Rivian – Electric Adventure Vehicles – For Those of You Who Wanted to See a Little More Why Amazon & GM are Considering Investing (MV $1B – $2B) – Video| Fully Charged


Rivian-Inline-R1T-Media-002-(1)

Automotive startups always need to be viewed with a little caution, but as Jonny Smith (Fully Charged) discovers, Rivian have presented a very convincing launch. A large SUV and pick up truck at the LA motor show. Most impressive. (And probably why, Amazon and GM are considering investing in the EV SUV and Truck Start-Up – See Article Below)

Rivian is developing vehicles and technology to inspire people to get out and explore the world. These are their stories about the things they make, the places they go and the people they meet along the way.

 

Amazon, GM eye investment that would value Rivian at $1 billion to $2 billion, Reuters reports

Rivian SUV II 5bfdb9b644466.image

Rivian Automotive, which plans to build the nation’s first electric pickup trucks along with SUVs in Normal, is in talks about an investment from Amazon and General Motors that would value the company at between $1 billion and $2 billion, Reuters reported Tuesday.

The two companies may receive minority stakes in the Plymouth, Mich.-based startup in a deal that could be concluded and announced this month, Reuters reported, citing sources that asked not to be identified because the matter is confidential.

The sources noted the talks may fail to reach a deal, Reuters reported. But the Chicago Tribune is reporting “talks are progressing” and a deal could be announced as soon as Friday, citing an unnamed source. 

Amazon, General Motors and Rivian did not immediately respond to requests for comment from Reuters. Normal (Illinois) Mayor Chris Koos and Mike O’Grady, interim CEO of the Bloomington-Normal Economic Development Council, did not return calls seeking comment Tuesday night. 

 

Rivian, which plans to hire as many as 1,000 employees to manufacture the “electric adventure” vehicles in the Twin Cities, unveiled a five-passenger pickup truck — the R1T — and the R1S SUV in November at the Los Angeles Auto Show. The vehicles are due in showrooms in late 2020.

 

“We’re launching Rivian with two vehicles that re-imagine the pickup and SUV segments,” Rivian founder and CEO R.J. Scaringe said in a statement at the time of the vehicles’ unveiling. “I started Rivian to deliver products that the world didn’t already have — to redefine expectations through the application of technology and innovation. Starting with a clean sheet, we have spent years developing the technology to deliver the ideal vehicle for active customers.”

The pickup, starting at $61,500, is expected to travel between 250 and 400 miles on a single charge, depending on the model, and is expected to tow up to 5,000 kilograms, or more than 11,000 pounds. The SUV, starting at around $70,000, can travel up to 400 miles on a single charge, said the company, and has a towing capacity of 3,500 kilograms.

Rivian, which received performance-based incentives from state and local governments, paid $16 million for the former Mitsubishi Motors North America plant on Normal’s west side in 2017.

Town officials said in November that Rivian had already exceeded its benchmarks for a full property tax abatement at the plant for 2018, investing $10 million and employing 35 people. The plant had 60 workers at the time. Rivian had about 600 workers at the time across not only Normal but also facilities near Detroit, Los Angeles and San Francisco.

 

The company was required to hire 500 locally and invest $40.5 million by the end of 2021 to receive hundreds of thousands in local tax breaks, plus a $1 million Normal grant, and plans to hire 1,000 locally over a decade to receive about $50 million in state income tax credits. Koos said in November the company may employ 500 when it reaches full production in 2020. “It will never be as populated as the Mitsubishi plant, but it’ll certainly be high production,” said Koos.

 

Mitsubishi employed about 3,000 in Normal at its peak. The plant had 1,200 employees when it ceased production in November 2015.

img_1049

 

Learn More About Rivian Here: Video Presentation

 

 

 

Also Watch Tenka Energy’s Short Presentation on Nano-Enabled Batteries and Super Caps: For Ev’s – Drones – Medical Devices – Electronics

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Advertisements

NREL Update: How Fast Can You Pump Hydrogen For An EV? NREL, Mercedes and GM Plan To Find Out


Pumping hydrogen for fuel cell-powered EVs is a bit trickier than plugging into an electric recharging station.

