realm.

This rapid development puts greater and greater demands on the quality of the nanoparticles – a challenge which CAN is rising to with a continuous-flow production method for their CANdots® product range. Daniel Ness from CAN explains the benefits of this technique:

“Some of our nanoparticle products, including the new Series A nanoparticles with visible-range fluorescence, use our continuous-flow synthetic method. This replaces more conventional batch synthesis, and greatly improves the reproducibility of the product, as well as being much easier to scale to higher production volumes.

“The process is also less dependent on highly trained technicians, as the parameters are easier to control. We are now working on adapting this process for our other CANdots® products, and we have a patent pending on the process itself.”


CAN’s new product, Series A Plus, are fluorescent quantum dots made of CdSe, with applications in LEDs and solid state lighting, single particle spectroscopy and as markers for biological imaging. They were launched at the 2013 NSTI Nanotech Expo in Washington.

Daniel Ness, CAN

The CANdots® range covers many more types of quantum dots and nanocrystals, including Series C NIR/IR emitters based on PbS, and Series X rare-earth doped quantum dots with distinctive emission features ideal for tagging and security labelling.

CAN was founded in 2005 as a spin-out from the University of Hamburg, focused on the transfer of their expertise in the production of nanomaterials from research into industry. The center is working with an array of companies and universities to design and develop new nanotechnology products.

CAN are currently seeking industrial partners to work on scale-up of their continuous flow nanoparticle production process, particularly for applications in photovoltaics, LEDs, and life sciences.

                Date Added: May 30, 2013                                 | Updated: Aug 19, 2013

Nanoco (Quantum Dot Nano-Materials Manufacture) Ready to Roll

QDOTS imagesCAKXSY1K 8Quantum dots developer’s Dow deal a game-changer for digital displays.

The Manchester University spin-off develops and makes quantum dots, tiny, fluorescent semiconductors used to make next-generation electronics. Nanoco’s IP-protected manufacturing method avoids cadmium, a heavy metal banned in many countries, and its trademarked NanoDot technology is used in several applications; solid state lighting, solar panels, even some medical devices.

As we originally predicted, it is in digital displays where the biggest breakthrough has come thanks to a landmark global licensing deal with US giant Dow Chemical (DOW:NYSE) at the start of the year (23 Jan). Quantum dot LED (QLED) displays are set to become the next big trend in consumer electronics.

NANOCO GROUP - Comparison Line Chart (Rebased to first)

Market potential

A report in March from technology analyst Wintergreen Research predicts the QLED display market will hit $6.4 billion by 2019 from a standing start just a couple of years back. The report backs up our theory that once manufacturers learn to integrate quantum dots into products they will be falling over themselves to do so thanks to the technology’s lower energy use and cheaper manufacturing cost.

According to Wintergreen, Samsung (005930:KS) reckons QLED displays could cost half as much as LCD or organic LED (OLED) panels. It also estimates 80% better energy efficiency, for thinner devices with a sharper display.

TVs are a starting point, but expect QLED in smartphones and tablets too as device manufacturers desperately seek ways to defend market share in high margin top-of-the-range products.

As analysts at house broker Canaccord Genuity point out, an increasing number of industry participants share Dow Chemical’s and Nanoco’s confidence that quantum dots are on the cusp of widespread adoption in a $100 billion display market.

Sony (6758:T) already has launched the world’s first quantum dot TV using cadmium-based technology from Nanoco’s privately owned rival QD Vision. But since sales will be barred in many major markets, the US and European Union, mass market products look destined to follow the cadmium-free technology route. Nanoco is already expanding its factory in Runcorn, Cheshire from an annual 25kg capacity to 70kg, beyond initial plans to expand it to 40kg. It is rumoured to be eyeing a brand new set-up in Asia post the Dow deal, with Korea the hot tip.

Liberum sees year to July royalty-based revenues of £4 million rising to £4.6 million in 2014, before the really exciting sales flood in, hitting over £100 million inside five years from a licensing/royalty business model similar to that of UK chip champ ARM (ARM). That would imply over £90 million pre-tax profit thanks to 88% operating margins.

With cash burn running at around £5.5 million a year, its £12.5 million of cash pile should mean Nanoco is unlikely to tap investors for fresh funds. Liberum sees the shares hitting 260p over the next year, while Canaccord is even more optimistic, setting a 275p target price. That could be just scratching the surface of the shares’ longer-term profits potential.


The Future of Nanotechnology: Solving the Big Problems with Small Things

201306047919620Published on Aug 19, 2013

Explore Nanotechnology – Imagine a world where unique phenomena at the molecular scale can lead to entirely new, innovative, and transformative product designs—all done by harnessing properties of materials at the nanoscale level. Nanotechnology will revolutionize the way we engineer new technologies, impacting areas of next-generation energy storage, high-performance electronics and multi-functional materials.

Solving the BIG problems of the World:

  • Access to Clean (potable) Water
  • Abundant Clean Energy Sources
  • Treating and Curing Diseases: Cancer, Diabetes, Alzheimer’s





Quantum Dot Markets: Emerging Commercial Technologies

NANOSPHERESPublished: August 14, 2013 Category: Advanced Materials Emerging Electronics



NanoMarkets believes that Quantum Dots (QDs) have good potential to be a dominant large display format technology in the near term, but will take some more time to find commercial applications in the small display segment. In addition, NanoMarkets believes that in the near to mid-term, the lighting industry is likely to witness a good number of commercial launches, particularly in the solid-state lighting (SSL) segment, in which QDs have the potential to replace LED phosphor-based lighting solutions.

Downstream suppliers of QD raw materials are likely to expand their manufacturing facilities in order to meet the growing demand for QDs from consumer electronics producers, particularly TV manufacturers, as well as research facilities and some SSL-based lighting solution providers.

The QD market can be broadly classified into two segments:

Displays employing QD technology in large (TVs) and small formats (smartphones, tablets, etc.) Although QD-based TVs have begun to emerge commercially, it will take some time for the market to realize their full potential. Meanwhile, small display formats are likely to test the commercial viability of QD-based solutions in their commercial products.

Solid-state lighting solutions, where QDs have begun to find applicability in personal electronic devices, such as smartphones and tablets, and exterior signage. However, certain pitfalls with regard to tuning the color range, producing a true white color, and high costs have limited the application of QDs in home and commercial lighting setups.

NanoMarkets expects the U.S. to be at the forefront of QD-related research activities, as evident from the presence of a wide network of QD research-based start-ups and the number of collaborative deals that some of these start-ups have struck with established raw materials suppliers and OEMs, particularly in the consumer electronic display segment.

QD TVs Emerge, While QD-Based Smartphones and Laptops Have Yet to Gain Commercial Acceptance

Large display segment: QD-based solutions have made significant inroads in large format displays such as TVs, primarily because of the versatile applicability of QDs in a wide range of display devices combined with their better color production, color purity, and power efficiency.

Large format QD-based display solutions are mostly licensed to OEMs by a few innovative start-ups, such as QD Vision, Nanosys, Nano Photonica, and Nanoco Group.

An early entrant, QD Vision, is likely to lead the market. The company has strong collaborations with several leading TV manufacturers. Two of its patented technologies hold significant potential:

• Using currently available QD technology for displays that require a backlight source, Sony has incorporated QD Vision’s proprietary Color IQ technology in its 55-inch Triluminous brand of LCD TVs.  These QDs emit pure green and pure red light and have superior color reproduction capabilities compared to those found in most commercially available TVs.

• A quantum dot light emitting diode (QLED) is a direct-emissive display technology that is likely to do away with the requirement for an underlying substrate and backlight source. The technology is currently on the verge of commercialization and is likely to find application in next-generation electronic displays because of its proven superiority to organic light emitting diodes (OLEDs) in terms of reduced manufacturing costs, better power efficiency, and the ability to emit pure colors.

In addition to Sony, other notable consumer electronics players that are vying for a sizable share of the large format QD display segment include:

• Samsung, which is currently working in collaboration with Nano Photonica to incorporate the latter’s proprietary S-QLED technology, which seems to promise low cost and versatility across all display sizes, into TVs that should reach the market in late 2014 or early 2015.

