Cost-effective method for hydrogen fuel production process discovered at U of A


NAno particles for hydrogen 190319121737_1_540x360

Researchers at the U of A have designed nanoparticles that act as catalysts, making the process of water electrolysis more efficient. Credit: Jingyi Chen, Lauren Greenlee and Ryan Manso

 

Nanoparticles composed of nickel and iron have been found to be more effective and efficient than other, more costly materials when used as catalysts in the production of hydrogen fuel through water electrolysis.

The discovery was made by University of Arkansas researchers Jingyi Chen, associate professor of physical chemistry, and Lauren Greenlee, assistant professor of chemical engineering, as well as colleagues from Brookhaven National Lab and Argonne National Lab.

The researchers demonstrated that using nanocatalysts composed of nickel and iron increases the efficiency of water electrolysis, the process of breaking water atoms apart to produce hydrogen and oxygen and combining them with electrons to create hydrogen gas.

Chen and her colleagues discovered that when nanoparticles composed of an iron and nickel shell around a nickel core are applied to the process, they interact with the hydrogen and oxygen atoms to weaken the bonds, increasing the efficiency of the reaction by allowing the generation of oxygen more easily. Nickel and iron are also less expensive than other catalysts, which are made from scarce materials.

This marks a step toward making water electrolysis a more practical and affordable method for producing hydrogen fuel. Current methods of water electrolysis are too energy-intensive to be effective.

Story Source:

Materials provided by University of ArkansasNote: Content may be edited for style and length.


Journal Reference:

  1. Ryan H. Manso, Prashant Acharya, Shiqing Deng, Cameron C. Crane, Benjamin Reinhart, Sungsik Lee, Xiao Tong, Dmytro Nykypanchuk, Jing Zhu, Yimei Zhu, Lauren F. Greenlee, Jingyi Chen. Controlling the 3-D morphology of Ni–Fe-based nanocatalysts for the oxygen evolution reactionNanoscale, 2019; DOI: 10.1039/C8NR10138H
Advertisements

New Material For Splitting Water: Halide double Perovskites – “All the Right Properties” for creating Fuel Cells


Water Splitting 173343_web

HyperSolar Announces Impressive Catalyst Stability for Solar Hydrogen Production


Hyper Solar download

HyperSolar, Inc. the developer of a breakthrough technology to produce renewable hydrogen using sunlight and any source of water, announced today a significant improvement of its proprietary low-cost 3-dimensional oxygen catalyst.

The amount of hydrogen produced by water splitting is fundamentally limited by the slower oxygen half reaction.  Developing an efficient and stable oxygen catalyst is an important milestone in the Company’s effort to split water molecules for the production of renewable hydrogen. Recent catalyst optimization and performance testing by HyperSolar and the University of Iowa demonstrated its high efficiency oxygen catalyst working for over 190 hours, and still running without loss of efficiency.  In comparison to existing state-of-the-art photo-electrochemical technologies, this represents a significant advancement in terms of stability for catalysts made of entirely inexpensive earth abundant elements.

 

“Solar hydrogen production is challenged by the efficiency of the catalyst and the solar cell, and the risk of their instability in the harsh water conditions of photo-electrochemical reactions,” said Dr. Joun Lee, CTO of HyperSolar.  “This successful development of the 3D catalyst is an important milestone for achieving high hydrogen production efficiency for a long period of operation, which contributes to lowering the hydrogen production cost.  We are now in the process of further proving the stability of the 3D oxygen catalyst in a fully integrated solar-to-hydrogen device. We expect the device-level stability to be over 190 hours as well since the oxygen reaction is the primary limiter of device-level performance.”

This catalyst is designed for the Company’s first generation hydrogen system that uses commercially available and inexpensive amorphous triple junction silicon solar (a-Si) cells.

Tim Young, CEO of HyperSolar, commented, “Our goal with the a-Si system is to demonstrate at least 365 hours of stable hydrogen production under intensive operating conditions.  By doing so, we will have simulated one year of operating life of our technology, which we believe will make our technology commercially attractive in various hydrogen markets.  We believe that 1 year of stable operation can make conventional electrolyzer-based renewable hydrogen obsolete, and open up new markets due to our lower cost.”

About HyperSolar, Inc.
HyperSolar is developing a breakthrough, low cost technology to make renewable hydrogen using sunlight and any source of water, including seawater and wastewater. Unlike hydrocarbon fuels, such as oil, coal and natural gas, where carbon dioxide and other contaminants are released into the atmosphere when used, hydrogen fuel usage produces pure water as the only byproduct. By optimizing the science of water electrolysis at the nano-level, our low cost nanoparticles mimic photosynthesis to efficiently use sunlight to separate hydrogen from water, to produce environmentally friendly renewable hydrogen. Using our low cost method to produce renewable hydrogen, we intend to enable a world of distributed hydrogen production for renewable electricity and hydrogen fuel cell vehicles.  To learn more about HyperSolar, please visit our website at www.hypersolar.com.

 

A Step Closer for Clean Fuel: New Catalyst (Carbon-Based Nanocomposites) for Hydrogen Production


Flask in scientist handCarbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen

A nanostructured composite material developed at UC Santa Cruz has shown impressive performance as a catalyst for the electrochemical splitting of water to produce hydrogen. An efficient, low-cost catalyst is essential for realizing the promise of hydrogen as a clean, environmentally friendly fuel.

Researchers led by Shaowei Chen, professor of chemistry and biochemistry at UC Santa Cruz, have been investigating the use of carbon-based nanostructured materials as catalysts for the reaction that generates hydrogen from water. In one recent study, they obtained good results by incorporating ruthenium ions into a sheet-like nanostructure composed of carbon nitride. Performance was further improved by combining the ruthenium-doped carbon nitride with graphene, a sheet-like form of carbon, to form a layered composite.

“The bonding chemistry of ruthenium with nitrogen in these nanostructured materials plays a key role in the high catalytic performance,” Chen said. “We also showed that the stability of the catalyst is very good.”

The new findings were published in ChemSusChem, a top journal covering sustainable chemistry and energy materials, and the paper is featured on the cover of the January 10 issue. First author Yi Peng, a graduate student in Chen’s lab, led the study and designed the cover image.

Hydrogen has long been attractive as a clean and renewable fuel. A hydrogen fuel cell powering an electric vehicle, for example, emits only water vapor. Currently, however, hydrogen production still depends heavily on fossil fuels (mostly using steam to extract it from natural gas). Finding a low-cost, efficient way to extract hydrogen from water through electrolysis would be a major breakthrough. Electricity from renewable sources such as solar and wind power, which can be intermittent and unreliable, could then be easily stored and distributed as hydrogen fuel.Figs-2A-and-2B

Polymer electrolyte membrane (PEM) water electrolysis cell Figure 2B (right): Schematic of an electrochemical energy producer. PEM hydrogen /oxygen fuel …

Currently, the most efficient catalysts for the electrochemical reaction that generates hydrogen from water are based on platinum, which is scarce and expensive. Carbon-based materials have shown promise, but their performance has not come close to that of platinum-based catalysts.

In the new composite material developed by Chen’s lab, the ruthenium ions embedded in the carbon nitride nanosheets change the distribution of electrons in the matrix, creating more active sites for the binding of protons to generate hydrogen. Adding graphene to the structure further enhances the redistribution of electrons.

water-splitting 2

 

“The graphene forms a sandwich structure with the carbon nitride nanosheets and results in further redistribution of electrons. This gives us greater proton reduction efficiencies,” Chen said.

The electrocatalytic performance of the composite was comparable to that of commercial platinum catalysts, the authors reported. Chen noted, however, that researchers still have a long way to go to achieve cheap and efficient hydrogen production.

In addition to Peng and Chen, coauthors of the study include Wanzhang Pan and Jia-En Liu at UC Santa Cruz and Nan Wang at South China University of Technology. This work was supported by the National Science Foundation and the NASA-funded Merced Nanomaterials Center for Energy and Sensing.

Story Source:

Materials provided by University of California – Santa Cruz. Original written by Tim Stephens. Note: Content may be edited for style and length.


