Why India Needs Nanotechnology Regulation Before it is Too Late

India Nano 8031813630_ca12c09b85_k

“For us (India) to fully harness the advances made in nanotechnology and consolidate our leadership in the field, we must work towards building a regulatory framework encompassing public safety.” – Prateek Sibal

India ranks third in the number of research publications in nanotechnology, only after China and the US. This significant share in global nanotech research is a result of sharp focus by the Department of Science and Technology (DST) to research in the field in the country. The unprecedented funding of Rs 1,000 crore for the Nano Mission was clearly dictated by the fact that India had missed the bus on the micro-electronic revolution of the 1970s and its attendant economic benefits that countries like China, Taiwan and South Korea continue to enjoy to this day.

At the same time, the success of the Nano Mission is not limited to research but also involves training the required human resource for further advancement in the field. An ASSOCHAM and TechSci Research study reported in 2014: “From 2015 onwards, global nanotechnology industry would require about two million professionals and India is expected to contribute about 25% professionals in the coming years.”

A missing element in India’s march towards becoming a nanotechnology powerhouse is the lack of focus on risk analysis and regulation. A survey of Indian practitioners working in the area of nano-science and nanotechnology research showed that 95% of the practitioners recognised ethical issues in nanotech research. Some of these concerns relate to the possibly adverse effects of nanotechnology on the environment and humans, their use as undetectable weapon in warfare, and the incorporation of nano-devices as performance enhancers in human beings.

One reason for lack of debate around ethical, and public-health and -safety, concerns around new technologies could be the exalted status that science and its practitioners enjoy in the country. A very successful space program and a largely indigenous nuclear program has ensured that policymakers spend much of their time feting achievements of Indian science than discussing the risks associated with new technologies or improving regulation.

It is not surprising then that products like silver-nano washing machines or insecticides with nanoparticles continue to be sold in the Indian market without any analysis of the risk associated with their use. This – despite the fact that the government itself has acknowledged that nanoparticles of sizes comparable to that of human cells can be deposited in lungs and “may cause damage by acting directly at the site of deposition by translocating to other organs or by being absorbed through the blood.”

A study by the Massachusetts Institute of Technology, Boston, on the toxicity of nano-materials found that carbon nanoparticles inhaled by rats “reached the olfactory bulb and also the cerebrum and cerebellum, suggesting that translocation to the brain occurred through the nasal mucosa along the olfactory nerve to the brain.” This ability to translocate opens up questions about the effect different types of nanoparticles could have on human health.

Many commonly used products have nanoparticles; for instance, titanium dioxide nanoparticles are widely used in sunscreens and cosmetics as sun-protection. In the US, the National Institute of Occupational Safety and Health has issued safe occupational exposure limit of 0.1 mg/m3 for nanoscale titanium dioxide. This was after reports of incidences of lung cancer in rats at doses of 10 mg/m3 and above surfaced. There is also a concern that nano-scale titanium dioxide particles have higher photo-reactivity than coarser particles, and may generate free radicals that can damage cells.

The challenge that remains in front of policymakers is that of regulating a field where vast areas of knowledge are still being investigated and are unknown. In this situation, over-regulation may end up stifling further development while under-regulation could expose the public to adverse health effects. Further, India’s lack of investment in risk studies only sustains the lull in the policy establishment when it comes to nanotech regulations.

The Energy and Resources Institute has extensively studied regulatory challenges posed by nanotechnology and advocates that an “incremental approach holds out some promise and offers a reconciliation between the two schools- one advocating no regulation at present given the uncertainty and the other propounding a stand-alone regulation for nanotechnology.”

Kesineni Srinivas, the Member of Parliament from Vijayawada, has taken cognisance of the need for incremental regulation in nanotechnology from the view point of public health and safety. (Disclosure: The author worked with the Vijayawada MP on drafting the legislation on nanotechnology regulation, introduced in the winter session of Parliament, 2015.)

