Genesis Is Going Very Electric, Very Soon


Genesis going electric

Hyundai’s luxury brand pledges to stop releasing new ICE-powered models in 2025.

Genesis will lead Hyundai’s electrification efforts, Takata airbag recalls are still a thing and, surprise, the Tesla Roadster has slipped back another year. All this and more in this Thursday edition of The Morning Shift for September 2, 2021.

1st Gear: Genesis Isn’t Waiting Around

Automakers are busy making projections that they’ll stop selling gas-powered vehicles by maybe 2030 or 2035. Genesis in now among them. As a very young brand with just five models on sale in the United States, it doesn’t have a lot of history or buyers entrenched in the brand to please. It’s pretty much free to go in any direction it chooses, when it chooses. Starting in 2025, it’ll stop bringing new ICE cars to market, it announced Wednesday. From Automotive News:

Hyundai Motor Group’s top-shelf brand said that all new vehicles will be electric from 2025 under a dual-pronged approach that focuses on full-electric vehicles and hydrogen fuel cells.

The company will drop internal combustion technology from new models beginning that year, meaning Genesis will also bypass hybrids and plug-in hybrids, spokesman Jee Hyun Kim said.

By 2030, the global lineup will consist of eight EV and fuel cell models, he said. Around that time, Genesis plans to achieve worldwide sales of 400,000 vehicles a year. As recently as late 2019, Genesis was expecting annual sales to crest at 100,000 for the first time.

The report notes that Genesis shifted 128,365 cars in 2020. Last year was Genesis’ first in which it offered an SUV — the GV80 — and this year, the company added the GV70. The weird-looking GV60 is next, and will represent the brand’s first EV. Now that it finally has a couple SUVs and crossovers under its belt, I imagine Genesis is well on its way toward that 400,000-car goal. Unfortunately, it doesn’t change the way I feel about the GV60, which is that it looks like the automotive equivalent of a naked mole rat.

2nd Gear: NHTSA Is Probing Tesla Over That Autopilot Crash With a Police Car In Florida

Last Saturday morning, a Tesla Model 3 in Orlando collided with a parked police car while Autopilot was enabled. The National Highway Traffic Safety Administration opened a probe into crashes between Autopilot-enabled Teslas and emergency vehicles last month. The department added this one to the list on Tuesday, making for the 12th incident on the books. From Reuters:

The National Highway Traffic Safety Administration (NHTSA) on Aug. 16 said it had opened a formal safety probe into Tesla driver assistance system Autopilot after 11 crashes. The probe covers 765,000 U.S. Tesla vehicles built between 2014 and 2021.

The 12th occurred in Orlando on Saturday, NHTSA said. The agency sent Tesla a detailed 11-page letter on Tuesday with numerous questions it must answer, as part of its investigation.

Like with the latest crash, most of them have happened in dark conditions according to the NHTSA. As part of the probe, Tesla is asked to explain how its software is designed to respond to emergency vehicles and hazard alerts like cones, lights and flares.

Tesla is required to disclose any adjustments it plans to make to Autopilot over the next 120 days, Reuters reports. The company must also answer the NHTSA’s questions by October 22, or risk fines up to $115 million if it doesn’t respond.

3rd Gear: Volkswagen’s Latest Takata Settlement Is Worth $42 Million

Supposedly, every vehicle with a Takata airbag inflator has been recalled. But millions of those cars are still driving around with potentially faulty inflators and automakers have struggled to get them into service — Volkswagen included. From Reuters:

Volkswagen’s U.S. unit has agreed to a $42 million settlement covering 1.35 million vehicles that were equipped with potentially dangerous Takata air bag inflators, according to documents filed in U.S. District Court in Miami.

The settlement is the latest by major automakers and much of the funding goes to boosting recall completion rates. To date, seven other major automakers have agreed to settlements worth about $1.5 billion covering tens of millions of vehicles.

According to court documents, it’s estimated that 35 percent of the inflators in question in Volkswagen and Audi cars have not been replaced. The main purpose of this settlement is to cover out-of-pocket expenses like rental fees, or cover for wages lost while owners are without their cars.

4th Gear: 2021 Imprezas Recalled For Welding Issue

Speaking of recalls, Subaru will soon reach out to some owners of 2021 Imprezas due to an “improper weld” on the car’s front driver’s side lower control arm. Some 802 vehicles are reportedly affected. If the weld breaks, it could cause the tire to partially detach and strike the inside of the wheel well. From Automotive News:

Subaru on Wednesday said the improper weld is near a connection joint between the lower control arm and the crossmember, and could lead to a partial separation of the two components.

Subaru says it has received no reports of crashes or injuries related to the defect, but is warning owners to have their vehicles checked by Subaru dealers to see if the lot number stamped into the control arm is part of the recall. If it is, consumers are being told not to drive the vehicle until it is repaired.

Subaru will notify owners by mail, but if you’re wondering if your Impreza might be affected and would rather not wait to know for sure, you could visit the NHTSA’s recall tracker or Subaru’s website, enter your car’s VIN number, and find out.

5th Gear: Tesla Roadster Delayed

The Tesla Roadster was announced in 2017. Lots of people made deposits. Then thrusters were added as an optional extra for some reason. Then Elon Musk said around the middle of last year that Roadster production would begin basically now, during mid-to-late 2021. On Wednesday, Musk tweeted that the production target’s been pushed back to next year, and the cars will reach buyers in 2023. The reason? The chip shortage!

I know automotive manufacturing is wholeheartedly broken right now, but considering the Roadster was announced four whole years ago, the “oh, us too” excuse doesn’t quite sound so convincing. I do believe the Roadster will eventually be a real thing that really exists. Because Tesla felt it necessary to announce the car extremely early for some reason, now it feels like vaporware. It’ll continue to feel like vaporware until it’s proven to be otherwise.

Reverse: Let’s Go See The ‘Vettes

The National Corvette Museum in Bowling Green, Kentucky opened its doors on September 2, 1994. 120,000 visitors reportedly attended its grand opening during its first weekend. I learned about the existence of this museum the same way I figure a great many people did: when a sinkhole opened up underneath it in 2014 and swallowed up a bunch of cars. Thankfully the Corvette Museum bounced back, and here’s something else: you can actually tour the sinkhole itself from your web browser, right now, in 3D. I’m not kidding.

Read the Top 4 Articles from Genesis Nanotech This Week Like: New MIT Nano-Kevlar – Hydrogen Fuel from the Sea + More …


An Alternative to Kevlar – MIT and Caltech Create Nanotech Carbon Materials – Can withstand supersonic microparticle impacts

New Nanoscale Material Harvests Hydrogen Fuel From the Sea – University of Central Florida

img_2278

Engineers Develop a Simple Way to Desalinate Water Using Solar Energy – Reduced Costs + 4X Production Volume

img_2285

Hydrogen Powered Fuel Cell EV’s? Or Battery Powered EV’s? Toyota is Placing a Bet on the Green Future

Hydrogen Powered Fuel Cell EV’s? Or Battery Powered EV’s? Toyota is Placing a Bet on the Green Future


While Toyota has seen success far and wide as an early pioneer of hybrid cars, it’s had much less luck with another technology it has invested heavily in: hydrogen-powered fuel cell EVs.

While the rest of the electric car market is going heavily battery-powered, Toyota is still banking on hydrogen power in many ways—even as competitors like Honda and BMW have seemingly dialed down their hydrogen ambitions. Now we know that Toyota’s conservative battery EV strategy and its big bet on hydrogen are closely related issues.

Toyota’s HFC Car

A recent report from the New York Times shows that the company’s hydrogen play has become further reaching than just internal development; it has also become political.

Toyota’s H2 Mirai

According to the report, a Toyota executive has been traveling to Washington on behalf of the automaker and has taken steps to slow the entire industry’s adoption of electric vehicles. Chris Reynolds, a high-ranking senior executive for Toyota, reportedly has held closed-door meetings with congressional staff members.

At least four people familiar with the matter told the New York Times that Reynolds argued against an aggressive rollout of fully electric vehicles, instead urging for a focus on hybrids (like the Prius) and other alternatively-fueled vehicles, like hydrogen-powered fuel-cell EVs.

This all comes at a time when multiple automakers are planning to go fully or mostly battery electric in the years to come, often driven by tightening emissions rules in China and Europe. Toyota, on the other hand, feels incredibly late to the EV game.

Despite Toyota’s recent ambitious plans to launch 15 fully electric cars by 2025, it has only shown the world a concept of its upcoming bZ4X while other manufacturers like Audi, Ford, Hyundai, Jaguar, Porsche, Volvo, and Volkswagen all have at least one BEV for sale today.

So if Toyota can persuade lawmakers of the importance of hybrids over EVs and successfully stymie funding for EV-related infrastructure and incentives, it could give the automaker more time to separate from its crutch on hybrids and catch up to other manufacturers.

The potential impact of lobbying against BEVs can be seen in the recently proposed infrastructure spending bill, which cuts the government funding for expanding the EV charging infrastructure in half of what was anticipated by President Joe Biden’s staffers to deploy 500,000 EV charging stations nationwide.

In addition to doing a potential disservice to American EV adopters, these actions could potentially impede the already full-speed efforts by other automakers pushing towards aggressive EV rollouts.

It is worth noting, Reynolds was recently named board chair for the Alliance for Automotive Innovation. The alliance is a lobbying organization that represents the interests of many automakers and OEM suppliers, many of which aren’t as heavily invested in hydrogen power or hybrids as Toyota.

Lithium-ion batteries: Does the SK Innovation import ban by the USITC threaten North America’s Lithium-ion battery supply for an emerging and growing US EV Market?


sk-innovation-symbolbild

Last week, the US International Trade Commission (ITC) proposed a 10-year import ban on South Korean battery producer, SK Innovation, after the conclusion of an IP lawsuit filed by fellow South Korean battery maker, LG Chem. This decision to ban imports essentially cuts material supply from two factories with a combined capacity of almost 22GWh (9.8GWh and 11.7GWh respectively), expected to commence production in 2022 and 2023. However, there is still an option of local material sourcing, though there are limited opportunities to source the required materials, such as active cathode materials domestically within the USA at the scale required.

Roskill View

Roskill’s analysis shows that in 2020, the USA accounted for 1% of the global cathode materials market, which is forecast to increase to around 5% by 2030. The legislation passed by the US ITC, however, maintains SK innovation’s ability to supply battery cells to Volkswagen’s MEB line in North America for two years and Ford’s F-150 for four years, in addition to supplying spare parts for Kia models. Considering sales/production levels of Ford and Volkswagen in USA, Roskill estimates SK Innovation’s potential market size to be 9GWh through to February 2023, falling to 3GWh until February 2025, as potential to supply VW’s requirements expires. As a result, it seems unlikely for SK Innovation to invest further capital and time developing and commissioning its two USA based factories, only to achieve production of battery cells for 2-3 years at 14% planned utilization rate.

SK-Innovation-1 US

SK Innovation announced plans for additional investment in its U.S. battery business, following approval by the SK Innovation Board of Directors to fund the start of construction of a second electric vehicle battery plant in Georgia. READ MORE: SK Innovation Increases Planned Investment in U.S. EV Battery Business to $2.5 Billion (electriccarsreport.com)

The removal of 22GWh of pipeline production capacity would represent a 10% decrease in total giga-factories capacity in North America in 2023, while EV demand in North America is expected to triple in the next five years and requires nearly 75GWh in installed battery capacity. As a result, the ITC’s decision, if not reversed or altered, would negatively impact the supply of Li-ion batteries for EV applications in the USA. The absence of SK Innovation would also place greater reliance on other battery makers in the USA, including Tesla/Panasonic, LG Chem and Envision AESC.

Roskill publishes annual Market Outlook reports for lithium-ion batteries and for a range of commodities across the lithium-ion battery supply chain, including lithium, cobalt, nickel sulphate and graphite. To see our full range of analysis, click here.

Join Roskill’s Lithium Mine to Market Conference to gain insight into the key drivers of the lithium market in 2021 and beyond. To register, click here. 

Contact the authors

This article was written by Egor Prokhodtsev and Kevin Shang. Please get in touch below if you wish to discuss further

Is Automotive Ready for Hydrogen Fuel? Battery Powered Ev’s (BEV) vs Fuel Cell Powered (FCEV) Vehicles – The ‘Green Shift’ is On


green-cars-2.0-how-do-hydrogen-fuel-cell-cars-work

With global sustainability legislations shifting the automotive market away from combustion engines, you’ve probably heard somebody utter “my next car will be electric”. If you haven’t, it’s likely you will soon. However, one fuel source doesn’t fit all. Making the green shift in the automotive market will require other sustainable fuel sources. Here Mats W Lundberg, head of sustainability at Sandvik, maps out the road towards hydrogen fuel.

The move away from petrol, diesel and hybrid cars can seem like a shifting target. Despite deadlines for the ban on such vehicles varying by country, we can be sure that global change is happening — and soon. Automakers and drivers alike will need to adjust to a more sustainable future, but how can you decide which resource will power your vehicle?

BEVs versus FCEVs

TOYOTA-master1050Credit…Keith Tsuji/Getty Images

The automotive sector typically views battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) as competing technologies. While BEVs use electricity stored in a battery that powers the vehicle’s electric motor, FCEVs are powered by fuel cells. 

A fuel cell converts energy stored in molecules into electrical energy. Only oxygen and hydrogen are required to power the fuel cell — the former is readily available in the atmosphere, and the latter can be generated through electrolysis. 

FCEVs can offer better weight economy, effectively powering larger vehicles such as haulage that need to limit unnecessary weight gain. Vehicles that travel long distances or that need to refuel quickly are also more suited to hydrogen. Hydrogen is also a good choice for longer-term storage, since it is a gas that can be stored in tanks and containers, while battery lifetime can suffer if the batteries are not charged and discharged correctly.

However, hydrogen’s sustainable future relies on the production of green hydrogen — produced through electrolysis powered by renewable resources. Currently, around 96 per cent of hydrogen is generated from fossil fuels, so developments must still be made if FCEVs are going to match the feasibility of BEVs.

Despite green hydrogen’s slow development, across Europe many projects are already underway to test and deploy hydrogen buses, taxis and other large vehicles, spurring on investment in re-fueling stations and other infrastructure that will be critical to the roll-out of FCEVs.

Fuel cell Bus 1 F4

For instance, the Joint Initiative for Hydrogen Vehicles across Europe (JIVE) project seeks to deploy 139 new zero emission fuel cell buses and associated re-fueling infrastructure across five European countries. JIVE is co-funded by a 32 million euro grant from the Fuel Cells and Hydrogen Joint Undertaking under the European Union Horizon 2020 framework program for research and innovation. Planned operating sites include the UK, Belgium, Germany, Italy and Denmark.

Elsewhere, British carmaker Jaguar Land Rover is working on a government-sponsored initiative, Project Zeus, that will develop fuel cell technologies for its larger vehicles. While the project remains in early development and the focus is on developing hydrogen powertrain technology, the first concept developed as a result of Project Zeus is likely to be an Evoque-sized SUV.

Getting Prepared

As sustainable and viable hydrogen solutions begin to take off, hydrogen infrastructure will also be key to delivering the fuel source to the automotive industry. Infrastructure doesn’t only involve producing the fuel itself, but also the pipework to transport it, and the development of the fuel cells. A key component in this infrastructure is steel.

High quality steel tubes will be an important requirement for gas companies, who will require flexible solutions to set up re-fueling stations. Sandvik is already working with leading gas and engineering company, Linde, and is supplying its portable Solution in a Container to help the company build re-fueling stations across Europe. The stainless steel alloy tubes transport hydrogen from a storage tank to a dispenser.

Linde’s hydrogen gas is transported under both low and high pressures of up to 900 bars, so Sandvik’s tubes meet strict safety guidelines. The long tubes eliminate the need for conventional fittings, such as cone and thread connections or welding, which normally connect shorter tubes. Removing these connections helps reduce the risk of leakage and station shutdowns.

In addition to hydrogen transport infrastructure, materials technology is also central to fuel cell development. The Sandvik Sanergy® product platform consists of a coated strip for a critical fuel cell stack component. The strip is ready to be pressed to bipolar fuel cell plates, eliminating the costly need for individual plate coating. Today Sandvik has a unique, large-scale production facility in Sandviken, Sweden, and is ready for fuel cell technology to take off.

As we move away from petrol and diesel, many automakers are entering new territory. While BEV technology is well underway, it’s important to recognize that other sustainable options may better suit certain automotive requirements. Hydrogen fuel cells remain a working progress, but ongoing investment and their clear potential make hydrogen a strong contender for the industry’s greener future.

Mainstream EV Adoption: 5 Speedbumps to Overcome


** Article from the Visual Capitalist **

Many would agree that a global shift to electric vehicles (EV) is an important step in achieving a carbon-free future. However, for various reasons, EVs have so far struggled to break into the mainstream, accounting for just 2.5% of global auto sales in 2019. 

To understand why, this infographic from Castrol identifies the five critical challenges that EVs will need to overcome. All findings are based on a 2020 survey of 10,000 consumers, fleet managers, and industry specialists across eight significant EV markets. 

The Five Challenges to EV Adoption

Cars have relied on the internal combustion engine (ICE) since the early 1900s, and as a result, the ownership experience of an EV can be much more nuanced. This results in the five critical challenges we examine below. 

Challenge #1: Price

The top challenge is price, with 63% of consumers believing that EVs are beyond their current budget. Though many cheaper EV models are being introduced, ICE vehicles still have the upper hand in terms of initialaffordability. Note the emphasis on “initial”, because over the long term, EVs may actually be cheaper to maintain. 

Taking into account all of the running and maintenance costs of [an EV], we have already reached relative cost parity in terms of ownership.

—President, EV consultancy, U.S.

For starters, an EV drivetrain has significantly fewer moving parts than an ICE equivalent, which could result in lower repair costs. Government subsidies and the cost of electricity are other aspects to consider. 

So what is the tipping price that would convince most consumers to buy an EV? According to Castrol, it differs around the world. 

Country EV Adoption Tipping Price ($)
🇯🇵 Japan $42,864
🇨🇳 China  $41,910
🇩🇪 Germany $38,023
🇳🇴 Norway $36,737
🇺🇸 U.S. $35,765
🇫🇷 France $31,820
🇮🇳 India $30,572
🇬🇧 UK $29,883
Global Average $35,947

Many budget-conscious buyers also rely on the used market, in which EVs have little presence. The rapid speed of innovation is another concern, with 57% of survey respondents citing possible depreciation as a factor that prevented them from buying an EV. 

Challenge #2: Charge Time

Most ICE vehicles can be refueled in a matter of minutes, but there is much more uncertainty when it comes to charging an EV. 

Using a standard home charger, it takes 10-20 hours to charge a typical EV to 80%. Even with an upgraded fast charger (3-22kW power), this could still take up to 4 hours. The good news? Next-gen charging systems capable of fully charging an EV in 20 minutes are slowly becoming available around the world. 

Similar to the EV adoption tipping price, Castrol has also identified a charge time tipping point—the charge time required for mainstream EV adoption. 

Country Charge Time Tipping Point (minutes)
🇮🇳 India 35
🇨🇳 China 34
🇺🇸 U.S. 30
🇬🇧 UK 30
🇳🇴 Norway 29
🇩🇪Germany 29
🇯🇵 Japan 29
🇫🇷 France 27
Global Average 31

If the industry can achieve an average 31 minute charge time, EVs could reach $224 billion in annual revenues across these eight markets alone. 

Challenge #3: Range

Over 70% of consumers rank the total range of an EV as being important to them. However, today’s affordable EV models (below the average tipping price of $35,947) all have ranges that fall under 200 miles. 

Traditional gas-powered vehicles, on the other hand, typically have a range between 310-620 miles. While Tesla offers several models boasting a 300+ mile range, their purchase prices are well above the average tipping price. 

For the majority of consumers to consider an EV, the following range requirements will need to be met by vehicle manufacturers.

Country Range Tipping Point (miles)
🇺🇸 U.S. 321
🇳🇴 Norway 315
🇨🇳 China 300
🇩🇪 Germany 293
🇫🇷 France 289
🇯🇵 Japan 283
🇬🇧 UK 283
🇮🇳 India 249
Global Average 291

Fleet managers, those who oversee vehicles for services such as deliveries, reported a higher average EV tipping range of 341 miles. 

Challenge #4: Charging Infrastructure

Charging infrastructure is the fourth most critical challenge, with 64% of consumers saying they would consider an EV if charging was convenient.

Similar to charge times, there is much uncertainty surrounding infrastructure. For example, 65% of consumers living in urban areas have a charging point within 5 miles of their home, compared to just 26% for those in rural areas. 

Significant investment in public charging infrastructure will be necessary to avoid bottlenecks as more people adopt EVs. China is a leader in this regard, with billions spent on EV infrastructure projects. The result is a network of over one million charging stations, providing 82% of Chinese consumers with convenient access. 

Challenge #5: Vehicle Choice

The least important challenge is increasing the variety of EV models available. This issue is unlikely to persist for long, as industry experts believe 488 unique models will exist by 2025. 

Despite variety being less influential than charge times or range, designing models that appeal to various consumer niches will likely help to accelerate EV adoption. Market research will be required, however, because attitudes towards EVs vary by country.

Country Consumers Who Believe EVs Are More Fashionable Than ICE Vehicles (%)
🇮🇳 India 70%
🇨🇳 China 68%
🇫🇷France 46%
🇩🇪Germany 40%
🇺🇸 UK 40%
🇯🇵 Japan 39%
🇺🇸 U.S. 33%
🇳🇴Norway  31%
Global Average 48%

A majority of Chinese and Indian consumers view EVs more favorably than traditional ICE vehicles. This could be the result of a lower familiarity with cars in general—in 2000, for example, China had just four million cars spread across its population of over one billion. 

EVs are the least alluring in the U.S. and Norway, which coincidentally have the highest GDP per capita among the eight countries surveyed. These consumers may be accustomed to a higher standard of quality as a result of their greater relative wealth. 

So When Do EVs Become Mainstream?

As prices fall and capabilities improve, Castrol predicts a majority of consumers will consider buying an EV by 2024. Global mainstream adoption could take slightly longer, arriving in 2030. 

Caution should be exhibited, as these estimates rely on the five critical challenges being solved in the short-term future. This hinges on a number of factors, including technological change, infrastructure investment, and a shift in consumer attitudes. 

New challenges could also arise further down the road. EVs require a significant amount of minerals such as copper and lithium, and a global increase in production could put strain on the planet’s limited supply.

Phoenix Arizona’s ‘Lectric eBikes’ are taking Industry by Storm – 2 Young Entrepreneurs Capture Market Interest with ‘Fun-to-Ride’ and Affordable eBikes


Lectric Bikes Phx ]493a6109-ceee-4439-8335-341d38830d81-RS_07079

         Founders of Lectric eBikes (based in Phoenix AZ) Robby Deziel  and Levi Conlow

All Levi Conlow’s dad wanted was an electric bike that didn’t cause sticker shock.

So when he approached his son and his son’s best friend Robby Deziel with the proposal that they put their heads together to make obtaining his e-bike dream come true, the new college graduates started thinking.

“My dad was just entering that phase of his life when he wanted an e-bike for himself and my mom. Their friends had e-bikes,” Conlow said. “He was frustrated. He couldn’t find one for less than $2,000 or $3,000.”

This is when the professional exploration path of Conlow — equipped with bachelor’s and master’s degrees in business entrepreneurship and leadership from Grand Canyon University — and Deziel — who has a bachelor’s degree in mechanical engineering from the University of Minnesota — merged with dad’s personal quest.

“Our parents and their friends were said they’d buy one if we figured it out,” Conlow said. “The dream of being able to work for ourselves was always cool and we just went for it.”

Deziel added, “We put our heads together to make them more accessible for everyone without sacrificing quality.”

That union resulted in Lectric eBikes, Conlow and Deziel’s electric bike company that has become a monster in the industry just over a year after launching in Phoenix in 2019. To date, more than 15,000 of their bikes have sold. In June, the company sold $3.5 million worth of bikes alone, Conlow said. 

This success rides on their two models, the original XP and the customer demand-inspired XP Step-Thru, each of which bears a more wallet-friendly price tag of $899.

The more they researched and got into the nitty gritty, they saw no reason for consumers to pay into the four digits.

“Other companies just wanted a higher profit margin. We’re really committed to a community of riders,” Conlow said.

Lectric is part of a global e-bike market that was valued at $23 billion in 2019, according to an Analytical Research Cognizance report. It’s also projected to be worth $46 billion by 2026, according to Fortune Business Insights.

This commitment has created a thriving business model that has relied on word-of-mouth. The idea: Deliver a product that generates strong support from customers, who will become natural advocates when they are stopped on the street by curious bystanders.

“We make it so customers absolutely love and support us. It shows the power of the customer advocate and what wonders they can do,” Conlow said.

Beverly Lambert has been one of those advocates from the start. She and her husband own two XP’s and have a Step-Thru on order.

Her husband used to own a bicycle store and they had owned every kind of bike on Earth. The last thing she wanted was another new-fangled version. But her husband bought them XP’s anyway.

Founders of Lectric E-Bikes Robby Deziel and Levi Conlow credit their success to influencers and reviews from YouTubers.

She tried to return hers but was convinced to try it just once.

“I was like, whoa, this is really easy to ride,” said Lambert, who was impressed at its performance up a gravel hill. “I thought, ‘What just happened?’”

Today, Lambert rides it every chance she gets. She’s currently on a camping trip, where she and her husband use it to ride around the campsite, hiking trails and to run quick errands. She takes it on bike trails and the reserve area near her Norco, California, home.

Lambert has helped sell many Lectric bikes to friends and complete strangers who became friends after spotting her on the road and asking her about her e-bike.

Separating from the pack

Conlow and Deziel have been pals since the sixth grade in their hometown of Lakeville, Minnesota. College geographically separated them but they kept in touch and hoped to get into some kind of business together after they graduated.

They did. But for a while, it seemed their entrepreneurial dream would be just that.

At first, Conlow and Deziel, who moved to the Valley, designed several renditions and got fine tuning feedback from their parents.

Originally, they envisioned a sleek, high-tech version aimed at a young audience. They designed the bikes, sourced the manufacturing and were poised to dazzle at tradeshows.

But what they found was that their bike wasn’t practical for the audience that really wanted it. Among the complaints: people couldn’t fit on it; they wanted a more comfortable experience; and its traditional bicycle look meant it needed to be hauled on a car rack with other accessories, which quickly negated the bike’s low price.

“We could not sell those bikes to save our lives,” Deziel recalled. “With all of those lessons in mind, we went back to the drawing board.”

They emerged with what would be their flagship model, the XP. This version has smaller diameter wheels and is lower to the ground, allowing riders of various heights to easily get on and off. The handlebars and seats are adjustable and, because it’s a folding fat tire bike, the increased air volume allows for a more comfortable ride and no rack is needed.

Founders of Lectric E-Bikes Robby Deziel and Levi Conlow credit their success to influencers and reviews from YouTubers.

It fits neatly into the trunk of Deziel’s Honda Civic. It can do mild off-roading onto gravel and hiking trails.

The bike also is assembled when shipped. All customers need to do is pump up the tires and make seat and handlebar adjustments and they’re good to go.

All of these, Deziel said, would be key factors that separate them from the pack.

“With some, you need to put the wheels and handlebars on and build the seat. One company asks you to build the brakes,” Deziel said. “The way we see it, we are the bike people. Not all of our customers are mechanics.”

A sudden surge in orders

Early on, no one was biting. Their parents were the only customers. Deziel was evaluating his bank account and figuring out how many days he could afford to live here before having to move back home.

“We had no inventory. No money. We were in debt to my dad,” Conlow said.

They took a gamble with the little money they did have, made eight bikes and sent those to influencers. With no funds to partner with them, the guys crossed their fingers that at least a couple of the influencers would post positively about their bike.

“We were on pins and needles,” Conlow said.

Soon, one influencer reached out and said he liked the bike would post a review. Still, they were skeptical. They did not set up a bank account and decided to put up a website at the last minute.

“No way people are going to buy a bike on the first day,” Conlow said of their thinking at the time. “We planned to make an account later.”

The first day the influencer’s video posted, $30,000 in Lectric bikes were sold. Over the next 24 hours, another $30,000 in sales, Conlow said.

“We knew we had other videos scheduled to come out after that first day,” Deziel said. “I thought, ‘I can’t believe this, this is crazy… oh man, it’s about to get even crazier.’”

By the time the company was 10 days old, a second influencer video had posted, generating $120,000 a day in sales.

Needless to say, that company bank account was set up real quick.

At the 21-day mark, Lectric sold $1 million in pre-orders. For the first few months, Conlow and Deziel worked out of a Phoenix garage doing $1 million a month. They worked 18-hour days and personally answered emails and calls.

“We were simply overwhelmed. We didn’t really have time to appreciate it because we were consumed by it. We were just trying to hold on,” Conlow said. “But after having nothing, we were excited to wake up and get to work and answer those calls and e-mails.”

Since then, they’ve added to their staff and moved out of the garage into a 13,000-square foot headquarters and showroom.

Most of Lectric’s client base is between the ages of 45-80, who haven’t been on a bike in a while or have mobility issues that prevent them from riding a traditional bike, Deziel said. However, they are all outdoorsy and enjoy time in nature.

Many clients, like the Lamberts, use their bikes around campsites, explore trails while camping or to run errands into town without having to unhook their vehicle. This led Lectric’s involvement with Homes on Wheels Alliance, a non-profit that helps people struggling with homelessness through converting vans into livable spaces and assisting them with managing their finances.

So far, Lectric has sponsored two build outs and plan to do more.

“We’re extremely excited and grateful that we are able to be part of it. Just knowing the impact is very important to us,” Conlow said.

Each bike comes with a one-year warranty, one of the amenities that Deziel knew needed to be worked out as the company saw its profile rapidly rise.

“We feel a great sense of responsibility as to what we are doing with our customers. We needed to get all of this in place so people can have a positive experience,” he said.

Employee Sam Newman, left, and Robby Deziel work on a bike that needs repairs. Deziel founded the Lectric E-Bikes company with childhood friend Levi Conlow.

The Step-Thru model was a response to customers asking for an even easier bike to get on and off of. The frame allows greater ease to do that.

The first day the company announced its release, it sold $300,000 in pre-orders, Conlow said. He and Deziel had to answer calls and e-mails just to handle the customer traffic. It was then when Conlow took a call from a woman named Sue who had a leg condition that prevented her from getting on to the XP. She was excited because with the Step-Thru, she could ride with her husband.

“She was brought to tears telling me about the impact the bike would have and how it’s going to change her life,” Conlow said. “It reaffirmed why we do what we do and why we design what we do. We don’t want to leave anyone out and get as many people riding as possible. It’s a very cool thing to be part of.”

What: Lectric eBikes

Where: 2010 W. Parkside Lane, Phoenix

Employees: 14

Factoid: The global e-bike market was valued at $23 billion in 2019, according to an Analytical Research Cognizance report.

Details: 602-715-0907, lectricebikes.com

A New Electric Turbine could Revolutionize the Future of Electric Cars


Conceptual futuristic sports car - design is generic and custom made.

        A Look Into the Future of Electric Turbine Cars

In the past two years, companies have promised electric motors producing far more torque density, measured in kilowatts per kilogram. Avid said its Evo Axial Flux motor makes “one of the highest usable power and torque densities of any electric vehicle motor available on the market today.” Equipmake says its motors develop “class leading power densities.” Yasa claims its “electric motors … provide the highest power/torque density available in their category.”

Enter Linear Labs, which says it has a motor to beat all. The company declares its Hunstable Electric Turbine (HET), perhaps with unintentional shades of Ayn Rand, “The Motor of the World.”

Watch The Video

 

The company told Autoblog, “The defining characteristic of this motor [is that] at very low RPMs … [for] the same size, same weight, same volume, and the same amount of input energy into the motor, we will always produce – at a minimum, sometimes more, but at a minimum – two to three times the torque output of any electric motor in the world, and it does this at high efficiency throughout the torque and speed range.”

“Hunstable” comes from the two principals: Fred Hunstable, an engineer who spent years designing the electrical infrastructure for nuclear power plants in the United States; and Brad Hunstable, Fred’s son and an ex-tech entrepreneur who helped found the streaming service Ustream, sold to IBM in 2016 for $150 million.

Linear Labs began as a father-son project to create a linear generator surrounding the shaft of an old-fashioned windmill that would provide reliable power (as well as clean water) to impoverished communities. The challenge was designing a generator able to produce sufficient power from the shaft’s low-speed, high-torque reciprocating movement. Brad said his father cracked the code about four years ago, resulting in “a linear generator that produced massive amounts of electricity from a slow-moving windmill.” What’s more, the breakthrough was modular, leading to a family of motors that has been issued 25 patents so far.

E Engine 7 download

What is the Hunstable Electric Turbine?

Electric motors are well into their second century, having barely changed since Nikola Tesla patented his innovations with the modern three-phase, four-pole induction motor between 1886 and 1889. While all motors consist of similar fundamental components – copper wire coils known as windings, and magnets – the way in which those components interact is slightly different. In a radial flux motor, one component spins within the other – imagine a small can spinning inside a larger stationary one. In an axial flux design, the components spin next to each other, like two flywheels sandwiching a central, stationary plate.

Typically, the way to create more torque is to send more current into a motor or build a larger motor. Linear Labs has found another way: by combining axial and radial flux designs in a single motor.

E Engine 2 download

Images: Stators and Rotors

E Engine 3 download

Copper Windings Inside the Huntstable Electric Turbine: Illustrations by Linear Labs

The HET is four rotors surrounding a stator. A central rotor spins inside a stator, creating one source of flux. A second rotor spins outside the stator, creating a second source of flux. Two additional rotors lie at the left and right ends of the stator, essentially forming an AF motor. That’s two more sources of flux, making four in total. It’s essentially two concentric radial motors bookended by two axial ones.

Linear Labs says all the HET generates all torque in the direction of rotor motion. In a promotional video, Fred Hunstable said, “We call it circumferential flux, sort of like a torque tunnel.”

Generating more torque in a given volume, and having all of that torque move in the direction of rotor motion, is how the Hunstables claim, “two to three times the torque for that size envelope compared to any other motor out there. It doesn’t matter what kind [of motor] it is, we will always out-produce it.”

Furthermore, by using discrete rectangular coils inset into the stator poles, the HET needs 30% less copper than a motor of similar size. The design also eliminates end windings – lengths of copper that lie outside the stator in a typical motor, generating wasted magnetic field and heat.

 

E Engine 4 download

Illustration by Linear Labs

What the HET could mean for future electric cars

So far, Linear Labs has inked deals with a scooter maker, with Swedish electric drive system firm Abtery, and with an unnamed firm designing a hypercar to be released within two years, utilizing four HETs. However, Brad Hunstable thinks the HET could have applications in the electric vehicle space, since the HET’s torque comes at RPMs that match the end use. Current EV motors spin much faster than the wheels, so most EVs use a reduction gear to connect a motor spinning at several thousand RPM with wheels spinning at anywhere from one to perhaps 1,800 RPM. If the HET generates the necessary torque at RPMs that match wheel speed, a carmaker could theoretically discard the reduction gear, reducing weight and improving powertrain efficiency.

Brad said testing has shown the HET in direct-drive configuration works in applications normally served by a 6:1 reduction gearbox, and it’s possible that the ratio is even higher. The downstream effects could be significant, according to Hunstable. That weight savings – the lower operating speed of the HET means fewer and lighter electronics, the company says – and efficiency gain could be used to reduce the size of the battery and thus the weight of the vehicle, saving cash and letting the manufacturer use lighter-duty components – perhaps enough to make a significant difference to the bottom line, Hunstable thinks.

The HET can also take over the role of a component known as a DC/DC boost converter, used in some EVs in situations in which the vehicle needs to trade torque for horsepower, such as during hard acceleration at highway speeds. By doing so, they use additional energy that can’t be put towards range. In general terms, EVs that emphasize performance use a boost converter, like the Tesla Model S, while ones that emphasize efficiency don’t, like the Hyundai Ioniq EV. (It should be noted that some hybrids, such as Toyota and Lexus hybrids, utilize boost converters to goose acceleration.)

Linear Labs says the HET does the job of the DC/DC boost converter on its own by changing the relative position of one or more of its four rotors, analogous to the variable cam system on an ICE, altering position depending on load needs. Combining the extra torque, reduced weight and complexity possible without a gearbox or boost converter, and lighter ancillaries, Linear Labs claims the HET could increase range by 10%.

EE Engine 5 f4ce5aa5ea15a6534bba0f190319a14d

A carmaker says …

No automaker will address claims by a company it has never heard of about a component it has never used. Still, we wanted to get OEM commentary to compare to Linear Labs’ statements. We contacted ChevroletTesla, and Hyundai. Only Hyundai agreed to a Q&A, connecting us with Jerome Gregeois, a senior manager at a Hyundai Group powertrain facility, and Ryan Miller, the manager for Hyundai’s electrified powertrain development team.

Gregeois said OEMs invest so much in batteries because they’re “so much more expensive than any of the [other] components,” and there’s so much more efficiency to be extracted from battery chemistry. Therefore, “The only way to reach competitive pricing compared to internal combustion engines or hybrids is really to get battery costs lower and lower.”

Concerning motors, Miller said, “Our focus and the industry’s focus on motors has been transitioning to silicon-carbide-based motor inverters.” The motor inverter converts the battery pack’s direct current (DC) into the alternating current (AC) used to power the electric motors that provide drive to the vehicle. Under regenerative braking, the motor inverter does the opposite – turning AC from the motors back into DC to recharge the battery. Silicon carbide technology, which the IEEE called “Smaller, faster, tougher,” is seen as enabling something like a 50% reduction in inverter volume.

E Engine 5

View photos Illustration courtesy Hyundai

Miller told us the permanent magnet motor in the Hyundai Ioniq is about 50 kilograms, or 110 pounds. The gearbox, which contains a final drive and a differential, is about 70 pounds. “It’s not light,” he said, “because gears are generally steel.” As for volume, the gearbox occupies about 70% of the volume of the motor.

We asked Gregeois and Miller if a direct-drive motor that allowed elimination of the gearbox would make an enormous difference in cost or complexity of the powertrain. Said Gregeois, “We think cost-wise that gearbox is going to be cheaper than two motors.” Miller added, “Steel and aluminum is very cheap.”

One automaker example doesn’t negate the benefits of the Hunstable Electric Turbine, and Brad Hunstable believes the savings are there. “Every drivetrain can be designed and engineered multiple ways,” he said. “But if you have two motors that produce twice the torque in half the size as one conventional motor that must utilize a gearbox, then there is no comparison. HET wins. Of course, for the short-term mass-market vehicle, one motor driving directly into the differential is the most likely scenario, still eliminating the standard … gearbox.”

And automakers are throwing money at improving their motors. Honda improved the electric motor in the Accord Hybrid by using square copper wires for the stator windings, and three magnets instead of two on the rotor. The changes are said to have added 6 pound-feet of torque and 14 horsepower.

E Engine 9A

View photos Illustration by Linear Labs

The First Inning

We asked Brad how long he thought it would be before we’d see an HET in a car like the Chevrolet Bolt. “Three or four, some say five years out … There are longer lead cycles to get into production for big companies, [but] we are in joint development agreements, we are testing with [automakers].”

There have been so many charlatans in the EV space that many of the stories we’ve read about the HET end in commenters attacking it like hyenas disemboweling a wildebeest.

“There’s a lot of smoke and mirrors in the motor space,” Brad acknowledged. “The difference in this one: We’ve built them. At the end of the day you can’t argue with something that’s built right in front of you.”

“We’re literally in the first inning of this technology,” he continued, “so there’s more things that we’ll continue to do that that’ll make this even better. But the first motors that we’re producing in the market are literally a quantum leap on everything that’s out there.”

The question, then, is whether that quantum leap makes sense from a cost and packaging perspective for the spectrum of EV manufacturers, or does it make sense primarily for luxury EV makers who can justify the HET’s cost. Can this one more efficient-yet-expensive component be countered and justified by removing a not-especially expensive thing (the gearbox) and removing some of these pretty expensive and heavy things (batteries)? Hyundai’s representatives weren’t so sure, but if this really is just the first inning for HET, perhaps more development and actual access by major manufacturers will provide the answer as the game goes on.

 

 

 

Will Tesla’s “Battery Day” mean “doomsday” for legacy carmakers playing catch-up?


A peek inside a segment of a Tesla Model 3 battery pack.

Tesla is expected to hold its Battery Day in April as Elon Musk announced during the company’s Q4 earnings call. The chief executive said the company has a “compelling story” to tell about things that can “blow people’s minds.”

These statements do not only pique the interest of the electric vehicle community; they also hint of updates that can spell disaster for legacy car manufacturers trying to catch up with Tesla in the electric vehicle market.

Batteries are key to staying on top of the electric vehicle segment and Tesla is the leader of the pack when it comes to batteries and energy efficiency. This has been validated by organizations such as Consumer Reports and even by competitors who go deep into their pockets and go as far as cutting their workforces to catch Tesla in terms of hardware, software, and battery technology.

Come Tesla Battery Day, the obvious would be made more obvious. Tesla could further widen the gap and set itself apart from the rest, not just as the maker of the Model 3, Model Y, Cybertruck or other vehicles in its lineup but as an energy company.

Mass Production Of Cheaper Batteries

Batteries are among the most expensive components of an electric vehicle. This is true for Tesla and other electric vehicle manufacturers. With pricey batteries, car manufacturers cannot lower prices of their vehicles and therefore cannot encourage the mass adoption of zero-emission cars.

Tesla has reportedly been running its “Roadrunner” secret project that can lead to mass production of battery cells at $100/kWh. According to rumors, Tesla already has a pilot manufacturing line in its Fremont facility that can produce higher-density batteries using technology advancements developed in-house and gained through the Maxwell acquisition.

With a $100/kWh battery, the prices of Tesla’s vehicles can be competitive even without government subsidies.”

Tesla Gigafactory 1, where Model 3 battery cells are produced. (Photo: Tesla)

Aside from the Roadrunner project, Tesla has also been setting itself up to succeed in the battery game and dominate the market with its partnerships. It has a long relationship with Panasonic that helped it manufacture batteries in Giga Nevada, but has also signed battery supply agreements with LG Chem and CATL in China.

Battery prices have been going down significantly in the last decade. According to BloombergNEF, the cost of batteries dropped by 13% last year. From $1,100/kWh in 2010, the price went down to around $156.kWh in 2019. This is predicted to come close to the target $100/kWh by 2023. If Tesla achieves the $100/kWH cost sooner than the rest, it will give the company a massive advantage over its competitors and that will eventually lead to better profit margins.

Aside from cheaper batteries, the increased battery production capacity is also key in bringing products such as the all-electric Cybertruck and Tesla Semi to life.

“The thing we’re going to be really focused on is increasing battery production capacity because that’s very fundamental because if you don’t improve battery production capacity, then you end up just shifting unit volume from one product to another and you haven’t actually produced more electric vehicles… make sure we get a very steep ramp in battery production and continue to improve the cost per kilowatt-hour of the batteries,” Musk said during the Q4 2019 earnings call.

Enhanced Tesla Batteries

Tesla already has good batteries through its years of research, experimentation, and partnerships with battery producers. It has invested a good amount of money and effort to make sure it’s leading the battery game.

This advantage is made very clear on how Tesla was able to produce the most efficient electric SUV today in the form of the soon-to-be-released Model Y crossover with an EPA rating of 315 miles per single charge versus the Porsche Taycan with a range of around 200 miles.

The Tesla Model Y crossover. (Credit: Tesla)

With the acquired technologies from companies such as Maxwell and recently a possible purchase of a lithium-ion battery cell specialist startup in Colorado, Tesla demonstrates it’s not stopping its efforts to perfect its battery technology. Maxwell manufactures battery components and ultracapacitors and it’s just a matter of time before Tesla makes use of these technologies.

When asked about Maxwell’s ultracapacitor technology during the Q4 2019 earnings call, Musk said, “It’s an important piece of the puzzle.”

Musk also referenced the Maxwell acquisition during an extensive interview at the Third Row Podcast. “It’s kind of a big deal. Maxwell has a bunch of technologies that if they are applied in the right way I think can have a very big impact,” Musk said during a Third Row Podcast interview.

There are rumors out of China claimingthat Tesla may come up with a battery that combines the best traits of Maxwell’s supercapacitors and dry electrode technologies. This could mean batteries that could charge faster, pack more energy density, and last longer.

Controlling Battery Supply

Knowing what works and what doesn’t for electric car batteries puts Tesla on top of the game. Of course, add to that what could be the best battery management system that makes Tesla vehicles among the most efficient if not the best in utilizing their batteries. With the advantage on hardware and software fronts, the thought of Tesla becoming a battery supplier is far from being a crazy idea.

Its competitors such as Audi and Jaguar have recently expressed concerns about their battery supplies as they both depend on LG Chem. Tesla– aside from its partnerships with Panasonic, LG Chem, and CATL — pushes the limit to develop its new battery cells in-house and that opens up a lot of possibilities for Tesla as a business.

“It would be consistent with the mission of Tesla to help other car companies with electric vehicles on the battery and powertrain front, possibly on other fronts. So it’s something we’re open to. We’re definitely open to supplying batteries and powertrains and perhaps other things to other car companies,” Musk was quoted as saying.

Recent job postings for a cell development engineer and equipment development engineers suggest that Tesla might actually be considering the idea of introducing a battery line of its own. But of course, the next-generation batteries would be first used for its vehicle lineup. Once it meets that demand and hits economies of scale, one can only imagine how Tesla could play the important role of supplying batteries to other carmakers.

Whether Tesla would announce cheaper batteries, enhanced electric car batteries, or give updates about its efforts, Battery Day in April will most definitely be worth the wait. For other car manufacturers, time would pause during that day as they listen to what Elon Musk and his team will say. And most likely, after the company talk, other car manufacturers will have to go back to their drawing boards once more in an attempt to catch up.

Three Innovations To Upend The Energy Storage Market


The battery craze isn’t really about batteries at all. It’s about something far grander than a battery, which is simply a conduit to a much bigger story.

Batteries are like the internet without Wifi. 

The holy grail is energy storage.

And while perpetually bigger batteries themselves have emerged as the dominant solution to our energy storage needs, their reliance on rare earths elements and some metals that are controversially sourced, as well as the fact that their product life is quite limited, indicates they are simply a stop along the way to more creative innovations. 

Already, there are several challenger solutions that have the potential to rise above the battery as the answer to our energy storage needs.

Gravity 

One of these solutions is gravity. Several companies across the world are using gravity for energy storage or rather, moving objects up and down to store and, respectively, release stored electricity.

One of these, Swiss-based Energy Vault, uses a six headed crane to lift bricks when renewable installations are producing electricity than can be consumed and drop them back down when demand for electricity outweighs supply. The idea may sound eccentric but kinetic energy, according to a Wall Street Journal report on these companies, is getting increasingly popular.

The idea draws on hydropower storage: that involves pushing water uphill and storing it until it is needed to power the turbines, when it is released downhill. On instead of water, these companies use gravity, essentially lifting and dropping heavy objects. Energy Vault uses bricks and says 20 brick towers could power up to 40,000 households for a period of 24 hours. Related: Oil Suppliers Slash Prices To Save Asian Market Share

Another company, in the UK, lifts and drops weights in abandoned mine shafts. 

Gravitricity, which last year ran a crowdfunding campaign that raised $978,000 (750,000 pounds), is using abandoned shafts to raise and lower weights of between 500 and 5,000 tons with a system of winches. According to the company, the system could be configured for between 1 and 20 MW peak capacity. The duration of power supply, however, is even more limited than Energy Vault’s, at 15 minutes to 8 hours.

The duration of power supply is an important issue. When the wind dies down and the sky is overcast, this could last more than a day as evidenced by the wind drought in the UK two years ago, when wind turbines were forced to idle for a week.

Heat

Gravity-base storage is one alternative to batteries, some of it cheaper than batteries, but for the time being, less reliable than batteries if we are thinking about a 100-percent renewable-powered grid. Another solution is thermal storage.

EnergyNest is one developer of thermal energy storage. It works by pumping a heated fluid along a system of pipes and storing it in a solid material. The heat flows into the material from top to bottom and is released into this material where it stays until it is needed again. Then, the flow gets reversed, with cold fluid (thermal oil or water) flowing from the bottom up, heating up in the process and exiting the storage system. Related: Restarted Saudi, Kuwaiti Oilfields To Pump 550,000 Bpd By End-2020

Then there is liquid air storage as an alternative to batteries. It works by separating the carbon dioxide and the oxygen from the nitrogen in the air and then storing this nitrogen in liquefied form. When needed to generate electricity, it is regasified. The process of liquefaction is powered by the excess electricity that needs to be stored and when a peak in demand requires more electricity generation, it is reheated and regasified, and used to power a turbine. According to experts, the process is not 100-percent efficient, with rates ranging from 25 percent to 70 percent.

Geothermal

Yet another potential alternative to batteries for energy storage is using geothermal energy to store heat and then releasing it to generate more electricity. The so-called sensitized thermal cells developed by researchers from the Tokyo Institute of Technology are technically batteries, as they use electrodes to move electrons. But on the flip side, it does not work with intermittent energy such as solar or wind. It taps the potential of geothermal energy, an underused renewable source.

Not all of these energy storage idea swill take off. Not all of them will prove viable enough to become widely adopted. Yet some alternatives to batteries will likely work well enough to provide an alternative to the dominant technology. Alternatives are important when you are aiming for 100-percent renewable electricity. 

EVs

Failing that, we could simply use our EV batteries as energy storage for excess power from solar and wind installations, as the International Renewable Energy Agency said earlier this month. While a strain on the grid when they charge, IRENA said, electric cars could juice up at the right time to take in surplus power and then release it back into the grid if that grid is a smart one. In 2050, around 14 terawatt-hours (TWh) of EV batteries would be available to provide grid services, compared to 9 TWh of stationary batteries, according to the agency. One way or another, slowly and with difficulty, we are heading into a much more renewable energy future.