• LG, which has also been working with multiple entities that have patented QD technologies, such as Nanosys and QD Vision; however, there are uncertainties regarding the timeframe for commercial launch of any QD-based products.

• Sharp, which has reportedly been working on QD technology; however, nothing concrete has been officially confirmed by the company. It is a general concern among manufacturers to alter existing processes in order to accommodate commercial production of any product based on a new technology.

The same applies to the adoption of QD technology. In order to address such manufacturing concerns, Nanosys, in collaboration with 3M’s Optical Systems Division, has developed proprietary Quantum Dot Enhancement Film (QDEF) technology that is designed to replace the traditional LCD backlighting unit. This technology therefore offers TV manufactures a readymade solution for incorporating QDs into their existing manufacturing facilities with minimal incremental cost.

Despite rumors of a significant extended product development time, 3M has indicated that it expects to commercially roll out the QDEF-based solutions for OEMs offering TVs, smartphones, and tablets by the end of 2013. Due to the adaptive nature of the technology within the existing LCD manufacturing framework, QDEF could potentially replace other competing phosphor-based technologies and OLEDs in the next generation of TVs.

Small display segment: The flexibility and high energy efficiency of ultra-thin film QDs make these nanomaterials potentially valuable for small displays. However, despite this strong potential (including that of technologies such as QDEF (patented by Nanosys)), only a few commercial QD-based products have been developed for this segment. Some of the barriers to entry to this segment, which limit the participation in this industry, include the dominance of OLED technology in the market, the longer time required for commercialization of these products, and lack of initiatives to set up large-scale manufacturing facilities.

A few notable players pursuing the small display strategy include:

• Osram, which is one of the few suppliers of QD backlighting solutions (through its MicroSideled brand) that offer minimal color loss and high power efficiency for personal electronic devices, such as tablets, ultra-books, and smartphones.

• Sony, which is one of the few electronic OEMs that currently offers its proprietary QD-based display (Triluminous) in its Xperia range of smartphones and Vaio range of laptops. The entry of established players in the small display segment will likely spur additional research efforts and increase the scope of possible commercial launches.


Key concerns in the display industry: QDs are likely to face stiff competition from OLEDs, a technology in which some of the leading OEMs, such as Samsung, have already invested heavily. It is expected that Samsung and other OEMs will require some time to recoup their investments before shifting to a new technology such as QDs.

Some of the key business concerns in the display industry regarding QD-based solutions are:

• The role of start-ups and their IP positions,

• The race among OEMs to secure licensing deals, and

• The verified performance improvements that QDs provide compared to OLEDs.

The QD supplier community is typically comprised of technology start-ups with IP rights that either license their products to OEMs or directly sell to research facilities. Consumer electronics OEMs are likely to generate the maximum demand for QDs in the coming years. Thus, it makes sense for QD providers holding IP positions to work in collaboration with established raw material suppliers to the electronic display industry or directly with the OEMs, which typically have large distribution networks and marketing prowess.

Clearly, companies that hold IP positions in QD materials are likely to depend heavily on OEMs and other big raw material suppliers to gain market visibility.

However, firms such as QD Vision and Nanosys will have a significant advantage over other players because of their innovative product lines, which are flexible enough to serve different display segments. Moreover, with the commercial success of QD technology, established electronic display manufacturers are likely to select such strong suppliers in order to secure their QD raw material base. OEMs will, in fact, compete with one another to strike exclusive deals with leading QD material suppliers. Although product profiles are likely to expand over time, the competitive pressure will lead to some level of consolidation, with only the financially strong players emerging as successful suppliers of QD materials to the display industry.

While compared to OLEDS, QDs offer the manufacturing advantage of fitting into the existing backlighting units of LCD TVs; QDs must also offer dramatic performance enhancements over OLEDs in order to attract investment. Long product lifetimes and cost-effective large-scale manufacturing are likely the key factors that will make QD technology successful in the display industry in the near future.

Future outlook for the display industry: In the next two-three years, QDs are likely to dominate the LCD backlighting TV segment, while it will take four-five years to witness the commercial entry of large display products based on direct-emissive (pure QD) technologies, such as the QLED technology developed by QD Vision, that can be applied across a wide range of display formats, including ultra-thin products.