The pressure in HFEV tanks can get up into the 10,000 psi range, so hoses, fittings, gauges, and other fuel station gear all has to perform well under such pressure.

Even so, the optimal speed for pumping hydrogen for an HFEV at a station is not yet well defined at the moment, given the need for continuing station tank resupply, and for the fresh generation of hydrogen used to fill the tanks.

To help determine the optimal operational flow and requirements for HFEV stations, the US National Renewable Energy Laboratory, in Golden, CO, in a partnership with Mercedes-Benz and General Motors, is testing hydrogen filling at the lab’s Hydrogen Infrastructure Testing and Research Facility (HITRF), according to a facility spokesperson.

“It’s a cradle to grave investigation,” said the NREL guide who recently led a tour of the facility where new carbon fiber-reinforced tanks were on display.

The HITRF integrates commercial and test equipment in a system to mimic a hydrogen station, and it is the only facility in the national lab complex capable of fueling to the SAE J2601 standard — a fast-fueling protocol that dispenses 70 megapascals (MPa) of hydrogen at -40°C to the vehicle with a 3–5 minute fueling time, NREL’s program description says. A megapascal is about 145 psi. The SAE standard is “Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles.”

NREL and its partners are experimenting at the HITRF to help reduce the cost and installation time for a new hydrogen fueling station, to improve the stations’ availability and reliability, and to ensure the success of future hydrogen infrastructure deployment. One accident would attract far too much press attention.

The HITRF, with 340 kg of hydrogen storage on site, is the first facility of its kind in Colorado and serves as a proving ground for current generation component, system, and control testing, as well as perform testing for next-generation technology and controls.

NREL is also tapping federal funding for the HITRF, and helping US Department of Energy to test the hydrogen station equipment performance, or HySTEP devices as part of the US Department of Energy’s H2FIRST project.

The cost of each commercial hydrogen filling station could be high. One indicator of cost is that the Japanese government has invested $378 million to develop hydrogen infrastructure, of which about $1 million will be spent on each hydrogen station, according to a recent market analysis by Frost & Sullivan. “The cost of implementing a variable hydrogen pressure nozzle fuel station for storage and generation…has been the primary choking point in infrastructure expansion,” they say.

Other companies and entities involved in HFEV station development partnerships include the Hydrogen Energy Association, Seven-Eleven Japan Co. Ltd, HyFIVE, Linde, the California Fuel Cell Partnership, Ballard, and UK H2 Mobility, the analysts say.

The market for HFEVs, or fuel cell EVs, as they refer to them, is bright according to the analysts, who say about two million fuel cell vehicles are expected to be on the roads globally by 2030.

“The global market for FCEVs is estimated to reach about 583,360 units (per year) by 2030, with Asia Pacific (APAC) countries such as Japan and South Korea dominating the market with 218,651 and 80,440 units, respectively. FCEV markets in Europe and North America are projected to reach 117,000 units and 118,847 units, respectively, by 2030,” they say.

DOE targets having about 500,000 fuel cell cars on the road by 2030, Frost & Sullivan says.

Apart from its support of HFEV station development, DOE is supporting research that is working to reduce the price of an 80 kW fuel cell stack system to as little as $30. Along with reductions in the price of fuel cell stacks, efforts are also ongoing to lower the cost of hydrogen production to less than $2/kg, using the proton exchange membrane (PEM) electrolysis method, the analysts point out.

Over the next decade, an estimated $10 billion will be invested globally in developing hydrogen technology and infrastructure by a group of private investor companies in conjunction with Toyota, Daimler and BMW, Frost & Sullivan reckon.

The Californian government has approved an expenditure of $20 million annually on hydrogen station deployments with private companies, which had already invested over $20 million at the end of 2017, the analysts say.