Linde Electronics’ Carbon Nanotube Inks to Drive Innovation in Next-generation Electronic Devices

QDOTS imagesCAKXSY1K 8(Nanowerk News) Linde Electronics, the global  electronics business of The Linde Group, launched a revolutionary new carbon  nanotube ink to drive innovation in the development of next generation displays,  sensors and other electronic devices. Linde’s carbon nanotube inks can be used  to manufacture completely new technologies, such as a smartphone with a screen  that rolls up like a window shade and a see-through GPS device embedded in the  windshield of a car.                      

Carbon nanotubes are an allotrope of carbon like graphite and  diamond, and they have unique physical and electronic properties. These include  a higher thermal conductivity than diamond; greater mechanical strength than  steel (orders of magnitude by weight); and a larger electrical conductivity than  copper. It is due to these properties that carbon nanotubes will enable  electronic device manufacturers develop more innovative electronic devices.                      

To help device manufacturers and the research and development  community to explore the full potential of carbon nanotube based technologies,  Linde is making its nanotube inks available to developers. These nanotube inks  contain individual carbon nanotubes and are produced without damaging or  shortening the nanotubes and therefore preserve the unique nanotube properties. 

This landmark development drastically improves the performance of transparent  conductive thin films made from the inks and opens the door for the development  of nanotube applications in not only consumer electronics, but also the  healthcare sector and sensor manufacturing.                      

“While we’ve seen a lot of excitement around nanotubes in the  past ten years, we’ve not yet seen a commercially viable nanotube solution in  the market because of challenges in the processing of this great material,” said  Dr Sian Fogden, Market and Technology Development Manager for Linde Electronics’  nanomaterials unit. “Our nanotube technology and our unique nanotube inks  overcome these challenges, paving the way for completely new types of  high-functionality electronic devices.”                      

Linde, which develops and supplies specialist materials and  gases for the world’s leading electronic manufacturers, is in the final  development stages with its single wall carbon nanotube technology. Alongside  the launch of the nanotube ink into the development community, the company will  also provide its nanotube ink at large scale directly to electronic device  manufacturers.                      

About The Linde Group                     

The Linde Group is a world-leading gases and engineering company  with around 62,000 employees in more than 100 countries worldwide. In the 2012  financial year, Linde generated revenue of EUR 15.280 bn. The strategy of the  Group is geared towards long-term profitable growth and focuses on the expansion  of its international business with forward-looking products and services. Linde  acts responsibly towards its shareholders, business partners, employees, society  and the environment — in every one of its business areas, regions and locations  across the globe. The company is committed to technologies and products that  unite the goals of customer value and sustainable development.

For more  information, see The Linde Group online at

Read more:

Inking Money: The Prospects for Materials in Printed Electronics

Note To Readers: The Full Report is available to subscription holders of “LuxReserch”:

In an additional note: We have learned that Lux will be interviewing one of the presenters at the “International Printed Electronics Conference (December 5, 2012)  an Advanced Materials/ Emerging Nano-Technology company we have been following for the last 3 years. Please see LuxResearch’s remarks, quote Lux Research analyzed every dollar by the technology into which it was invested to understand how investors’ views on these areas have evolved, and further analyzed $4.9 billion in exits to see where VCs are profiting” at the end of this article.  Cheers!  – BWH –

September 2012 | State of the Market Report

Printed electronics promises the ability to manufacture devices through low-cost, high-throughput manufacturing. However, to realize this potential, it requires the right materials and inks. We focus on three materials areas – opaque conductive inks and pastes, transparent conductors, and semiconductors, presenting a total opportunity of $2.6 billion in 2017. Opaque conductive inks will grow to $2.4 billion in 2017, with medical and RFID among the fastest-growing segments. However, silver paste will still dominate, and other materials will only find traction in solar applications. ITO replacement transparent conductive films will grow to $705 million, with $112 million coming from the inks, but the majority of this market will come from a single application, smartphone touch screens, leading to a wide range of potential growth scenarios. Printed semiconductors will grow to $68 million in 2017 with display applications leading the way.

    Emerging conductive ink and paste technologies face entrenched material platforms and must use technical limitations of the incumbents to grow in early markets
    Conductive inks and pastes will grow to $2.5 billion, but silver alternatives will stumble outside of solar; ITO replacements will hit $705 million and semiconductors lag at $68 million.

Lead Analyst

Jonathan Melnick, Ph.D.
+1 (617) 502-5324


Venture capitalists have invested $7.4 billion in printed, flexible, and organic electronics technologies. However, the investment landscape and guiding principles by which VCs direct their investments are shifting as some technologies become overfunded while others become gold mines. Lux Research analyzed every dollar by the technology into which it was invested to understand how investors’ views on these areas have evolved, and further analyzed $4.9 billion in exits to see where VCs are profiting. Based on this data, we identified three specific technologies which now offer the strongest opportunity for investors, and filtered out those which have been overfunded. Finally, we identified which investors are trendsetters, shaping the future of the industry, and which have mis-allocated their portfolios. This webinar will examine:

  • Investment in printed, flexible, and organic electronics technologies including displays, transparent conductive films, smart packaging, thin film batteries, and organic photovoltaics
  • Which technology families and specific technologies within those families have received the most investment, and how that investment has trended in recent years
  • Which investment strategies have been the most successful, ranking investors to determine which have allocated their investments to technologies offering the greatest opportunity