In December 2015, Srinivas introduced the Insecticides (Amendment) Bill in the Lok Sabha to grant only a provisional registration to insecticides containing nanoparticles with a condition that “it shall be mandatory for the manufacturer or importer to report any adverse impact of the insecticide on humans and environment in a manner specified by the Registration Committee.” This is an improvement over the earlier process of granting permanent registration to insecticides. However, the fate of the bill remains uncertain as only 14 private member bills have been passed in Parliament since the first Lok Sabha in 1952.

More recently, the DST released the ‘Guidelines and best practices for safe handling of nano-materials in research laboratories and industries’. The guidelines which are precautionary in nature lay out methods for safe handling and disposal of nanoparticles by researchers and the industry. Though much delayed, it is a welcome step towards safer nanotechnology research in India.

For us to fully harness the advances made in nanotechnology and consolidate our leadership in the field, we must work towards building a regulatory framework encompassing public safety. Without such a provision, any mishap or catastrophe precipitated by the use of nanotechnology could leave a great opportunity out of our reach.

Prateek Sibal will be joining Sciences Po (the Paris Institute of Political Sciences), Paris, as a Charpak Scholar in 2016.

Silver Nanoparticles Could Give Millions Microbe-free Drinking Water

Silver Nano P clean-drinking-water-indiaChemists at the Indian Institute of Technology Madras have developed a portable, inexpensive water filtration system that is twice as efficient as existing filters. The filter doubles the well-known and oft-exploited antimicrobial effects of silver by employing nanotechnology. The team, led by Professor Thalappil Pradeep, plans to use it to bring clean water to underserved populations in India and beyond.

Left alone, most water is teeming with scary things. A recent study showed that your average glass of West Bengali drinking water might contain E. coli, rotavirus, cryptosporidium, and arsenic. According to the World Health Organization, nearly a billion people worldwide lack access to clean water, and about 80% of illnesses in the developing world are water-related. India in particular has 16% of the world’s population and less than 3% of its fresh water supply. Ten percent of India’s population lacks water access, and every day about 1,600 people die of diarrhea, which is caused by waterborne microbes.


Microbe-free drinking water is hard to come by in many areas of India.

Pradeep has spent over a decade using nanomaterials to chemically sift these pollutants out. He started by tackling endosulfan, a pesticide that was hugely popular until scientists determined that it destroyed ozone and brain cells in addition to its intended insect targets. Endosulfan is now banned in most places, but leftovers persist in dangerous amounts. After a bout of endosulfan poisoning in the southwest region of Kerala, Pradeep and his colleagues developed a drinking water filter that breaks the toxin down into harmless components. They licensed the design to a filtration company, who took it to market in 2007. It was “the first nano-chemistry based water product in the world,” he says.

But Pradeep wanted to go bigger. “If pesticides can be removed by nanomaterials,” he remembers thinking, “can you also remove microbes without causing additional toxicity?” For this, Pradeep’s team put a new twist on a tried-and-true element: silver.

Silver’s microbe-killing properties aren’t news—in fact, people have known about them for centuries, says Dr. David Barillo, a trauma surgeon and the editor of a recent silver-themed supplement of the journal Burns.

“Alexander the Great stored and drank water in silver vessels when going on campaigns” in 335 BC, he says, and 19th century frontier-storming Americans dropped silver coins into their water barrels to suppress algae growth. During the space race, America and the Soviet Union both developed silver-based water purification techniques (NASA’s was “basically a silver wire sticking in the middle of a pipe that they were passing electricity through,” Barillo says). And new applications keep popping up: Barillo himself pioneered the use of silver-infused dressings to treat wounded soldiers in Afghanistan. “We’ve really run the gamut—we’ve gone from 300 BC to present day, and we’re still using it for the same stuff,” he says.

No one knows exactly how small amounts of silver are able to kill huge swaths of microbes. According to Barillo, it’s probably a combination of attacks on the microbe’s enzymes, cell wall, and DNA, along with the buildup of silver free radicals, which are studded with unpaired electrons that gum up cellular systems. These microbe-mutilating strategies are so effective that they obscure our ability to study them, because we have nothing to compare them to. “It’s difficult to make something silver-resistant, even in the lab where you’re doing it intentionally,” Barillo says.

But unlike equal-opportunity killers like endosulfan, silver knocks out the monsters and leaves the good guys alone. In low concentrations, it’s virtually harmless to humans. “It’s not a carcinogen, it’s not a mutagen, it’s not an allergen,” Barillo says. “It seems to have no purpose in human physiology—it’s not a metal that we need to have in our bodies like copper or magnesium. But it doesn’t seem to do anything bad either.”

Though silver’s mysterious germ-killing properties are old news, Pradeep is taking advantage of them in new ways. The particles his team works with are less than 50 nanometers long on any one side—about four times smaller than the smallest bacteria. Working at this level allows him greater control over desired chemical reactions, and the ability to fine-tune his filters to improve efficiency or add specific effects. Two years ago, his team developed their biggest hit yet—a combination filter that kills microbes with silver and breaks down chemical toxins with other nanoparticles. It’s portable, works at room temperature, and doesn’t require electricity. Pradeep is working with the government to make these filters available to underserved communities. Currently 100,000 households have them; “by next year’s end,” he hopes, “it will reach 600,000 people.”

The latest filter goes one better: it “tunes” the silver with carbonate, a negatively-charged ion that strips protective proteins from microbe cell membranes. This leaves the microbes even more vulnerable to silver’s attack. “In the presence of carbonate, silver is even more effective,” he explains, so he can use less of it: “Fifty parts per billion can be brought down to [25].” Unlike the earlier filter, this one kills viruses, too—good news, since according to the National Institute of Virology, most do not.

Going from 50 parts per billion of silver to 25 may not seem like a huge leap. But for Pradeep—who aims to help a lot of people for a long time—every little bit counts. Filters that contain less silver are less expensive to produce. This is vital if you want to keep costs low enough for those who need them most to buy them, or to entice the government into giving them away. He estimates that one of his new filter units will cost about $2 per year, proportionately less than what the average American pays for water.

Using less silver also improves sustainability. “Globally, silver is the most heavily used nanomaterial,” Pradeep says, and it’s not renewable: anything we use “is lost for the world.” If all filters used his carbonate trick, he points out, we could make twice as many of them before we run out of raw materials—and even more if, as he hopes, his future tunings bring the necessary amount down further. This will become especially important if his filters catch on in other places with no infrastructure and needy populations. “Ultimately, I want to use the very minimum quantity of silver,” he says.

“Pradeep’s work shows enormous potential,” says Dr. Theresa Dankovich, a water filtration expert at the University of Virginia’s Center for Global Health. But, she points out, “carbonate anions are naturally occurring in groundwater and surface waters,” so “it warrants further study to determine how they are already enhancing the effect of silver ions and silver nanoparticles,” even without purposeful manipulation by chemists. Others see potential shortcomings. James Smith, a professor of environmental engineering at the University of Virginia and the inventor of a nanoparticle-coated clay filtering pot, worries that the nanotech-heavy production process “would not allow for manufacturing in a developing world setting,” especially if Pradeep’s continuous tweaking of the model deters large-scale companies from actually producing it.

Nevertheless, Pradeep plans to continue scaling up. “If you can provide clean water, you have provided a solution for almost everything,” he says. When you have the lessons of history and the technology of the future, why settle for anything less?

Rice Universitiy’s James Tour Creates “Graphene NanoRibbons” for ‘NG Tank Applications’ .. Even Food and Beverage Packaging

Rice University mix of graphene nanoribbons, polymer has potential for cars, soda, beer 

Nanotubes imagesHOUSTON – (Oct. 10, 2013) – A discovery at Rice University aims to make vehicles that run on compressed natural gas more practical. It might also prolong the shelf life of bottled beer and soda.

The Rice lab of chemist James Tour has enhanced a polymer material to make it far more impermeable to pressurized gas and far lighter than the metal in tanks now used to contain the gas.

The combination could be a boon for an auto industry under pressure to market consumer cars that use cheaper natural gas. It could also find a market in food and beverage packaging.

Tour and his colleagues at Rice and in Hungary, Slovenia and India reported their results this week in the online edition of the American Chemistry Society journal ACS Nano.

By adding modified, single-atom-thick graphene nanoribbons (GNRs) to thermoplastic polyurethane (TPU), the Rice lab made it 1,000 times harder for gas molecules to escape, Tour said. That’s due to the ribbons’ even dispersion through the material. Because gas molecules cannot penetrate GNRs, they are faced with a “tortuous path” to freedom, he said.

The researchers acknowledged that a solid, two-dimensional sheet of graphene might be the perfect barrier to gas, but the production of graphene in such bulk quantities is not yet practical, Tour said.

But graphene nanoribbons are already there. Tour’s breakthrough “unzipping” technique for turning multiwalled carbon nanotubes into GNRs, first revealed in Nature in 2009, has been licensed for industrial production. “These are being produced in bulk, which should also make containers cheaper,” he said.

The researchers led by Rice graduate student Changsheng Xiang produced thin films of the composite material by solution casting GNRs treated with hexadecane and TPU, a block copolymer of polyurethane that combines hard and soft materials. The tiny amount of treated GNRs accounted for no more than 0.5 percent of the composite’s weight. But the overlapping 200- to 300-nanometer-wide ribbons dispersed so well that they were nearly as effective as large-sheet graphene in containing gas molecules. The GNRs’ geometry makes them far better than graphene sheets for processing into composites, Tour said.

They tested GNR/TPU films by putting pressurized nitrogen on one side and a vacuum on the other side. For films with no GNRs, the pressure dropped to zero in about 100 seconds as nitrogen escaped into the vacuum chamber. With GNRs at 0.5 percent, the pressure didn’t budge over 1,000 seconds, and it dropped only slightly over more than 18 hours.

Stress and strain tests also found that the 0.5 percent ratio was optimal for enhancing the polymer’s strength.

“The idea is to increase the toughness of the tank and make it impermeable to gas,” Tour said. “This becomes increasingly important as automakers think about powering cars with natural gas. Metal tanks that can handle natural gas under pressure are often much heavier than the automakers would like.”

He said the material could help to solve long-standing problems in food packaging, too.

“Remember when you were a kid, you’d get a balloon and it would be wilted the next day? That’s because gas molecules go through rubber or plastic,” Tour said. “It took years for scientists to figure out how to make a plastic bottle for soda. Once, you couldn’t get a carbonated drink in anything but a glass bottle, until they figured out how to modify plastic to contain the carbon dioxide bubbles. And even now, bottled soda goes flat after a period of months.

“Beer has a bigger problem and, in some ways, it’s the reverse problem,” he said. “Oxygen molecules get in through plastic and make the beer go bad.” Bottles that are effectively impermeable could lead to brew that stays fresh on the shelf for far longer, Tour said.

Co-authors of the paper are Rice graduate students Daniel Hashim, Zheng Yan, Zhiwei Peng, Chih-Chau Hwang, Gedeng Ruan and Errol Samuel; Rice alumnus Paris Cox; Bostjan Genorio, a former postdoctoral researcher at Rice and now an assistant professor at the University of Ljubljana, Slovenia; Akos Kukovecz, an associate professor of chemistry, and Zóltan Kónya, a researcher, both at the University of Szeged, Hungary; Parambath Sudeep, a research scholar at Cochin University of Science and Technology, India; Rice senior faculty fellow Robert Vajtai; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry at Rice. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice.

The Air Force Research Laboratory through the University Technology Corp., the Office of Naval Research MURI graphene program and the Air Force Office of Scientific Research MURI program supported the research.


Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nn404843n

Follow Rice News and Media Relations via Twitter @RiceUNews

$100 Trillion for Solar Investment Revealed at Intersolar North America

QDOTS imagesCAKXSY1K 8To get into the marketplace, solar needs “a tradable liquid product.”

Herman K. Trabish: July 12, 2013



There is $100 trillion looking for a good solar investment, according to NREL Senior Finance Analyst Michael Mendelsohn. The only obstacle is perceived risk.

Fund money — pension funds, insurance funds, mutual funds, sovereign wealth funds, private equity funds, hedge funds, exchange traded funds (ETFs), and private wealth — isn’t coming to solar and other renewable energies because “we need a tradable liquid product,” Mendelsohn said in an opening day session at Intersolar North America 2013 in San Francisco.

Risk is an obstacle for solar, explained New Oak Founder/CEO Ron D’Vari, because markets are characterized by “short memory and fear.”

Strategies for reducing perceived risk are proliferating. TruSolar’s industry-wide undertaking aims to include every possible risk input, currently numbering over 400 factors, into a score that qualifies and prices a solar project’s risk in every dimension of the value chain.

Indicative of the way solar finance is changing, a survey by truSolar of project originators with over 2 gigawatts’ worth of cumulative installed capacity and 5 gigawatts of pipeline capacity found that 80 percent do not expect current tax equity leaders will be tomorrow’s solar finance leaders.

Less ambitious efforts to quantify and characterize risk are the Mercatus software platform and Wiser Capital’s WASR rating system. Mercatus’ online application scores projects in eight categories to create a FICO-like score and opens up a digital deal room for project developers and investment bankers. Wiser Capital’s rating system quantifies risk for community banks looking to invest in community solar.

In a more traditional approach to risk, solar manufacturer and distributor aleo solar North America will offer one-call warranty resolution for its solar modules through solar project insurer Assurant. Aimed at residential rooftop solar-system owners, Assurant’s warranty management is intended to eliminate consumer concerns by providing a single point of contact for any warranty-related claim. Less consumer risk should, Assurant believes, translate into more solar adoption.

But that is just the beginning, Mendelsohn said. To transition away from the investment tax credit (ITC) and traditional equity finance, the solar industry needs to expand the availability of capital.

To sustain its growth, solar must double available capital by 2020. “The only way to get there is public markets,” Mendelsohn said. Vehicles will likely include master limited partnerships, real estate investment trusts (REITs), asset-backed securitization, credit enhancements like tax credits and loan guarantees, and first loss provisions like co-investment or public mezzanine investment.

Mendelsohn expressed ambivalence about the much-discussed REITs because qualifying for them might disqualify solar projects from eligibility for accelerated depreciation and the ITC, incentives that have won solar much traditional tax equity backing. Securitization, on the other hand, holds much promise, Mendelsohn said.

Securitization is going to be a part of this business,” agreed Capital Fusion Partners CEO John Joshi, “but not a panacea. And I’m not a believer in first loss vehicles. That’s not the way to go. Fannie and Freddie are the perfect examples. If you don’t believe in your portfolio, I don’t want anything going to you.”

To qualify for the big money, Mendelsohn said, solar must standardize the documents associated with finance and build robust data sets that eliminate perceived risk.

The final product must be a tradable liquid asset that earns the approval of credit rating agencies.

Astonfield Renewables’s Osiyan Project earned just that kind of recognition from CRISIL, India’s version of a Standard & Poor’s-type credit rating agency. As announced at Intersolar, the 5-megawatt thin film installation was rated A- by CRISIL, the first A-level rating ever earned by a solar project and a landmark in the Jawaharlal Nehru National Solar Mission‘s (JNNSM) drive toward 20,000 megawatts of grid-connected solar by 2022.

The Astonfield project’s European-manufactured T-Cell modules, though no longer allowed under new local content requirements, have set a reliability standard for India’s emerging domestic PV manufacturers. The project’s 25-year power purchase agreement with NTPC Vidyut Vyapar Nigam, the JNNSM-approved national utility, promises secure long-term returns.

“The credit rating shows the project’s ability to pay back investors,” an Astonfield representative noted. “And India needs foreign investors.”

Tags: asset backed securities, data, etfs, exchange traded funds, intersolar north america, jnnsm, master limited partnerships, mlp, mutual funds, nrel, pension funds, private equity funds, real estate investment trust, reit, risk

Solar Energy: Grid Parity In India, Italy, and More to Come in 2014

QDOTS imagesCAKXSY1K 8Deutsche Bank just released new analyses concluding that the global solar market will become sustainable on its own terms by the end of 2014, no longer needing subsidies to continue performing.



The German-based bank said that rooftop solar is looking especially robust, and sees strong demand in solar markets in India, China, Britain, Germany, India, and the United States. As a result, Deutsche Bank actually increased its forecast for solar demand in 2013 to 30 gigawatts — a 20 percent increase over 2012.

Here’s Renew Economy with a summary of Deutsche Banks’s logic:

The key for Deutsche is the emergence of unsubsidised markets in many key countries. It points, for instance, to India, where despite delays in the national solar program, huge demand for state based schemes has produced very competitive tenders, in the [12 cents per kilowatt hour] range. Given the country’s high solar radiation profile and high electricity prices paid by industrial customers, it says several conglomerates are considering large scale implementation of solar for self consumption.

Grid parity has been reached in India even despite the high cost of capital of around 10-12 percent,” Deutsche Bank notes, and also despite a slight rise  in module prices of [3 to 5 cents per kilowatt] in recent months (good for manufacturers).

Italy is another country that appears to be at grid parity, where several developers are under advanced discussions to develop unsubsidized projects in Southern Italy. Deutsche Bank says that for small commercial enterprises that can achieve 50 percent or more self consumption, solar is competitive with grid electricity in most parts of Italy, and commercial businesses in Germany that have the load profile to achieve up to 90 percent self consumption are also finding solar as an attractive source of power generation.

Deutsche bank says demand expected in subsidised markets such as Japan and the UK, including Northern Ireland, is expected to be strong, the US is likely to introduce favourable legislation, including giving solar installations the same status as real estate investment trusts, strong pipelines in Africa and the Middle east, and unexpectedly strong demand in countries such as Mexico and Caribbean nations means that its forecasts for the year are likely to rise.

As Renew Economy also points out, this is the third report in the past month anticipating a bright future for the global solar market: UBS released a report that concluded an “unsubsidized solar revolution” was in the works, “Thanks to significant cost reductions and rising retail tariffs, households and commercial users are set to install solar systems to reduce electricity bills – without any subsidies.” And Macquarie Group argued that costs for rooftop solar in Germany have fallen so far that even with subsidy cuts “solar installations could continue at a torrid pace.”

Here in America, solar power installations boomed over the course of 2011 and 2012, even as the price of solar power systems continued to plunge. To a large extent, the American solar boom has been driven by third party leasing agreements — which are heavily involved in rooftop installation.

Meanwhile, on the international scene, the cost of manufacturing solar panels in China is expected to drop to an all-new low of 42 cents per watt in 2015, and power generated from solar is predicted to undercut that produced by both coal and most forms of natural gas within a decade.

Financing Remains a Challenge for Latin America in its Goal to Achieve Emerging PV Status

Developing markets 1

Developing markets 1 (Photo credit: Wikipedia)


by Michael Barker, Analyst

September 13, 2012

After the second day at Solar Power International 2012, it is clear that the much of the focus for downstream companies participating in the show lies not so much in exploiting domestic-US prospects, but in finding the next emerging market prospects to fuel sales channels.

With traditional European markets starting to decline in their ability to drive the global market – and China and India moving from emerging to established markets – many of the pertinent questions now revolve around where PV may succeed next and which countries will then become the emerging regions to track.

Although the rapid decline in component pricing over the past few years has been difficult for manufacturers, it has led to the ability for PV to compete on an economic basis in many new markets. One of the markets explored in concurrent sessions at SPI was the emerging Latin America region. The panelists discussed realities versus expectations in the region, the difficulty in growing a nascent market, and the lack of project financing available for all customer segments in the country.

In fact, all panelists agreed that the biggest challenge in developing markets in the region was the lack of financing for all project sizes. The region is in a tough ‘chicken vs. egg’ type of situation at the moment where financiers are holding back until viable projects can be developed. But it is taking longer to develop such projects due to the lack of financing.

However, while each of these markets faces its own set of hurdles – both economic and regulatory – the fact that PV systems can now compete on a less subsidized electricity-generation basis with retail electricity rates means that substantial growth prospects exist in these markets.