Although OLEDs are to some extent comparable to QDs in terms of their versatility, smart customization moves from QD material suppliers, such as those made by Nanosys with its QDEF technology, have the potential to place QDs at the forefront of next-generation large display products that are likely to hit the market in the mid-term. Moreover, the intent of big raw material suppliers, such as Dow Electronic Materials (DEM) and 3M, to serve the display segment with QD products in a big way should be considered a positive move by other OEMs and suppliers.

Other players are likely to follow suit, given the likely commercial launch of QD-based solutions from DEM (in collaboration with Nanoco Group) in the first half of 2014 and 3M (in collaboration with Nanosys) by the end of 2013. NanoMarkets believes that the large display manufacturers, such as Sony and Samsung, will play a significant role in the commercialization of QD products, although they are likely to make smaller investments in the QD space compared to those made in OLED technology.

Even so, NanoMarkets expects that commercialization in the large display segment will progress at a faster rate than that in the small display segment, in which manufacturers are likely to carefully gauge the market potential of QDs and follow policies similar to those adopted by the established players, such as Sony and Samsung.

QD-Based Solid State Lighting on the Verge of Commercialization, but Little Impact in Other Lighting Categories Solid-state lighting (SSL) segment:

In the solid-state lighting (SSL) segment, QLEDs hold significant promise in terms of commercial success, because QLED-based lighting solutions can be applied on flexible surfaces and offer better efficiency, a wider color range, and better color saturation than other competitive products, such as LED phosphors. In addition, the high costs associated with OLED manufacturing have kept this technology out of the reach of residential and commercial consumers, a fact that can actually play in favor of QLEDs in the near future.

Energy-saving cost benefits, low toxicity, and the ability to provide true incandescent light make QD-based SSLs a strong contender for new SSL solutions and potential replacements for existing LED phosphor-based SSLs.

As in the display segment, QD Vision has a significant first-mover advantage in the SSL segment. As early as 2009, the company demonstrated its patented ‘Quantum Light’ QD–based SSL technology in collaboration with Nexxus Lighting Inc., which incorporated the technology in its commercially available ‘Array’ series of lamps. QD Vision’s ‘Quantum Light’ technology, which offers better energy savings and a longer shelf-life than conventional halogen lamps, is ideal for downlight solutions typically used in commercial and residential settings.

While QD Vision heads the pack of QD solution providers, there are others that are likely to make their presence felt in the SSL domain with proprietary QD-based solutions:

Using NN Crystal’s proprietary QShift Coral technology, Renaissance Lighting has commercially launched downlight solutions that can be precisely controlled to emit pure light of a particular color.

Pacific Light Technologies, which is solely focused on developing toxic material-free QDs for the SSL industry, is likely to attract consumer attention once it is commercially launched.

Wisys Technology Foundation, working in collaboration with the University of Wisconsin, has also developed a proprietary QD-based SSL solution that is ready for market testing. These early advances should ideally incentivize other developers of QD-based SSL solutions to push their products from the research lab into consumers’ hands.

An increase in the number of QD-based offerings is critical for the success of the technology in the lighting sector, given that currently there are only a handful of organizations offering commercially available QD-based SSL products. It must be noted, however, that successful commercial launches of QD-based lighting solutions also depend heavily on the extent of the financial support received by the research organizations developing QD-based solutions.

Recognizing this fact, the U.S. government, through the Department of Energy (DOE), is providing financial grants to QD-based projects in order to move laboratory products to the commercial launch stage.

Some grant receivers include:

• The University of Buffalo, which is developing high-efficiency colloidal QD phosphors, and

• The University of California, which is developing QD phosphors for SSL applications.

Other lighting segments:

QD technology also has significant advantages over currently available LCD and OLED technologies in terms of better image performance and power efficiency in applications such as projectors, video walls, and digital signage. Trenton Systems is one firm that sees potential for QDs in such applications. The company is planning for the possible introduction of a QD-based video wall.

However, there are uncertainties with respect to the adoption rate of QD technology in these niche lighting segments, primarily due to the high product costs and the need to change existing manufacturing processes.


Key concerns in the lighting industry:

Although some QD material suppliers have achieved a head start in the SSL segment, there are reasons why a majority of the QD-based research activities have shied away from this segment.

The display industry has two key concerns about QD-based solutions:

• The expensive manufacturing processes for commercial products and

• The attractiveness of the business segment.

Commercial manufacturing processes for QD-based solid-state lighting solutions remain expensive and it will be some time before economies of scale can be achieved. This should prompt the development of cost-effective techniques for manufacturing general purpose lighting products.

In addition, the incremental performance benefits that QDs provide compared to conventional lighting solutions, such as CFLs and LEDs, will also be important factors deterring the rate of adoption of QDs by the lighting industry at large.

The competition for research dollars with other segments, particularly the lucrative display industry, is another major factor affecting the development of QD-based lighting solutions.

Hence, a successful foray into SSL and other residential and commercial lighting solutions will depend significantly on several key factors, including the development of cost-effective mass production capabilities and favorable government mandates for the adoption of energy efficient measures, such as the U.S. government’s emphasis on replacing 100 watt and 75 watt incandescent bulbs with 60 watt and 40 watt bulbs.


Future outlook for the lighting industry:

NanoMarkets believes that, in the lighting segment, SSL is likely to provide the maximum number of innovative opportunities for start-ups such as QD Vision and other QD materials producers.

It will be necessary, however, for major lighting industry OEMs to make such products commercially available. NanoMarkets is also of the opinion that some of the U.S. government-assisted QD-based SSL research projects are likely to gain commercial significance in the near to mid-term; however, other lighting segments are likely to wait and watch for radical innovations that will offer potential manufacturers a viable route to break into commercial markets.

At the same time, NanoMarkets thinks that QD materials firms should also look beyond traditional business segments and target niche lighting categories, such as projectors, video walls, and digital signage – business segments in which QD solutions can address the significant issue of high energy consumption.

QD Material Suppliers Likely to Benefit in the Mid-Term QD materials form the fundamental building blocks of any QD device.

These materials primarily consist of either heavy metal (HM)-based semiconductor materials or non-heavy metal (NHM)-based semiconductor materials. Typically, NHM-based QDs find use in biomedical applications, while HM-based QDs have been traditionally used in all other applications. However, growing concerns over the use of cadmium have led researchers to shift their focus on NHM-based QDs.

HM-based QD materials: QDs have been traditionally based on HM semiconductor materials, such as cadmium telluride, zinc sulfide, lead selenide, and zinc cadmium selenide. The supplier base remains fragmented, with OEMs having the option to choose from several patented QD materials.

The success of material suppliers is likely to be determined by their ability to mass produce QDs of consistently high quality.

Therefore, traditional suppliers, such as American Elements and M K Impex Corporation, will need to not only continue to differentiate themselves on the basis of their product variety, but also look to acquire mass production capabilities.

NanoMarkets believes that companies such as Nanoco Group and Quantum Materials Corporation, which hold IP positions related to QD materials and novel large-scale QD manufacturing techniques, are likely to have an edge over others because they will be in a position to strike bulk HM-based QD manufacturing deals with OEMs in the near to mid-term.

 NHM-based QD materials: Addressing growing environmental concerns over the use of certain heavy metals, such as cadmium and lead, has led to the emergence of NHM-based QDs. NHM-based products have begun to emerge only recently, however, and the supplier base with large-scale production capabilities is limited at this time. Some of the companies with patented mass production manufacturing techniques include:

U.K.-based Nanoco Corporation, which has modified its existing HM-based QD manufacturing techniques in order to produce NHM-based QDs with optical properties identical to the well-accepted properties of HM-based QDs. Nanoco has patented this mass production technique in order to cater to the growing demands of the electronic display industry.

• U.S.-based Quantum Materials Corporation, which by the end of 2013 will be mass producing an entire range of HM-based and NHM-based quantum dots using its patented continuous flow process. The company’s range of QD materials is likely to find applicability in various industries including display and lighting, but the firm’s focus has been on developing QD materials suited for the biomedical and solar energy segments. NanoMarkets believes that QD material providers in this highly specialized material segment are likely to ensure business viability through continuous IP-related research activities, which will enable these manufacturers to receive a steady stream of licensing revenues from OEMs in the mid-term.

However, NanoMarkets expects significant development efforts will also be directed towards the implementation of cost-effective large-scale manufacturing techniques, which will be the key to the commercialization of cost-effective and high-performance QDs.

Technology Gaps in Current-Generation QD Materials It must be noted that despite their proven potential, QDs have yet to become the material of choice for the display and lighting industries.

Although this trend can be partly explained by the fact that OEMs are hesitant to dramatically shift towards a new technology such as QDs before recouping their investments in other similar and promising technologies (OLEDs), there are also several technological barriers that QDs must overcome in order to prove their superiority over other rival technologies.

Some of the current material-related issues faced by QDs include:

• The suitability of current fabrication techniques to facilitate cost-effective mass production;

• The ease of manufacturing blue QDs; and

• Blinking issues with QDs.

Despite the emergence of several fabrication techniques for the effective manufacture of QDs, the majority of currently available fabrication techniques do not provide significant room for cost reduction in large-scale production.

Research efforts to develop new fabrication techniques or modify existing techniques are highly desired. Until a cost-effective fabrication technique is developed, QDs may not be able to make the leap to commercial success.

With respect to display solutions, the majority of current-generation QDs is likely to find initial applicability in the LED backlighting space. However, the difficulty in producing blue QDs on a consistent basis is a major cause of concern for LED and LCD TV manufacturers.

In addition, because blue QDs are likely to be smaller than red QDs, blue and green variants of blue QDs require manufacturing techniques that make them visible to the human eye. Thus, QD materials manufacturers must develop an optimal manufacturing process for blue QDs – an effort that is likely to require strong collaborations between the materials suppliers and OEMs.

Furthermore, QD manufacturers have in general been struggling to simultaneously ensure uniform size and narrow emission peaks in order to prevent the QDs from blinking on and off.

Although a potential solution to this problem has been achieved by MIT researchers, the suitability of the new technique at commercial scale has yet to be verified.

Additional advances in technology are likely to solve some of the other existing problems with QDs in the coming years, leading to increased applicability of the technology.

In the immediate future, the QD industry is likely to focus primarily on the large display market, in which QDs are expected to be extensively incorporated in the backlighting units of LCD and LED-based TVs.

Moreover, NanoMarkets believes that the development of cost-effective mass production techniques will surely attract established OEMs that would like to harness the benefits of QDs in a variety of other applications ranging from direct-emissive QD TVs and smartphones to solid-state lighting.

However, NanoMarkets also expects that the potential for QD technology to replace OLEDs (in the large display segment) and LEDs and CFLs (in the lighting segment) will largely depend on demonstration of the long-term performance enhancements offered by QDs compared to these rival technologies, particularly in terms of their reduced manufacturing cost, enhanced power efficiency and color production, longer lifetimes, and flexibility.

*** End of Report: NanoMarkets: “Key Quantum Dot Markets

Note to Readers: To read more about a recent ‘Frost and Sullivan Award Winner’ in the advanced quantum dot (“QD”) manufacturing market, Frost & Sullivan recognizes Quantum Materials Corporation (“QMC”) with the 2012 North American Frost & Sullivan Award for Enabling Technology.

Read the Full Release online here:


MOUNTAIN VIEW, Calif. – Thursday, December 20, 2012 – Based on its recent analysis of the advanced quantum dot (“QD”) manufacturing market, Frost & Sullivan recognizes Quantum Materials Corporation (“QMC”) with the 2012 North American Frost & Sullivan Award for Enabling Technology.

QMC’s technology, employing an innovative tetrapod quantum dot continuous-flow chemistry process addresses the major challenges—low  production and corresponding high manufacturing cost—that have held back the wide-spread adoption of QD technology by major industries.

QMC’s process enables bulk manufacturing (95 percent to 97 percent full tetrapod yield) of highly efficient tetrapod-shaped QDs that have 4 arms on the QD core to enable better electrical conductivity compared to current QD technology.