Journal Reference:

  1. Yi Peng, Wanzhang Pan, Nan Wang, Jia-En Lu, Shaowei Chen. Ruthenium Ion-Complexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as High-Performance Catalysts for Electrochemical Hydrogen EvolutionChemSusChem, 2018; 11 (1): 130 DOI: 10.1002/cssc.201701880

Making Hydrogen Production Cheaper using New Ultra-Thin nano-material for splitting water


newultrathinThis is a water drop falling into water. Credit: Sarp Saydam/UNSW

UNSW Sydney chemists have invented a new, cheap catalyst for splitting water with an electrical current to efficiently produce clean hydrogen fuel.

The technology is based on the creation of ultrathin slices of porous metal-organic complex coated onto a foam electrode, which the researchers have unexpectedly shown is highly conductive of electricity and active for .

“Splitting water usually requires two different catalysts, but our catalyst can drive both of the reactions required to separate water into its two constituents, oxygen and hydrogen,” says study leader Associate Professor Chuan Zhao.

“Our fabrication method is simple and universal, so we can adapt it to produce ultrathin nanosheet arrays of a variety of these materials, called .

“Compared to other water-splitting electro-catalysts reported to date, our is also among the most efficient,” he says.

The UNSW research by Zhao, Dr Sheng Chen and Dr Jingjing Duan is published in the journal Nature Communications.

Hydrogen is a very good carrier for renewable energy because it is abundant, generates zero emissions, and is much easier to store than other energy sources, like solar or wind energy.

But the cost of producing it by using electricity to split water is high, because the most efficient catalysts developed so far are often made with precious metals, like platinum, ruthenium and iridium.

The catalysts developed at UNSW are made of abundant, non-precious metals like nickel, iron and copper. They belong to a family of versatile porous materials called , which have a wide variety of other potential applications.

Until now, metal-organic frameworks were considered poor conductors and not very useful for electrochemical reactions. Conventionally, they are made in the form of bulk powders, with their catalytic sites deeply embedded inside the pores of the material, where it is difficult for the water to reach.

By creating nanometre-thick arrays of metal-organic frameworks, Zhao’s team was able to expose the pores and increase the surface area for electrical contact with the .

“With nanoengineering, we made a unique metal-organic structure that solves the big problems of conductivity, and access to active sites,” says Zhao.

“It is ground-breaking. We were able to demonstrate that metal-organic frameworks can be highly conductive, challenging the common concept of these materials as inert electro-catalysts.”

Metal-organic frameworks have potential for a large range of applications, including fuel storage, drug delivery, and carbon capture. The UNSW team’s demonstration that they can also be highly conductive introduces a host of new applications for this class of material beyond electro-catalysis.

Explore further: Researchers report new, more efficient catalyst for water splitting

More information: Jingjing Duan et al, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nature Communications (2017). DOI: 10.1038/ncomms15341

 

 

How can we store solar energy for periods when the sun doesn’t shine? Researchers Turn to Known – Effective – Low Cost Method with a “Twist”


Solar Storage 082516 id44316

How can we store solar energy for period when the sun doesn’t shine?

 

One solution is to convert it into hydrogen through water electrolysis. The idea is to use the electrical current produced by a solar panel to ‘split’ water molecules into hydrogen and oxygen. Clean hydrogen can then be stored away for future use to produce electricity on demand, or even as a fuel.

 
But this is where things get complicated. Even though different hydrogen-production technologies have given us promising results in the lab, they are still too unstable or expensive and need to be further developed to use on a commercial and large scale.
The approach taken by EPFL and CSEM researchers is to combine components that have already proven effective in industry in order to develop a robust and effective system. Their prototype is made up of three interconnected, new-generation, crystalline silicon solar cells attached to an electrolysis system that does not rely on rare metals.

The device is able to convert solar energy into hydrogen at a rate of 14.2%, and has already been run for more than 100 hours straight under test conditions. In terms of performance, this is a world record for silicon solar cells and for hydrogen production without using rare metals. It also offers a high level of stability.

Solar Storage 082516 id44316
The device is able to convert solar energy into hydrogen at a rate of 14.2 percent, and has already been run for more than 100 hours straight. (Image: Infini Lab / EPFL)
Enough to power a fuel cell car over 10,000km every year

An Effective and Low-Cost Solution for Storing Solar Energy

 

The method, which surpasses previous efforts in terms of stability, performance, lifespan and cost efficiency, is published in the Journal of The Electrochemical Society (“Solar-to-Hydrogen Production at 14.2% Efficiency with Silicon Photovoltaics and Earth-Abundant Electrocatalysts”). “A 12-14 m2 system installed in Switzerland would allow the generation and storage of enough hydrogen to power a fuel cell car over 10,000 km every year”, says Christophe Ballif, who co-authored the paper.

 
High voltage cells have an edge

 
The key here is making the most of existing components, and using a ‘hybrid’ type of crystalline-silicon solar cell based on hetero-junction technology. The researchers’ sandwich structure – using layers of crystalline silicon and amorphous silicon – allows for higher voltages. And this means that just three of these cells, interconnected, can already generate an almost ideal voltage for electrolysis to occur. The electro-chemical part of the process requires a catalyst made from nickel, which is widely available.

 
“With conventional crystalline silicon cells, we would have to link up four cells to get the same voltage,” says co-author Miguel Modestino at EPFL.”So that’s the strength of this method.”

 
A stable and economically viable method 

hydrogen-earth-150x150
The new system is unique when it comes to cost, performance and lifespan. “We wanted to develop a high performance system that can work under current conditions,” says Jan-Willem Schüttauf, a researcher at CSEM and co-author of the paper. “The hetero-junction cells that we use belong to the family of crystalline silicon cells, which alone account for about 90% of the solar panel market. It is a well-known and robust technology whose lifespan exceeds 25 years.

And it also happens to cover the south side of the CSEM building in Neuchâtel.”
The researchers used standard hetero-junction cells to prove the concept; by using the best cells of that type, they would expect to achieve a performance above 16%.

 
Source: Ecole Polytechnique Fédérale de Lausanne

 

Researcher Realizes Water-Splitting Solar Cell Structure Using Nanoparticles


Published on June 18, 2013 at 6:47 AM

QDOTS imagesCAKXSY1K 8Due to the fluctuating availability of solar energy, storage solutions are urgently needed. One option is to use the electrical energy generated inside solar cells to split water by means of electrolysis, in the process yielding hydrogen that can be used for a storable fuel. Researchers at the HZB Institute for Solar Fuels have modified so called superstrate solar cells with their highly efficient architecture in order to obtain hydrogen from water with the help of suitable catalysts. This type of cell works something like an “artificial leaf.”

This complex solar cell is coated with two different catalysts and works like an “artificial leaf”, using sunlight to split water and yield hydrogen gas.

But the solar cell rapidly corrodes when placed in the aqueous electrolyte solution. Now, Ph.D. student Diana Stellmach has found a way to prevent corrosion by embedding the catalysts in an electrically conducting polymer and then mounting them onto the solar cell’s two contact surfaces, making her the first scientist in all of Europe to have come up with this solution. As a result, the cell’s sensitive contacts are sealed to prevent corrosion with a stable yield of approx. 3.7 percent sunlight.

Hydrogen stores chemical energy and is highly versatile in terms of its applicability potential. The gas can be converted into fuels like methane as well as methanol or it can generate electricity directly inside fuel cells. Hydrogen can be produced through the electrolytic splitting of water molecules into hydrogen and oxygen by using two electrodes that are coated with suitable catalysts and between which a minimum 1.23 volt tension is generated. The production of hydrogen only becomes interesting if solar energy can be used to produce it. Because that would solve two problems at once: On sunny days, excess electricity could yield hydrogen, which would be available for fuel or to generate electricity at a later point like at night or on days that are overcast.

New approach with complex thin film technologies

At the Helmholtz Centre Berlin for Materials and Energy (HZB) Institute for Solar Fuels, researchers are working on new approaches to realizing this goal. They are using photovoltaic structures made of multiple ultrathin layers of silicon that are custom-made by the Photovoltaic Competence Centre Berlin (PVcomB), another of the HZB’s institutes. Since the cell consists of a single – albeit complex – “block,” this is known as a monolithic approach. At the Institute for Solar Fuels, the cell’s electrical contact surfaces are coated with special catalysts for splitting water. If this cell is placed in dilute sulphuric acid and irradiated with sun-like light, a tension is produced at the contacts that can be used to split water. During this process, it is the catalysts, which speed up the reactions at the contacts, that are critically important.

Protection against corrosion

The PVcomB photovoltaic cells’ main advantage is their “superstrate architecture”: Light enters through the transparent front contact, which is deposited on the carrier glass; there is no opacity due to catalysts being mounted onto the cells, because they are located on the cell’s back side and are in contact with the water/acid mixture. This mixture is aggressive, that is to say, it is corrosive, so much so that Diana Stellmach had to first replace the usual zinc oxide silver back contact with a titanium coat approximately 400 nanometers thick. In a second step, she developed a solution to simultaneously protect the cell against corrosion with the mounting of the catalyst: She mixed nanoparticles of RuO2 with a conducting polymer (PEDOT:PSS) and applied this mixture to the cell’s back side contact to act as a catalyst for the production of oxygen. Similarly, platinum nanoparticles, the sites of hydrogen production, were applied to the front contact.

Stable H2-Production

In all, the configuration achieved a degree of efficacy of 3.7 percent and was stable over a minimum 18 hours. “This way, Ms. Stellmach is the first ever scientist anywhere in Europe to have realized this kind of water-splitting solar cell structure,” explains Prof. Dr. Sebastian Fiechter. And just maybe anywhere in the World, as photovoltaic membranes with different architectures have proved far less stable.

Yet the fact remains that catalysts like platinum and RuO2 are rather expensive and will ultimately have to give way to less costly types of materials. Diana Stellmach is already working on that as well; she is currently in the process of developing carbon nanorods that are coated with layers of molybdenum sulphide and which serve as catalysts for hydrogen production.

Watch the “artificial leaf” in action: http://www.helmholtz-berlin.de/aktuell/pr/mediathek/video/energieversorgung/superstratzelle_de.html

Source: http://www.helmholtz-berlin.de/

Nanotechnology Simplifies Hydrogen Production for Clean Energy


Stony Brook University· 310 Admin · Stony Brook, NY 11794-0701

SBU-Led Research Reveals Nanotechnology Simplifies Hydrogen Production for Clean Energy
Researcher says project is first ever demonstration of the potential of using metal nanoparticles to make fuel from water

Nov 20, 2012 – 3:30:00 PM

STONY BROOK, NY, November 20, 2012– In the first-ever experiment of its kind, researchers have demonstrated that clean energy hydrogen can be produced from water splitting by using very small metal particles that are exposed to sunlight. In the article, “Outstanding activity of sub-nm Au clusters for photo-catalytic hydrogen production,” published in the journal Applied Catalysis B: Environmental,  Alexander Orlov, PhD, an Assistant Professor of Materials Science & Engineering at Stony Brook University, and his colleagues from Stony Brook and Brookhaven National Laboratory, found that the use of gold particles smaller than one nanometer resulted in greater hydrogen production than other co-catalysts tested.

“This is the first ever demonstration of the remarkable potential of very small metal nanoparticles [containing fewer than a dozen atoms] for making fuel from water,” said Professor Orlov. Using nanotechnology, Professor Orlov’s group found that when the size of metal particles are reduced to dimensions below one nanometer, there is a tremendous increase in the ability of these particles to facilitate hydrogen production from water using solar light. They observed a “greater than 35 times increase” in hydrogen evolution as compared to ordinary materials.

Experimental and theory predicted optical properties of supported sub-nanometer particles.

In order to explain these fascinating results, Professor Orlov collaborated with Brookhaven National Lab computational scientist Dr. Yan Li, who found some interesting anomalies in electronic properties of these small particles.  Professor Orlov noted that there is still a tremendous amount of work that needs be done to understand this phenomenon. “It is conceivable that we are only at the beginning of an extraordinary journey to utilize such small particles [of less than a dozen atoms in size] for clean energy production,” he said.

“In order to reduce our dependence on fossil fuels it is vital to explore various sustainable energy options,” Professor Orlov said. “One possible strategy is to develop a hydrogen-based energy economy, which can potentially offer numerous environmental and energy efficiency benefits. Hydrogen can conceivably be a promising energy source in the future as it is a very clean fuel, which produces water as a final combustion product. The current challenge is to find new materials, which can help to produce hydrogen from sustainable sources, such as water.”

Professor Orlov also serves as a faculty member of the Consortium for Inter-Disciplinary Environmental Research at Stony Brook University. Members of his research team include Peichuan Shen and Shen Zhao from the Department of Materials Science and Engineering at Stony Brook and Dr. Dong Su of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

###

Editors’ Note: This project was partially funded by an $80,500 exploratory grant from the National Science Foundation.

Light-Based Hydrogen Production


Nanocrystals and Nickel Catalyst Substantially Improve

Light-Based Hydrogen Production

November 8, 2012

Hydrogen is an attractive fuel source because it can easily be converted into electric energy and gives off no greenhouse emissions. A group of chemists at the University of Rochester is adding to its appeal by increasing the output and lowering the cost of current light-driven hydrogen-production systems.

The work was done by graduate students Zhiji Han and Fen Qiu, as part of a collaboration between chemistry professors Richard Eisenberg, Todd Krauss, and Patrick Holland, which is funded by the U.S. Department of Energy. Their paper will be published later this month (Nov. 23) in the journal Science.

The chemists say their work advances what is sometimes considered the “holy grail” of energy science—efficiently using sunlight to provide clean, carbon-free energy for vehicles and anything that requires electricity.

One disadvantage of current methods of hydrogen production has been the lack of durability in the light-absorbing material, but the Rochester scientists were able to overcome that problem by incorporating nanocrystals. “Organic molecules are typically used to capture light in photocatalytic systems,” said Krauss, who has been working in the field of nanocrystals for over 20 years. “The problem is they only last hours, or, if you’re lucky, a day. These nanocrystals performed without any sign of deterioration for at least two weeks.”

Richard Eisenberg, the Tracy H. Harris Professor of Chemistry, has spent two decades working on solar energy systems. During that time, his systems have typically generated 10,000 instances—called turnovers—of hydrogen atoms being formed without having to replace any components. With the nanocrystals, Eisenberg and his colleagues witnessed turnovers in excess of 600,000.

The researchers managed to overcome other disadvantages of traditional photocatalytic systems. “People have typically used catalysts made from platinum and other expensive metals,” Holland said. “It would be much more sustainable if we used metals that were more easily found on the Earth, more affordable, and lower in toxicity. That would include metals, such as nickel.”

Holland said their work is still in the “basic research stage,” making it impossible to provide cost comparisons with other energy production systems. But he points out that nickel currently sells for about $8 per pound, while the cost of platinum is $24,000 per pound.

While all three researchers say the commercial implementation of their work is years off, Holland points out that an efficient, low-cost system would have uses beyond energy. “Any industry that requires large amounts of hydrogen would benefit, including pharmaceuticals and fertilizers,” said Holland.

The process developed by Holland, Eisenberg, and Krauss is similar to other photocatalytic systems; they needed a chromophore (the light-absorbing material), a catalyst to combine protons and electrons, and a solution, which in this case is water. Krauss, an expert in nanocrystals, provided cadmium selenide (CdSe) quantum dots (nanocrystals) as the chromophore. Holland, whose expertise lies in catalysis and nickel research, supplied a nickel catalyst (nickel nitrate). The nanocrystals were capped with DHLA (dihydrolipoic acid) to make them soluble, and ascorbic acid was added to the water as an electron donor.

Photons from a light source excite electrons in the nanocrystals and transfer them to the nickel catalyst. When two electrons are available, they combine on the catalyst with protons from water, to form a hydrogen molecule (H2).

This system was so robust that it kept producing hydrogen until the source of electrons was removed after two weeks. “Presumably, it could continue even longer, but we ran out of patience!” said Holland.

One of the next steps will be to look at the nature of the nanocrystal. “Some nanocrystals are like M&Ms – they have a core with a shell around it,” said Eisenberg. “Ours is just like the core. So we need to consider if they would they work better if they were enclosed in shells.”