Nanotechnology Solar Cell Applications – Graphene-Based Materials


By Michael Berger. Copyright © Nanowerk

longpredicte(Nanowerk Spotlight) Graphene-based nanomaterials have  many promising applications in energy-related areas. In particular, there are  four major energy-related areas where graphene will have an impact: solar cells,  supercapacitors, lithium-ion batteries, and catalysis for fuel cells (read more:  “Graphene-based  nanotechnology in energy applications”).

 

 

The extremely high electron mobility of graphene – under ideal  conditions electrons move through it with roughly 100 times the mobility they  have in silicon – combined with its superior strength and the fact that it is  nearly transparent (2.3 % of light is absorbed; 97.7 % transmitted), make it an  ideal candidate for photovoltaic applications. It could be a promising  replacement material for indium tin oxide (ITO), the current standard material  for transparent electrodes used for electrodes in LCD displays, solar cells,  iPad and smart-phone touch screens, and organic light-emitting diode (OLED)  displays for televisions and computer monitors.

Just yesterday, for instance, there was a report (“Nanotechnology  researchers make major leap towards graphene for solar cells”) that shows  that graphene retains its impressive set of properties when it is coated with a  thin silicon film. These findings pave the way for entirely new possibilities to  use in thin-film photovoltaics.

A new review in Advanced Energy Materials (“Graphene-Based Materials for Solar Cell  Applications”) by a team of scientists from Nanyang Technological  University, led by Prof. Hua Zhang, provides an overview of the recent  research on graphene and its derivatives, with a particular focus on synthesis,  properties, and applications in solar cells.

organic solar cell fabricated with graphene as anodic electrode

 

Schematic representation of the energy level alignment (top) and the  construction of heterojunction organic solar cell fabricated with graphene as  anodic electrode: graphene/PEDOT/CuPc/C60/BCP/Al.  (©Wiley-VCH Verlag)  

With the unique properties, i.e., highly optical transparence,  highly electrical conduction, and mechanical flexibility, graphene and its  derivatives have been investigated extensively in the field of solar cells. The review looks in detail at some of the impressive results  that have been reported where graphene was used as the electrodes, i.e.:

  • –transparent  anodes
  • –non-transparent  anodes
  • –transparent  cathodes
  • –catalytic  counter electrodes

as well as where graphene was used as the active layer, i.e.:

  • –light  harvesting material
  • –Schottky  junction
  • –electron  transport layer
  • –hole  transport layer
  • –both  hole and electron transport layer
  • –and  interfacial layer in the tandem configuration.

Summing up their review, the authors conclude that it is  promising that graphene, as the transparent electrode material, has exhibited  superiority in that it is highly flexible, an abundant carbon source, and has  high thermal/chemical stability, compared to the traditional ITO. In particular,  the flexible transparent electrodes show applications not only in solar cells,  but also in flexible touch screens, displays, printable electronics, flexible  transistors, memories, etc.

transfer process of CVD-graphene onto transparent substrate

Schematic illustration of the transfer process of CVD-graphene onto  transparent substrate. (©Wiley-VCH Verlag)  

 

“In addition to working as transparent electrodes, graphene,  graphene oxide (GO), and their derivatives show many other important  applications that include being electron/hole transporters and serving as  interfacial layers and Schottky junction layers in photovoltaics devices,” write  the authors. “Two-dimensional (2D) graphene oxide is capable of π-π stacking and  hydrogen bonding. This makes it possible to use such a 2D scaffold as the  template to self-assemble GO-based novel inorganic, organic, and  inorganic-organic hybrids with multifunctionalities for applications in  photovoltaics.”

“On the other hand, to enrich the application of graphene,  processes on bandgap opening have always attracted the attention of scientists.  To date, many methods have been investigated to engineer the band structure of  graphene, including inducing a quantum confinement effect by reduction of  graphene lateral size to form nanoribbons or nanomesh introducing foreign  elements, and employing a strain effect from the substrate.

 

We believe that  graphene will play more and more important roles in solar cells and other  fields, such as energy storage, optoelectronics, electrics and sensing, in the  near future.”
Read more: http://www.nanowerk.com/spotlight/spotid=32691.php#ixzz2i7UENfhw

Nanotechnology for solar cell applications – graphene-based materials


By Michael Berger. Copyright © Nanowerk

longpredicte(Nanowerk Spotlight) Graphene-based nanomaterials have  many promising applications in energy-related areas. In particular, there are  four major energy-related areas where graphene will have an impact: solar cells,  supercapacitors, lithium-ion batteries, and catalysis for fuel cells (read more:  “Graphene-based  nanotechnology in energy applications”).

The extremely high electron mobility of graphene – under ideal  conditions electrons move through it with roughly 100 times the mobility they  have in silicon – combined with its superior strength and the fact that it is  nearly transparent (2.3 % of light is absorbed; 97.7 % transmitted), make it an  ideal candidate for photovoltaic applications.

It could be a promising  replacement material for indium tin oxide (ITO), the current standard material  for transparent electrodes used for electrodes in LCD displays, solar cells,  iPad and smart-phone touch screens, and organic light-emitting diode (OLED)  displays for televisions and computer monitors.

Just yesterday, for instance, there was a report (“Nanotechnology  researchers make major leap towards graphene for solar cells”) that shows  that graphene retains its impressive set of properties when it is coated with a  thin silicon film. These findings pave the way for entirely new possibilities to  use in thin-film photovoltaics.

A new review in Advanced Energy Materials (“Graphene-Based Materials for Solar Cell  Applications”) by a team of scientists from Nanyang Technological  University, led by Prof. Hua Zhang, provides an overview of the recent  research on graphene and its derivatives, with a particular focus on synthesis,  properties, and applications in solar cells.

 

     organic solar cell fabricated with graphene as anodic electrode

Schematic representation of the energy level alignment (top) and the  construction of heterojunction organic solar cell fabricated with graphene as  anodic electrode: graphene/PEDOT/CuPc/C60/BCP/Al.  (©Wiley-VCH Verlag)   With the unique properties, i.e., highly optical transparence,  highly electrical conduction, and mechanical flexibility, graphene and its  derivatives have been investigated extensively in the field of solar cells.   

The review looks in detail at some of the impressive results  that have been reported where graphene was used as the electrodes, i.e.:

  • –transparent  anodes
  • –non-transparent  anodes
  • –transparent  cathodes
  • –catalytic  counter electrodes

as well as where graphene was used as the active layer, i.e.:

  • –light  harvesting material
  • Schottky  junction
  • –electron  transport layer
  • –hole  transport layer
  • –both  hole and electron transport layer
  • –and  interfacial layer in the tandem configuration.

Summing up their review, the authors conclude that it is  promising that graphene, as the transparent electrode material, has exhibited  superiority in that it is highly flexible, an abundant carbon source, and has  high thermal/chemical stability, compared to the traditional ITO. In particular,  the flexible transparent electrodes show applications not only in solar cells,  but also in flexible touch screens, displays, printable electronics, flexible  transistors, memories, etc.

 

.            transfer process of CVD-graphene onto transparent substrate

 

Schematic illustration of the transfer process of CVD-graphene onto  transparent substrate. (©Wiley-VCH Verlag)  

 

“In addition to working as transparent electrodes, graphene,  graphene oxide (GO), and their derivatives show many other important  applications that include being electron/hole transporters and serving as  interfacial layers and Schottky junction layers in photovoltaics devices,” write  the authors. “Two-dimensional (2D) graphene oxide is capable of π-π stacking and  hydrogen bonding. This makes it possible to use such a 2D scaffold as the  template to self-assemble GO-based novel inorganic, organic, and  inorganic-organic hybrids with multifunctionalities for applications in  photovoltaics.”

“On the other hand, to enrich the application of graphene,  processes on bandgap opening have always attracted the attention of scientists.  To date, many methods have been investigated to engineer the band structure of  graphene, including inducing a quantum confinement effect by reduction of  graphene lateral size to form nanoribbons or nanomesh introducing foreign  elements, and employing a strain effect from the substrate. We believe that  graphene will play more and more important roles in solar cells and other  fields, such as energy storage, optoelectronics, electrics and sensing, in the  near future.”

Read more: http://www.nanowerk.com/spotlight/spotid=32691.php#ixzz2hLLeHzxN

Flexible OLED/ QLED Screen Markets to Reach $72B by 2016


QDOTS imagesCAKXSY1K 8The touted arrival this year of wearable gadgets such as computer displays strapped to wrists and in wrap-around glasses is just a step towards a bigger revolution in screens — those that can be bent, folded and rolled up.

Once freed from today’s relatively heavy, breakable and fixed glass displays, tomorrow’s devices may look very different, with screens that can be rolled out, attached to uneven surfaces, or even stretched. But there’s still some way to go.

“It becomes a product designer’s paradise — once the technology is sorted out,” says Jonathan Melnick, who analyzes display technology for Lux Research.

There is no shortage of prototypes. South Korea’s Samsung Electronics this year showed off a display screen that extends from the side of a device — but obstacles remain: overcoming technical issues, figuring out how to mass produce parts cheaply, and coming up with devices compelling enough for gadget buyers.

Screen technology — with the global small display market expected to more than double to around $72 billion by 2016, according to DisplaySearch — is still dominated by liquid crystal displays (LCDs), which require a backlight and sit between two sheets of glass, making the screen a major contributor to the weight of a device, from laptops to tablets.

“Most of the weight in a tablet is the glass structure in the display and the support structure around it to prevent it from cracking,” said Kevin Morishige, a former engineer at Cisco, Hewlett-Packard and Palm.

LCD’s dominance is already under threat from lighter Organic Light Emitting Diodes (OLEDs) that don’t need backlighting, are brighter, offer a wider viewing angle and better color contrast — and can be printed onto a few layers.

From Gorilla to Willow

Glass, however, is getting lighter and more flexible.

Corning, whose toughened Gorilla glass became the screen of choice for many smartphones, will provide phones with curved glass edges as soon as this year. It is also now promoting Willow Glass, which can be as thin as a sheet of paper and is flexible enough to be wrapped around a device or structure. Initially, Willow will be used as a coating for products like solar panels, but it is eventually expected to create curved products.

Corning's Willow Glass

Corning’s Willow Glass

A key selling point for Willow is more efficient production which involves so-called roll-to-roll manufacturing, like a printing press, rather than today’s more costly batch manufacturing. But the commercialization of Willow as a flexible product is some way off, James Clappin, who heads Corning’s glass technology group, told Reuters.

And glass has its limits.

“You can bend it, but you can’t keep flexing it,” said Adrian Burden, a UK consultant who has worked on several start-ups related to display technology, and holds patents in the field. This means that while glass is likely to continue to play a leading role in devices with curved displays, screens that users can bend, fold and roll will likely be plastic.

But plastic is not as robust as glass. “As soon as you introduce plastic substrates you have all kinds of issues with sensitivity to the environment,” says Burden.

Plugging the leaks 

So while OLED and plastic would seem to be companion technologies they create an extra problem when laid together: they need so-called barrier films to prevent the various layers from leaking oxygen and moisture.

“There are barrier films in all sorts of products, for example food packaging, but the challenge is that OLED is one of the most sensitive materials we follow, and so creates huge challenges,” says Lux Research’s Melnick.

Singapore-based Tera-Barrier Films, for example, has developed a way to plug leaks in the layers using nanoparticles. Director Senthil Ramadas says that after years of delays the company last month started production in Japan and aims for mass production by end-2014.

“You have several challenges in the value chain,” he said. “All these things need to be established, and only now is it coming out.”

And there’s another problem: all the materials in a bendable display need to be bendable, too — including the transparent conductors that drive current through the display. Several technologies are vying to replace the brittle and expensive Indium Tin Oxide (ITO) used in most fixed displays, including nanowires, carbon nanotubes, graphene and conductive mesh.

Some of these technologies are close to production. Another Singapore-based firm, Cima Nanotech, for example, rolls a coating of silver-based conductive ink on a sheet which then self-aligns into a web of strands a few microns across that forms the conductive layer.

It’s unlikely such shifts in the underlying technologies will yield products immediately. For one thing, “prototypes can be made,” says Melnick, “but that’s a long way from mass production as many of the processes and material in these devices face big yield and scaling issues.”

On a roll

This is gradually changing, some in the industry say, as production shifts from making parts in batches of sheets to the more efficient roll-to-roll process. “Batch is more expensive and slower than roll-to-roll, which needs new equipment and design — and takes time,” said Ramadas at Tera-Barrier.

All this requires money, and manufacturers have to be convinced to invest in the new equipment.

Even after the success of Gorilla Glass, popularized by the iPhone, Corning is having to work hard to prepare customers for Willow displays. Clappin said customers want thinner devices and easier to produce glass, but Willow requires a completely different manufacturing set-up.

“When we talk about commercializing Willow a big part of our development activity is enabling the ecosystem to handle what is essentially a brand new material,” Clappin added. “Nobody’s accustomed to working with glass that bends and moves. It’s a new material. The ecosystem needs to be trained to handle it.”

He sees demand, particularly from video gamers, for Willow-based curved screens, but remains less convinced about rollable or foldable screens. “Conformable is in the near future. As far as flexible, bendable, fold-upable goes, I see that further out and I’m not even sure that’s a viable product,” he said.

For companies with deep pockets, like Samsung, this can mean building prototypes such as those displayed at international technology shows. But that doesn’t guarantee success in selling products. Sony, for example, promoted flexible OLED displays back in 2007. “Six years later they’ve not come up with anything,” says Zhang Jie, senior scientist at Singapore’s Institute of Metals Research and Engineering. “If Samsung’s going to really drive this the application really needs to drive people and make them want it.”

This slows down the process. In late 2011, Samsung told analysts it planned to introduce flexible displays into handsets “some time in 2012, hopefully the earlier part than later,”but a year later the company said the technology was still “under development.” In an investment note last month Jefferies said that while Samsung may introduce “unbreakable” screens this year, it didn’t expect to see flexible displays in Samsung devices until 2014-15.

Ultimately, teasing out the technical problems may be only half the battle.

“This is the eternal question of the speciality materials industry,” says Lutz Grubel, Japan-based head of marketing for German glass maker Schott’s Xensation Cover 3-D glass. “You have something, a material, and you’re looking for an application. That’s the game.”

For More Information On OLED/ QLED Markets go to this Wintergreen Research Report:

https://genesisnanotech.wordpress.com/2013/03/28/quantum-dot-and-quantum-dot-display-qled-market-shares-strategies-and-forecasts-worldwide-nanotechnology-2013-to-2019/

Flexible, light solar cells could provide new opportunities


QDOTS imagesCAKXSY1K 8David L. Chandler, MIT News Office
MIT researchers develop a new approach using graphene sheets coated with nanowires.
MIT researchers have produced a new kind of photovoltaic cell based on sheets of flexible graphene coated with a layer of nanowires. The approach could lead to low-cost, transparent and flexible solar cells that could be deployed on windows, roofs or other surfaces.

The new approach is detailed in a report published in the journal Nano Letters, co-authored by MIT postdocs Hyesung Park and Sehoon Chang, associate professor of materials science and engineering Silvija Gradečak, and eight other MIT researchers.Flexible, light solar cells could provide new opportunities

While most of today’s solar cells are made of silicon, these remain expensive because the silicon is generally highly purified and then made into crystals that are sliced thin. Many researchers are exploring alternatives, such as nanostructured or hybrid solar cells; indium tin oxide (ITO) is used as a transparent electrode in these new solar cells.

“Currently, ITO is the material of choice for transparent electrodes,” Gradečak says, such as in the touch screens now used on smartphones. But the indium used in that compound is expensive, while graphene is made from ubiquitous carbon.

The new material, Gradečak says, may be an alternative to ITO. In addition to its lower cost, it provides other advantages, including flexibility, low weight, mechanical strength and chemical robustness.

Building semiconducting nanostructures directly on a pristine graphene surface without impairing its electrical and structural properties has been challenging due to graphene’s stable and inert structure, Gradečak explains. So her team used a series of polymer coatings to modify its properties, allowing them to bond a layer of zinc oxide nanowires to it, and then an overlay of a material that responds to light waves — either lead-sulfide quantum dots or a type of polymer called P3HT.

Despite these modifications, Gradečak says, graphene’s innate properties remain intact, providing significant advantages in the resulting hybrid material.

“We’ve demonstrated that devices based on graphene have a comparable efficiency to ITO,” she says — in the case of the quantum-dot overlay, an overall power conversion efficiency of 4.2 percent — less than the efficiency of general purpose silicon cells, but competitive for specialized applications. “We’re the first to demonstrate graphene-nanowire solar cells without sacrificing device performance.”

In addition, unlike the high-temperature growth of other semiconductors, a solution-based process to deposit zinc oxide nanowires on graphene electrodes can be done entirely at temperatures below 175 degrees Celsius, says Chang, a postdoc in MIT’s Department of Materials Science and Engineering (DMSE) and a lead author of the paper. Silicon solar cells are typically processed at significantly higher temperatures.

The manufacturing process is highly scalable, adds Park, the other lead author and a postdoc in DMSE and in MIT’s Department of Electrical Engineering and Computer Science. The graphene is synthesized through a process called chemical vapor deposition and then coated with the polymer layers. “The size is not a limiting factor, and graphene can be transferred onto various target substrates such as glass or plastic,” Park says.

Gradečak cautions that while the scalability for solar cells hasn’t been demonstrated yet — she and her colleagues have only made proof-of-concept devices a half-inch in size — she doesn’t foresee any obstacles to making larger sizes. “I believe within a couple of years we could see [commercial] devices” based on this technology, she says.

László Forró, a professor at the Ecole Polytechnique Fédérale de Lausanne, in Switzerland, who was not associated with this research, says that the idea of using graphene as a transparent electrode was “in the air already,” but had not actually been realized.

“In my opinion this work is a real breakthrough,” Forró says. “Excellent work in every respect.”

He cautions that “the road is still long to get into real applications, there are many problems to be solved,” but adds that “the quality of the research team around this project … guarantees the success.”

The work also involved MIT professors Moungi Bawendi, Mildred Dresselhaus, Vladimir Bulovic and Jing Kong; graduate students Joel Jean and Jayce Cheng; postdoc Paulo Araujo; and affiliate Mingsheng Wang. It was supported by the Eni-MIT Alliance Solar Frontiers Program, and used facilities provided by the MIT Center for Materials Science Engineering, which is supported by the National Science Foundation.

Inking Money: The Prospects for Materials in Printed Electronics


Note To Readers: The Full Report is available to subscription holders of “LuxReserch”: https://portal.luxresearchinc.com/public_reports

In an additional note: We have learned that Lux will be interviewing one of the presenters at the “International Printed Electronics Conference (December 5, 2012)  an Advanced Materials/ Emerging Nano-Technology company we have been following for the last 3 years. Please see LuxResearch’s remarks, quote Lux Research analyzed every dollar by the technology into which it was invested to understand how investors’ views on these areas have evolved, and further analyzed $4.9 billion in exits to see where VCs are profiting” at the end of this article.  Cheers!  – BWH –

September 2012 | State of the Market Report

Printed electronics promises the ability to manufacture devices through low-cost, high-throughput manufacturing. However, to realize this potential, it requires the right materials and inks. We focus on three materials areas – opaque conductive inks and pastes, transparent conductors, and semiconductors, presenting a total opportunity of $2.6 billion in 2017. Opaque conductive inks will grow to $2.4 billion in 2017, with medical and RFID among the fastest-growing segments. However, silver paste will still dominate, and other materials will only find traction in solar applications. ITO replacement transparent conductive films will grow to $705 million, with $112 million coming from the inks, but the majority of this market will come from a single application, smartphone touch screens, leading to a wide range of potential growth scenarios. Printed semiconductors will grow to $68 million in 2017 with display applications leading the way.

  • LANDSCAPE
    Emerging conductive ink and paste technologies face entrenched material platforms and must use technical limitations of the incumbents to grow in early markets
  • ANALYSIS
    Conductive inks and pastes will grow to $2.5 billion, but silver alternatives will stumble outside of solar; ITO replacements will hit $705 million and semiconductors lag at $68 million.
  • OUTLOOK
  • ENDNOTES

Lead Analyst

Jonathan Melnick, Ph.D.
Analyst
+1 (617) 502-5324

Contributors

Venture capitalists have invested $7.4 billion in printed, flexible, and organic electronics technologies. However, the investment landscape and guiding principles by which VCs direct their investments are shifting as some technologies become overfunded while others become gold mines. Lux Research analyzed every dollar by the technology into which it was invested to understand how investors’ views on these areas have evolved, and further analyzed $4.9 billion in exits to see where VCs are profiting. Based on this data, we identified three specific technologies which now offer the strongest opportunity for investors, and filtered out those which have been overfunded. Finally, we identified which investors are trendsetters, shaping the future of the industry, and which have mis-allocated their portfolios. This webinar will examine:

  • Investment in printed, flexible, and organic electronics technologies including displays, transparent conductive films, smart packaging, thin film batteries, and organic photovoltaics
  • Which technology families and specific technologies within those families have received the most investment, and how that investment has trended in recent years
  • Which investment strategies have been the most successful, ranking investors to determine which have allocated their investments to technologies offering the greatest opportunity

A*STAR’S IMRE AND CIMA NANOTECH TO DEVELOP MATERIALS FOR NEXT GENERATION TRANSPARENT CONDUCTORS


(JCN) – A*STAR’s Institute of Materials Research and Engineering (IMRE) and Cima NanoTech, a US multinational company, have signed an agreement to jointly work on new sustainable nanomaterials, processes and devices for transparent conductors used to make cheaper and more efficient electronics and organic solar cells.

IMRE and Cima NanoTech are collaborating to develop new transparent conductive materials and components, based on Cima’s SANTE(TM) Technology and IMRE’s know-how in printed electronics. These innovations will enable efficient conductive interfaces with high transparency, which can be developed into low cost and high performance products for displays, organic solar cells, and flexible electronics.

Conventional Indium Tin Oxide (ITO) and Transparent Conductive Oxides (TCO) used in today’s solar cells, OLEDs, flat panel TVs, and touchscreen displays have limitations in conductivity, flexibility, and cost. These new materials and processes that IMRE and Cima are developing will potentially enable faster response touch screens for large flexible displays and reduce production cost.

“Cima is particularly interested in IMRE’s extensive electronics materials systems and device fabrication capabilities, said Mr Jon Brodd, Cima NanoTech’s Chief Executive Officer (Singapore). IMRE and CIMA are working together to develop enabling nanotechnology materials, components, and processing methods to support new market applications in transparent conductors and printed electronics with SANTE, Cima NanoTech’s self aligning nanoparticle network.

“We are collaborating with Cima to develop new transparent conductor applications that will lead to cheaper, flexible, more eco-friendly and sustainable products,” said Dr Zhang Jie, the key scientist leading IMRE’s printed electronics initiative. The research team will develop applications using novel, sustainable transparent conductor materials as an alternative to conventional ITO-based materials.

“Innovations in materials R&D are crucial in evolving today’s devices into new products with tomorrow’s technology. IMRE’s research portfolio covers the entire printed electronics value chain that includes materials, processes, optimisation and reliability testing for integrated printed electronics prototypes. I am glad that we can present a diverse suite of capabilities in partnering Cima in the area of transparent conductors and printed electronics,” said Prof Andy Hor, IMRE’s Executive Director.

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore’s lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy. In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry. A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories. Please visit www.a-star.edu.sg

About Cima NanoTech Inc

Cima NanoTech is an advanced nanomaterials company that has developed SANTE(TM), our self aligning silver nanoparticle network. SANTE Technology provides ultra low conductivity at high transparency as well as flexibility in a low cost, clean manufacturing process. SANTE Technology was a World Economic Forum Technology Pioneer Award Winner, and top 10 Greentech/Cleantech recipient. SANTE is used for applications like Electromagnetic Interference (EMI) shielding, Touch Displays, Photovoltaic, OLED Lighting, Flexible Displays, and other electronic applications. Cima NanoTech’s headquarters is in the United States with business development centers in Japan, Korea, Taiwan, Israel and Singapore. Cima NanoTech’s Asia Headquarters & Product Development lab is located at the new CleanTech One building in Singapore. Production is also done at manufacturing facilities in Israel, Japan, and Korea. Please visit www.cimananotech.com for more information.

Source: A*STAR

Contact: Mr Eugene Low Manager, Corporate Communications for Institute of Materials Research and Engineering (IMRE) DID: +65 6874 8491 Mobile: +65 9230 9235 Email: loweom@scei.a-star.edu.sg Ms Kelly Ingham Vice President of Marketing Cima NanoTech Pte Ltd DID: +65 6570 2018 Mobile: +65 97291434 Email:kingham@Cimananotech.com For technical enquiries, please contact: Dr Zhang Jie Senior Scientist III and Manager for SERC Printed Electronics Programme Institute of Materials Research and Engineering (IMRE) DID: +65 6874 4339 E-mail: zhangj@imre.a-star.edu.sg