The structure and size of the resulting Tetrapod QDs are highly uniform, which enables the narrow bandwidth light extraction accuracy of QMC’s quantum dots to be significantly higher than QDs manufactured through batch colloidal synthesis.

“Characteristics such as high quantum yield, smaller size and high band gap tunability make QDs an ideal platform technology for many emerging applications, such as solar energy, sensors, solid state lighting, quantum computers, and QD lasers,” said Frost & Sullivan Research Analyst Shyam Krishnan. “However, manufacturing inefficiencies of complicated, expensive synthesis processes have limited their adoption.”


” …. In short, QMC’s technology has eliminated most of the industrial challenges facing large-scale adoption of QD technology. Moreover, the company’s unique synthesis eliminates conventionally used solvents, replacing them with cheaper and less toxic solvents that reduce the cost and improve the effectiveness of the process.

A major advantage of QMC’s Tetrapod QD manufacturing technique is its flexibility; it can fabricate Tetrapod QDs from 12 different elements, which allows for RoHS compliance,” observed Krishnan. “The process also allows for the width and length of the Tetrapod QD’s arms to be fine-tuned for any desired application. For example, short QD arms for biotech applications, and longer QD arms to improve electron transport in solar cells.”

 *** End of ‘Frost and Sullivan Release





What is Nanotechnology? What applications can it be used for?

Nanotubes imagesPublished on May  1, 2013

Nanotechnology (sometimes shortened to (“nanotech”) is the manipulation of matter on an atomic and molecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

If you liked this video watch: “Nanotechnology Documentary – Quantum Computing, what it is, how it works!”

Guided growth of nanowires leads to self-integrated nanoelectronics circuits

QDOTS imagesCAKXSY1K 8(Nanowerk News) Researchers working with tiny  components in nanoelectronics face a challenge similar to that of parents of  small children: teaching them to manage on their own. The nano-components are so  small that arranging them with external tools is impossible. The only solution  is to create conditions in which they can be “trusted” to assemble themselves.
Much effort has gone into facilitating the self-assembly of  semiconductors, the basic building blocks of electronics, but until recently,  success has been limited. Scientists had developed methods for growing  semiconductor nanowires vertically on a surface, but the resultant structures  were short and disorganized. After growing, such nanowires need to be  “harvested” and aligned horizontally; since such placement is random, scientists  need to determine their location and only then integrate them into electric  circuits.
A team led by Prof. Ernesto Joselevich of the Weizmann  Institute’s Materials and Interfaces Department has managed to overcome these  limitations. For the first time, the scientists have created self-integrating  nanowires whose position, length and direction can be fully controlled.
This is a SEM image of a logic circuit based on 14 nanowires
This  is a SEM image of a logic circuit based on 14 nanowires.
The achievement, reported today in the Proceedings of the  National Academy of Sciences (“Self-integration of nanowires into circuits via  guided growth”), was based on a method developed by Joselevich two years ago  for growing nanowires horizontally in an orderly manner. In the present study —  conducted by Joselevich with Dr. Mark Schvartzman and David Tsivion of his lab,  and Olga Raslin and Dr. Diana Mahalu of the Physics of Condensed Matter  Department — the scientists went further, creating self-integrated electronic  circuits from the nanowires.
First, the scientists prepared a surface with tiny, atom-sized  grooves and then added to the middle of the grooves catalyst particles that  served as nuclei for the growth of nanowires. This setup defined the position,  length and direction of the nanowires. They then succeeded in creating a  transistor from each nanowire on the surface, producing hundreds of such  transistors simultaneously. The nanowires were also used to create a more  complex electronic component — a functioning logic circuit called an Address  Decoder, an essential constituent of computers. These ideas and findings have  earned Joselevich a prestigious European Research Council Advanced Grant.
“Our method makes it possible, for the first time, to determine  the arrangement of the nanowires in advance to suit the desired electronic  circuit,” Joselevich explains. The ability to efficiently produce circuits from  self-integrating semiconductors opens the door to a variety of technological  applications, including the development of improved LED devices, lasers and  solar cells.
Source: Weizmann Institute of Science 

Read more: