NextEra Energy to Build Its First Green Hydrogen Plant in Florida


Florida_Beach_Coast_XL_Shutterstock_721_420_80_s_c1The emerging green hydrogen market could open new opportunities for NextEra to use its renewable power.

 

Largest U.S. renewables generator “really excited” about green hydrogen, reveals plans for $65 million pilot plant for Florida Power & Light.

NextEra Energy is closing its last coal-fired power unit and investing in its first green hydrogen facility.

Through its Florida Power & Light utility, NextEra will propose a $65 million pilot in the Sunshine State that will use a 20-megawatt electrolyzer to produce 100 percent green hydrogen from solar power, the company revealed on Friday.

The project, which could be online by 2023 if it receives approval from state regulators, would represent the first step into green hydrogen for NextEra Energy, by far the largest developer and operator of wind, solar and battery plants in North America.

“We’re really excited about hydrogen, in particular when we think about getting not to a net-zero emissions profile but actually to a zero-emissions carbon profile,” NextEra Energy CFO Rebecca Kujawa said on Friday’s earnings call.

“When we looked at this five or 10 years ago and thought about what it would take to get to true zero emissions, we were worried it was extraordinarily expensive for customers,” Kujawa said.

Green Hydro 170220201581942415

“What makes us really excited about hydrogen — particularly in the 2030 and beyond timeframe — is the potential to supplement a significant deployment of renewables [and energy storage]. That last amount of emissions you’d take out of the system to get down to zero could be most economically served by hydrogen.”

Green hydrogen plans taking off around the world

Although still in its infancy as a market, the concept of green hydrogen is rapidly catching on globally as a potentially viable way to fully decarbonize energy systems, taking them beyond where simple renewable power generation alone can go even at very high penetrations.

The green hydrogen produced by Florida Power & Light’s electrolyzers would be used to replace a portion of the natural gas that’s consumed by the turbines at FPL’s existing 1.75-gigawatt Okeechobee gas-fired plant, Kujawa said. The electricity will come from solar power that would otherwise have been “clipped,” or gone unused.

If the hydrogen economy scales up and green hydrogen becomes economic, Florida Power & Light would likely retrofit some of its gas facilities to run wholly or partially on hydrogen, Kujawa said.

Most of the vast quantities of hydrogen produced globally today use fossil fuels as a feedstock, generating substantial emissions in the process. In contrast, green hydrogen is made using renewables to power the electrolysis of water, throwing off no CO2 emissions.

Whichever way it’s produced, hydrogen can be used for a variety of purposes, from swapping in for natural gas in thermal power plants to powering fuel cells used to move cars and ships. (For more background, read GTM’s green hydrogen explainer.)

The EU recently set a target of installing 40 gigawatts of electrolyzers within its borders by 2030 to produce green hydrogen, as it charts a path to net-zero.

Air Products, the world’s leading hydrogen producer, recently announced a massive green hydrogen plant to be built in Saudi Arabia, powered by 4 gigawatts of wind and solar. And last week California-based fuel-cell maker Bloom Energy sent its shares soaring by announcing its launch into the commercial hydrogen market.

For NextEra, hydrogen represents not only an opportunity to help decarbonize its FPL utility but also a potential new market for the wind and solar power it generates across North America.

NextEra will start with the same “toe in the water” approach it took with solar and batteries, Kujawa said. “While the investments are expected to be small in the context of our overall capital program, we are excited about the technology’s long-term potential, which should further support future demand for low-cost renewables as well as accelerating the decarbonization of transportation fuel and industrial feedstocks.”

Florida Power & Light’s push into green hydrogen comes just weeks after the utility announced it plans to exit its 847-megawatt portion of Georgia’s Plant Scherer, the largest operating coal-fired power plant in the U.S. — and the last remaining coal unit in NextEra’s portfolio.

CEO Robo’s thoughts on the election

NextEra CEO Jim Robo was asked on the earnings call what impact could come from November’s election, with Joe Biden pledging to push policies aimed at fully decarbonizing the U.S. power supply by 2035 and the Democratic platform promising a near-term surge of renewables.

NextEra will be “positioned really well regardless of who wins in November,” Robo said.

“You can remember back close to four years ago … there was some turmoil around our stock when President Trump was elected. We’ve managed to completely be fine under this administration in terms of being able to continue to grow our renewable business, because you know: it’s all about economics.”

“The time for renewables is now and that kind of transcends politics, frankly,” Robo said. “Obviously, we watch [political outcomes] closely. We think good clean energy policy is important and the right policy for America in the future.”

What if Green Energy Isn’t the Future?


Green W not future ED-AY628_Mills_GR_20190515162804A gas-filtration system atop a well, managed by Anadarko in Pennsylvania, Sept. 8, 2012.Photo: Robert Nicklesberg /Getty Images

What’s Warren Buffett doing with a $10 billion bet on the future of oil and gas, helping old-school Occidental Petroleum buy Anadarko, a U.S. shale leader? For pundits promoting the all-green future, this looks like betting on horse farms circa 1919.

Meanwhile, broad market sentiment is decidedly bearish on hydrocarbons. The oil and gas share of the S&P 500 is at a 40-year low, and the first quarter of 2019 saw the Nasdaq Clean Edge Green Energy Index and “clean tech” exchange-traded funds outperform the S&P.

A week doesn’t pass without a mayor, governor or policy maker joining the headlong rush to pledge or demand a green energy future.

Some 100 U.S. cities have made such promises. Hydrocarbons may be the source of 80% of America’s and the world’s energy, but to say they are currently out of favor is a dramatic understatement.

img_1225

Yet it’s both reasonable and, for contrarian investors, potentially lucrative to ask: What happens if renewables fail to deliver?

The prevailing wisdom has wind and solar, paired with batteries, adding 250% more energy to the world over the next two decades than American shale has added over the past 15 years.

Is that realistic? The shale revolution has been the single biggest addition to the world energy supply in the past century. And even bullish green scenarios still see global demand for oil and gas rising, if more slowly.

Q: If the favored alternatives fall short of delivering what growing economies need, will markets tolerate energy starvation? Not likely. Nations everywhere will necessarily turn to hydrocarbons.

img_1224

And just how big could the call on oil and natural gas—and coal, for that matter—become if, say, only half as much green-tech energy gets produced as is now forecast? Keep in mind that a 50% “haircut” would still mean unprecedented growth in green-tech.

If the three hydrocarbons were each to supply one-third of such a posited green shortfall, global petroleum output would have to increase by an amount equal to doubling the production of the Permian shale field (Anadarko’s home). And the world supply of liquid natural gas would need to increase by an amount equal to twice Qatar’s current exports, plus coal would have to almost double what the top global exporter, Australia, now ships.

Green forecasters are likely out over their skis. All the predictions assume that emerging economies—the least wealthy nations—will account for more nearly three-fourths of total new spending on renewables. That won’t happen unless the promised radical cost reductions occur.

For a bellwether reality-check, note that none of the wealthy nations that are parties to the Paris Accord—or any of the poor ones, for that matter—have come close to meeting the green pledges called for. In fact, let’s quote the International Energy Agency on what has actually happened: “Energy demand worldwide [in 2018] grew by . . . its fastest pace this decade . . . driven by a robust global economy . . . with fossil fuels meeting nearly 70% of the growth for the second year running.”

The reason? Using wind, solar and batteries as the primary sources of a nation’s energy supply remains far too expensive. You don’t need science or economics to know that. Simply propose taking away subsidies or mandates, and you’ll unleash the full fury of the green lobby.

img_1053-1

Meanwhile, there are already signs that the green vision is losing luster. Sweden’s big shift to wind power has not only created alarm over inadequate electricity supplies; it’s depressing economic growth and may imperil that nation’s bid for the 2026 Winter Olympics. China, although adept at green virtue-signaling, has quietly restarted massive domestic coal-power construction and is building hundreds of coal plants for emerging economies around the world.

In the U.S., utilities, furiously but without fanfare, have been adding billions of dollars of massive oil- and natural-gas-burning diesel engines to the grid. Over the past two decades, three times as much grid-class reciprocating engine capacity has been added to the U.S. grid as in the entire half-century before. It’s the only practical way to produce grid-scale electricity fast enough when the wind dies off. Sweden will doubtless be forced to do the same.

img_1222

A common response to all of the above: Make more electric cars. But mere arithmetic reveals that even the optimists’ 100-fold growth in electric vehicles wouldn’t displace more than 5% of global oil demand in two decades. Tepid growth in gasoline demand would be more than offset by growing economies’ appetites for air travel and manufactured goods. Goodness knows what would happen if Trump-like economic growth were to take hold in the rest of the developed world. As Mr. Buffett knows, the IEA foresees the U.S. supplying nearly three-fourths of the world’s net new demand for oil and gas.

Green advocates can hope to persuade governments—and thus taxpayers—to deploy a huge tax on hydrocarbons to ensure more green construction. But there’s no chance that wealthy nations will agree to subsidize expensive green tech for the rest of the world.

And we know where the Oracle of Omaha has placed a bet.

Re-Posted from the Wall Street Journal – Mr. Mills is a senior fellow at the Manhattan Institute and a partner in Cottonwood Venture Partners, an energy-tech venture fund, and author of the recent report, “The ‘New Energy Economy’: An Exercise in Magical Thinking.”

 

Israeli and Australian scientists come up with a fast and efficient method of producing graphene


Graphen Sensor NewsImage_31004Researchers at the Israeli Ben-Gurion University of the Negev (BGU) and University of Western Australia have designed a new process for creating few-layer graphene for use in energy storage and other material applications that is faster, potentially scalable and surmounts some of the current graphene production limitations.

The new one-step, high-yield generation process is based on an ultra-bright lamp-ablation method and has succeeded in synthesizing few-layer (4-5) graphene in relatively high yields. It involves a novel optical system (originally invented by BGU professors) that reconstitutes the immense brightness within the plasma of high-power xenon discharge lamps at a remote reactor, where a transparent tube filled with simple, inexpensive graphite is irradiated. The process is considered fast, safe and green (free of any toxic substances – just graphite plus concentrated light).

The BGU-UWA team is now planning an experimental program to scale up this initial success toward improving the volume and rate at which few-layer (and eventually single-layer) graphene can be synthesized.

U of Wisonsin-Madison: Researchers Invent a Metal-Free Fuel Cell: Molecular vs. ‘Solid’ Catalyst: Why that’s Important


UW Cata Fuel Cell 480547266The development of fuel cell technology has been hamstrung by the need for expensive and difficult-to-manufacture catalysts like platinum, rhodium or palladium. But a team of researchers from the University of Wisconsin-Madison believe they’ve found an ingenious alternative that employs a molecular, rather than solid, catalyst.

A fuel cell generates electricity from chemicals by reacting hydrogen and oxygen at its anode and cathode, respectively. Specifically, a catalyst at the anode oxidizes the hydrogen fuel to create free electrons and charged ions. The ions pass through the electrolyte while the electrons pass through a separate wire (to drive an electronic device) and the two recombine in the cathode with oxygen to create water or CO2.

The team, led by Professor Shannon Stahl and lab scientist James Gerken, noticed that the aerobic oxidation reactions they had studied in their previous work closely mimicked the oxygen reaction in fuel cells. To see if this aerobic reaction could work as a fuel cell, they built one using a catalyst composed of nitroxyl and nitrogen oxide molecules to react with its electrode and oxygen. “While this catalyst combination has been used previously in aerobic oxidations, we didn’t know if it would be a good fuel cell catalyst,” Stahl said in a statement. “It turns out that it is the most effective molecular catalyst system ever reported.”

The results are more than impressive. “This work shows for the first time that molecular catalysts can approach the efficiency of platinum,” Gerken continued. “And the advantage of molecules is that you can continue to modify their structure to climb further up the mountain to achieve even better efficiency.”

%d bloggers like this: