Is Reliable Energy Storage (and Markets) On The Horizon?


Green and renewable energy markets are bringing power to millions with virtually no adverse environmental impacts, but before we can count on renewables for widespread reliability, one critical innovation must arrive: storage.

image-223

PetersenDean Inc. employees install solar panels on the roof of a home in Lafayette, California, U.S., Photographer: David Paul Morris/Bloomberg

On Tuesday, May 15, 2018. California became the first state in the U.S. to require solar panels on almost all new homes. Most new units built after Jan. 1, 2020, will be required to include solar systems as part of the standards adopted by the California Energy Commission.

While hydroelectric and some other renewable sources can generate power around the clock, solar and wind energy are irregular and not necessarily consistent sources for 24/7 projections.

Storms and darkness disrupt solar farms, while dozens of meteorological phenomena can impact wind farms. Because these sources have natural peaks, they cannot be made to align with consumer power demand without effective storage. Solar and wind may be able to meet demand during the day or a short period, but when energy is high and demand is low, the power generated must either be used or wasted if it cannot be stored in some type of battery.

According to projections from GTM Research and the Energy Storage Association, the energy storage market is expected to grow 17x from 2017 and 2023. This projection accounts for private and commercial deployment of storage capacity, including impacts from government policies like California’s solar panel mandate.

During the same interval, the energy storage market is expected to grow 14x in dollar value.

The exact type of storage deployments in these projections varies. Recent innovations have included advancements in traditional battery technology as well as battery alternatives like liquid air storage.

In New York, one project included a megawatt scaled lithium-ion battery storage system to replace lead acid schemes. The liquid air storage, however, uses excess energy to cool air in pressurized chambers until it is liquid. Rather than storing electrical or chemical energy like a battery, the process stores potential energy.

When demand arises, the liquefied air is allowed to rapidly heat and expand, turning turbines to generate electricity.

Meanwhile, Tesla has added nearly a third of the annual global energy storage deployments since 2015. Leading the charge with low-cost lithium-ion batteries, Telsla and other innovators are bringing global capacity up quickly.

These energy storage devices are versatile, capable of storing energy from any source–fossil fuel or renewable– and in any place–private homes or industrial operations.

With battery costs continuing to decrease and battery alternatives coming into the fore, projections of storage capacity are indeed quite possible. Assuming the electric industry can indeed upgrade its current infrastructure, new grid connections means that energy will be able to be shared more than ever, perhaps even traveling far distances during peak or be stored for non-peak use anywhere on the grid.

When storage costs and capacity align with market incentives, we may just see a renewable energy revolution, one that makes distributed generation mainstream for all consumers.

** Contributed from Forbes Energy

Watch Our YouTube Video:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Recommended Follow Up Reading:

01.
Solar Energy Prices

02.
Solar Storage Batteries

03.
Cheap Energy Suppliers

04.
Energy Storage

05.
Renewable Solar Energy

Advertisements

Form Energy – A formidable (and notable) Startup Company Tackling the Toughest Problem(s) in Energy Storage


Industry veterans from Tesla, Aquion and A123 are trying to create cost-effective energy storage to last for weeks and months.

A crew of battle-tested cleantech veterans raised serious cash to solve the thorniest problem in clean energy.

As wind and solar power supply more and more of the grid’s electricity, seasonal swings in production become a bigger obstacle. A low- or no-carbon electricity system needs a way to dispatch clean energy on demand, even when wind and solar aren’t producing at their peaks.

Four-hour lithium-ion batteries can help on a given day, but energy storage for weeks or months has yet to arrive at scale.

Into the arena steps Form Energy, a new startup whose founders hope for commercialization not in a couple of years, but in the next decade.

More surprising, they’ve secured $9 million in Series A funding from investors who are happy to wait that long. The funders include both a major oil company and an international consortium dedicated to stopping climate change.

“Renewables have already gotten cheap,” said co-founder Ted Wiley, who worked at saltwater battery company Aquion prior to its bankruptcy. “They are cheaper than thermal generation. In order to foster a change, they need to be just as dependable and just as reliable as the alternative. Only long-duration storage can make that happen.”

It’s hard to overstate just how difficult it will be to deliver.

The members of Form will have to make up the playbook as they go along. The founders, though, have a clear-eyed view of the immense risks. They’ve systematically identified materials that they think can work, and they have a strategy for proving them out.

Wiley and Mateo Jaramillo, who built the energy storage business at Tesla, detailed their plans in an exclusive interview with Greentech Media, describing the pathway to weeks- and months-long energy storage and how it would reorient the entirety of the grid.

The team

Form Energy tackles its improbable mission with a team of founders who have already made their mark on the storage industry, and learned from its most notable failures.

There’s Jaramillo, the former theology student who built the world’s most recognizable stationary storage brand at Tesla before stepping away in late 2016. Soon after, he started work on the unsolved long-duration storage problem with a venture he called Verse Energy.

Separately, MIT professor Yet-Ming Chiang set his sights on the same problem with a new venture, Baseload Renewables. His battery patents made their mark on the industry and launched A123 and 24M. More recently, he’d been working with the Department of Energy’s Joint Center on Energy Storage Research on an aqueous sulfur formula for cost-effective long-duration flow batteries.

He brought on Wiley, who had helped found Aquion and served as vice president of product and corporate strategy before he stepped away in 2015. Measured in real deployments, Aquion led the pack of long-duration storage companies until it suddenly went bankrupt in March 2017.

Chiang and Wiley focused on storing electricity for days to weeks; Jaramillo was looking at weeks to months. MIT’s “tough tech” incubator The Engine put in $2 million in seed funding, while Jaramillo had secured a term sheet of his own. In an unusual move, they elected to join forces rather than compete.

Rounding out the team are Marco Ferrara, the lead storage modeler at IHI who holds two Ph.D.s; and Billy Woodford, an MIT-trained battery scientist and former student of Chiang’s.

The product

Form doesn’t think of itself as a battery company.

It wants to build what Jaramillo calls a “bidirectional power plant,” one which produces renewable energy and delivers it precisely when it is needed. This would create a new class of energy resource: “deterministic renewables.”

By making renewable energy dispatchable throughout the year, this resource could replace the mid-range and baseload power plants that currently burn fossil fuels to supply the grid.

Without such a tool, transitioning to high levels of renewables creates problems.

Countries could overbuild their renewable generation to ensure that the lowest production days still meet demand, but that imposes huge costs and redundancies. One famous 100 percent renewables scenario notoriously relied on a 15x increase in U.S. hydropower capacity to balance the grid in the winter.

The founders are remaining coy about the details of the technology itself.

Jaramillo and Wiley confirmed that both products in development use electrochemical energy storage. The one Chiang started developing uses aqueous sulfur, chosen for its abundance and cheap price relative to its storage ability. Jaramillo has not specified what he chose for seasonal storage.

What I did confirm is that they have been studying all the known materials that can store electricity, and crossing off the ones that definitely won’t work for long duration based on factors like abundance and fundamental cost per embodied energy.

“Because we’ve done the work looking at all the options in the electrochemical set, you can positively prove that almost all of them will not work,” Jaramillo said. “We haven’t been able to prove that these won’t work.”

The company has small-scale prototypes in the lab, but needs to prove that they can scale up to a power plant that’s not wildly expensive. It’s one thing to store energy for months, it’s another to do so at a cost that’s radically lower than currently available products.

“We can’t sit here and tell you exactly what the business model is, but we know that we’re engaged with the right folks to figure out what it is, assuming the technical work is successful,” Jaramillo said.

Given the diversity of power markets around the world, there likely won’t be one single business model.

The bidirectional power plant may bid in just like gas plants do today, but the dynamics of charging up on renewable energy could alter the way it engages with traditional power markets. Then again, power markets themselves could look very different by that time.

If the team can characterize a business case for the technology, the next step will be developing a full-scale pilot. If that works, full deployment comes next.

But don’t bank on that happening in a jiffy.

“It’s a decade-long project,” Jaramillo said. “The first half of that is spent on developing things and the second half is hopefully spent deploying things.”

The backer says

The Form founders had to find financial backers who were comfortable chasing a market that doesn’t exist with a product that won’t arrive for up to a decade.

That would have made for a dubious proposition for cleantech VCs a couple of years ago, but the funding landscape has shifted.

The Engine, an offshoot of MIT, started in 2016 to commercialize “tough tech” with long-term capital.

“We’re here for the long shots, the unimaginable, and the unbelievable,” its website proclaims. That group funded Baseload Renewables with $2 million before it merged into Form.

Breakthrough Energy Ventures, the entity Bill Gates launched to provide “patient, risk-tolerant capital” for clean energy game-changers, joined for the Series A.

San Francisco venture capital firm Prelude Ventures joined as well. It previously bet on next-gen battery companies like the secretive QuantumScape and Natron Energy.

The round also included infrastructure firm Macquarie Capital, which has shown an interest in owning clean energy assets for the long haul.

Saudi Aramco, one of the largest oil and gas supermajors in the world, is another backer.

Saudi Arabia happens to produce more sulfur than most other countries, as a byproduct of its petrochemical industry.

While the kingdom relies on oil revenues currently, the leadership has committed to investing billions of dollars in clean energy as a way to scope out a more sustainable energy economy.

“It’s very much consistent with all of the oil supermajors taking a hard look at what the future is,” Jaramillo said. “That entire sector is starting to look beyond petrochemicals.”

Indeed, oil majors have emerged as a leading source of cleantech investment in recent months.

BP re-entered the solar industry with a $200 million investment in developer Lightsource. Total made the largest battery acquisition in history when it bought Saft in 2016; it also has a controlling stake in SunPower. Shell has ramped up investments in distributed energy, including the underappreciated thermal energy storage subsegment.

The $9 million won’t put much steel in the ground, but it’s enough to fund the preliminary work refining the technology.

“We would like to come out of this round with a clear understanding of the market need and a clear understanding of exactly how our technology meets the market need,” Wiley said.

The many paths to failure

Throughout the conversation, Jaramillo and Wiley avoided the splashy rhetoric one often hears from new startups intent on saving the world.

Instead, they acknowledge that the project could fail for a multitude of reasons. Here are just a few possibilities:

• The technologies don’t achieve radically lower cost.

• They can’t last for the 20- to 25-year lifetime expected of infrastructural assets.

• Power markets don’t allow this type of asset to be compensated.

• Financiers don’t consider the product bankable.

• Societies build a lot more transmission lines.

• Carbon capture technology removes the greenhouse gases from conventional generation.

• Small modular nuclear plants get permitting, providing zero-carbon energy on demand.

• The elusive hydrogen economy materializes.

Those last few scenarios face problems of their own. Transmission lines cost billions of dollars and provoke fierce local opposition.

Carbon capture technology hasn’t worked economically yet, although many are trying.

Small modular reactors face years of scrutiny before they can even get permission to operate in the U.S.

The costliness of hydrogen has thwarted wide-scale adoption.

One thing the Form Energy founders are not worried about is that lithium-ion makes an end run around their technology on price. That tripped up the initial wave of flow batteries, Wiley noted.

“By the time they were technically mature enough to be deployed, lithium-ion had declined in price to be at or below the price that they could deploy at,” he said.

Those early flow batteries, though, weren’t delivering much longer duration than commercially available lithium-ion. When the storage has to last for weeks or months, the cost of lithium-ion components alone makes it prohibitive.

“Our view is, just from a chemical standpoint, [lithium-ion] is not capable of declining another order of magnitude, but there does seem to be a need for storage that is an order of magnitude cheaper and an order of magnitude longer in duration than is currently being deployed,” Wiley explained.

They also plan to avoid a scenario that helped bring down many a storage startup, Aquion and A123 included: investing lots of capital in a factory before the market had arrived.

Form Energy isn’t building small commoditized products; it’s constructing a power plant.

“When we say we’re building infrastructure, we mean that this is intended to be infrastructure,” Wiley said.

So far, at least, there isn’t much competition to speak of in the super-long duration battery market.

That could start to change. Now that brand-name investors have gotten involved, others are sure to take notice. The Department of Energy launched its own long-duration storage funding opportunity in May, targeting the 10- to 100-hour range.

It may be years before Form’s investigations produce results, if they ever do.

But the company has already succeeded in expanding the realm of what’s plausible and fundable in the energy storage industry.

* From Greentech Media J. Spector

Turbocharge for lithium batteries: A NEW Nanocomposite material that can Increase Storage Capacity, Lifetime and Charging Speed for Li-Io Batteries: 3X More Energy in ONE Hour


renaissanceoA team of material researchers has succeeded in producing a composite material that is particularly suited for electrodes in lithium batteries. The nanocomposite material might help to significantly increase the storage capacity and lifetime of batteries as well as their charging speed. 

Lithium-ion batteries are the ultimate benchmark when it comes to mobile phones, tablet devices, and electric cars. Their storage capacity and power density are far superior to other rechargeable battery systems. Despite all the progress that has been made, however, smartphone batteries only last a day and electric cars need hours to be recharged. Scientists are therefore working on ways to improve the power densities and charging rates of all-round batteries. “An important factor is the anode material,” explains Dina Fattakhova-Rohlfing from the Institute of Energy and Climate Research (IEK-1).

“In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions,” says Fattakhova-Rohlfing. “Pure tin oxide, however, exhibits very weak cycle stability — the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling.”

One way of addressing this problem is hybrid materials or nanocomposites — composite materials that contain nanoparticles. The scientists developed a material comprising tin oxide nanoparticles enriched with antimony, on a base layer of graphene. The graphene basis aids the structural stability and conductivity of the material. The tin oxide particles are less than three nanometres in size — in other words less than three millionths of a millimetre — and are directly “grown” on the graphene. The small size of the particle and its good contact with the graphene layer also improves its tolerance to volume changes — the lithium cell becomes more stable and lasts longer. turbocharge batt 1

Three times more energy in one hour

“Enriching the nanoparticles with antimony ensures the material is extremely conductive,” explains Fattakhova-Rohlfing. “This makes the anode much quicker, meaning that it can store one-and-a-half times more energy in just one minute than would be possible with conventional graphite anodes. It can even store three times more energy for the usual charging time of one hour.”

“Such high energy densities were only previously achieved with low charging rates,” says Fattakhova-Rohlfing. “Faster charging cycles always led to a quick reduction in capacity.” The antimony-doped anodes developed by the scientists, however, retain 77 % of their original capacity even after 1,000 cycles.

“The nanocomposite anodes can be produced in an easy and cost-effective way. And the applied concepts can also be used for the design of other anode materials for lithium-ion batteries,” explains Fattakhova-Rohlfing. “We hope that our development will pave the way for lithium-ion batteries with a significantly increased energy density and very short charging time.”

Story Source:

Materials provided by Forschungszentrum JuelichNote: Content may be edited for style and length.


Journal Reference:

  1. Florian Zoller, Kristina Peters, Peter M. Zehetmaier, Patrick Zeller, Markus Döblinger, Thomas Bein, Zdeneˇk Sofer, Dina Fattakhova-Rohlfing. Making Ultrafast High-Capacity Anodes for Lithium-Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene CompositesAdvanced Functional Materials, 2018; 28 (23): 1706529 DOI: 10.1002/adfm.201706529

Clean Disruption of Energy and Transportation – Conference on World Affairs – Boulder, Colorado: Conference Video


Tony Seba 1 images

 

Published on Apr 25, 2018

tony-seba 2 -ev-cost-curve‘Rethinking the Future – Clean Disruption of Energy and Transportation’ is Tony Seba’s opening keynote at the 70th annual Conference on World Affairs in Boulder, Colorado, April 9th, 2018. The Clean Disruption will be the fastest, deepest, most consequential disruption of energy and transportation in history. Based on Seba’s #1 Amazon bestselling book “Clean Disruption” and Rethinking Transportation 2020-2030, this presentation lays out what the key technologies and business model innovations are (batteries, electric vehicles, autonomous vehicles, ride-hailing and solar PV), how this technology disruption will unfold over the next decade as well as key implications for society, finance, industry, cities, geopolitics, and infrastructure. The 2020s will be the most technologically disruptive decade in history. By analyzing and anticipating these disruptions we can learn that the benefits to humanity will be immense but to seize the upside we will need to mitigate the negative consequences. As the opening keynote speaker at the prestigious Conference on World Affairs, Seba follows on the footsteps of luminaries such as Eleanor Roosevelt and Buckminster Fuller.

Watch the Video 
 

MIT Technolgy Review: This battery advance could make electric vehicles far cheaper


Sila Nanotechnologies has pulled off double-digit performance gains for lithium-ion batteries, promising to lower costs or add capabilities for cars and phones.

For the last seven years, a startup based in Alameda, California, has quietly worked on a novel anode material that promises to significantly boost the performance of lithium-ion batteries.

Sila Nanotechnologies emerged from stealth mode last month, partnering with BMW to put the company’s silicon-based anode materials in at least some of the German automaker’s electric vehicles by 2023.

A BMW spokesman told the Wall Street Journal the company expects that the deal will lead to a 10 to 15 percent increase in the amount of energy you can pack into a battery cell of a given volume. Sila’s CEO Gene Berdichevsky says the materials could eventually produce as much as a 40 percent improvement (see “35 Innovators Under 35: Gene Berdichevsky”).

For EVs, an increase in so-called energy density either significantly extends the mileage range possible on a single charge or decreases the cost of the batteries needed to reach standard ranges. For consumer gadgets, it could alleviate the frustration of cell phones that can’t make it through the day, or it might enable power-hungry next-generation features like bigger cameras or ultrafast 5G networks.

Researchers have spent decades working to advance the capabilities of lithium-ion batteries, but those gains usually only come a few percentage points at a time. So how did Sila Nanotechnologies make such a big leap?

Berdichevsky, who was employee number seven at Tesla, and CTO Gleb Yushin, a professor of materials science at the Georgia Institute of Technology, recently provided a deeper explanation of the battery technology in an interview with MIT Technology Review.

Sila co-founders (from left to right), Gleb Yushin, Gene Berdichevsky and Alex Jacobs.

An anode is the battery’s negative electrode, which in this case stores lithium ions when a battery is charged. Engineers have long believed that silicon holds great potential as an anode material for a simple reason: it can bond with 25 times more lithium ions than graphite, the main material used in lithium-ion batteries today.

But this comes with a big catch. When silicon accommodates that many lithium ions, its volume expands, stressing the material in a way that tends to make it crumble during charging. That swelling also triggers electrochemical side reactions that reduce battery performance.

In 2010, Yushin coauthored a scientific paper that identified a method for producing rigid silicon-based nanoparticles that are internally porous enough to accommodate significant volume changes. He teamed up with Berdichevsky and another former Tesla battery engineer, Alex Jacobs, to form Sila the following year.

The company has been working to commercialize that basic concept ever since, developing, producing, and testing tens of thousands of different varieties of increasingly sophisticated anode nanoparticles. It figured out ways to alter the internal structure to prevent the battery electrolyte from seeping into the particles, and it achieved dozens of incremental gains in energy density that ultimately added up to an improvement of about 20 percent over the best existing technology.

Ultimately, Sila created a robust, micrometer-size spherical particle with a porous core, which directs much of the swelling within the internal structure. The outside of the particle doesn’t change shape or size during charging, ensuring otherwise normal performance and cycle life.

The resulting composite anode powders work as a drop-in material for existing manufacturers of lithium-ion cells.

With any new battery technology, it takes at least five years to work through the automotive industry’s quality and safety assurance processes—hence the 2023 timeline with BMW. But Sila is on a faster track with consumer electronics, where it expects to see products carrying its battery materials on shelves early next year.

Venkat Viswanathan, a mechanical engineer at Carnegie Mellon, says Sila is “making great progress.” But he cautions that gains in one battery metric often come at the expense of others—like safety, charging time, or cycle life—and that what works in the lab doesn’t always translate perfectly into end products.

Companies including Enovix and Enevate are also developing silicon-dominant anode materials. Meanwhile, other businesses are pursuing entirely different routes to higher-capacity storage, notably including solid-state batteries. These use materials such as glass, ceramics, or polymers to replace liquid electrolytes, which help carry lithium ions between the cathode and anode.

BMW has also partnered with Solid Power, a spinout from the University of Colorado Boulder, which claims that its solid-state technology relying on lithium-metal anodes can store two to three times more energy than traditional lithium-ion batteries. Meanwhile, Ionic Materials, which recently raised $65 million from Dyson and others, has developed a solid polymer electrolyte that it claims will enable safer, cheaper batteries that can operate at room temperature and will also work with lithium metal.

Some battery experts believe that solid-state technology ultimately promises bigger gains in energy density, if researchers can surmount some large remaining technical obstacles.

But Berdichevsky stresses that Sila’s materials are ready for products now and, unlike solid-state lithium-metal batteries, don’t require any expensive equipment upgrades on the part of battery manufacturers.

As the company develops additional ways to limit volume change in the silicon-based particles, Berdichevsky and Yushin believe they’ll be able to extend energy density further, while also improving charging times and total cycle life.

This story was updated to clarify that Samsung didn’t invest in Ionic Material’s most recent funding round.

Read and Watch More:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL! YouTube Video:

“Back to School” – Blue Bird is taking its new all-electric buses on the road to convince schools to go electric


Blue Bird, an important American bus manufacturer better known for its school buses, is taking its new electric buses on the road to school districts and fleet operators around the country to convince them to go electric.

The company unveiled their electric buses at the STN Tradeshow in Reno last year.

They made electric versions of their Type A, Type C, and Type D school buses – Type D pictured above.

Blue Bird says that both buses should be able to achieve about 100 to 120 miles of range, which is generally plenty for most school bus routes.

School buses generally operate on relatively short routes and they are often parked for long periods of time as they are not used as intensively as urban transit buses or coaches, which gives them opportunities to charge.

When unveiling the vehicles last year, Blue Bird said that the range was enabled by a massive 150 kWh battery pack, but now they have updated the powertrain with a new 160 kWh pack. The company said that a smaller 100 kWh option will also be made available for less demanding routes.

They are currently doing “Ride & Drive events” all around the country. They went to California, Nevada, Arizona, Colorado and Ohio.

Phil Horlock, president and CEO of Blue Bird Corporation:

After the outstanding response we saw in California, Blue Bird is excited to showcase our electric school buses to customers and drivers across North America, not as concept vehicles, but as a preview of our production buses later this fall. As both the pioneer and undisputed leader in alternative fuels, we are delighted to expand our “green” product offering by adding electric bus options in both Type C and D body styles. Our electric buses have received an Executive Order from the California Air Resources Board and both HVIP and TVIP listing, which qualify Blue Bird’s electric buses for grants available in California and New York, respectively. That’s great news for our customers and following our Ride & Drives in California, we are already receiving orders from school districts. We are open for business and taking orders!

They are currently in New York and then will head to Florida and later Ontario, Canada. You can follow their other events here.

According to the company, the first buses will be delivered at the end of the summer or early fall and they will deploy a Vehicle-to-Grid (V2G) feature – meaning that the buses could be used as energy storage systems – next year.

Electrek’s Take

I think all-electric school buses are a no-brainer since urban transit buses are already starting to be financially viable solutions and school buses don’t need nearly as much energy capacity in most cases.

Even if the upfront cost might be higher, they should be able to compensate it with fuel and maintenance savings.

In the case of Blue Bird, a Vehicle-to-Grid (V2G) feature is also a smart addition that could add value to school districts buying fleets since the buses are often parked for long periods of time and could be used as energy storage systems.

Lion, a Quebec-based school bus manufacturer, also offers an electric school bus option – not for Type D buses. Several other companies have now a few electric solutions, like Daimler’s first all-electric school bus, which is expected to enter production next year.

3 Questions for Innovating the Clean Energy Economy (MIT Energy Initiative)


daniel-kammen-mit-energy-initiative-mitei-2018_0Daniel Kammen, professor of energy at the University of California at Berkeley, spoke on clean energy innovation and implementation in a talk at MIT. Photo: Francesca McCaffrey/MIT Energy Initiative

Daniel Kammen of the University of California at Berkeley discusses current efforts in clean energy innovation and implementation, and what’s coming next.

Daniel Kammen is a professor of energy at the University of California at Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering.

Recently, he gave a talk at MIT examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. The MIT Energy Initiative (MITEI) followed up with him on these topics.

Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords?

Clean Energy Storage I header1

A: My laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH , is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80 percent or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an “honest broker” for the costs and operational issues around power systems is key.

Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change?

A: The carbon footprint, or CoolClimate project, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more.

Q: You touched on the topic of the “high ambition coalition,” a 2015 United Nations Climate Change Conference goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require?

A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions.

This talk was one in a series of MITEI seminars supported by IHS Markit.

MIT: Finding a New Way to Design and Analyze Better Battery Materials: Discoveries could accelerate the development of high-energy lithium batteries


Diagram illustrates the crystal lattice of a proposed battery electrolyte material called Li3PO4. The researchers found that measuring how vibrations of sound move through the lattice could reveal how well ions – electrically charged atoms or molecules – could travel through the solid material, and therefore how they would work in a real battery. In this diagram, the oxygen atoms are shown in red, the purple pyramid-like shapes are phosphate (PO4) molecules. The orange and green spheres are ions of lithium.
Image: Sokseiha Muy

Design principles could point to better electrolytes for next-generation lithium batteries.

A new approach to analyzing and designing new ion conductors — a key component of rechargeable batteries — could accelerate the development of high-energy lithium batteries and possibly other energy storage and delivery devices such as fuel cells, researchers say.

The new approach relies on understanding the way vibrations move through the crystal lattice of lithium ion conductors and correlating that with the way they inhibit ion migration. This provides a way to discover new materials with enhanced ion mobility, allowing rapid charging and discharging.

At the same time, the method can be used to reduce the material’s reactivity with the battery’s electrodes, which can shorten its useful life. These two characteristics — better ion mobility and low reactivity — have tended to be mutually exclusive.

The new concept was developed by a team led by W.M. Keck Professor of Energy Yang Shao-Horn, graduate student Sokseiha Muy, recent graduate John Bachman PhD ’17, and Research Scientist Livia Giordano, along with nine others at MIT, Oak Ridge National Laboratory, and institutions in Tokyo and Munich. Their findings were reported in the journal Energy and Environmental Science.

The new design principle has been about five years in the making, Shao-Horn says. The initial thinking started with the approach she and her group have used to understand and control catalysts for water splitting, and applying it to ion conduction — the process that lies at the heart of not only rechargeable batteries, but also other key technologies such as fuel cells and desalination systems.

While electrons, with their negative charge, flow from one pole of the battery to the other (thus providing power for devices), positive ions flow the other way, through an electrolyte, or ion conductor, sandwiched between those poles, to complete the flow.

Typically, that electrolyte is a liquid. A lithium salt dissolved in an organic liquid is a common electrolyte in today’s lithium-ion batteries. But that substance is flammable and has sometimes caused these batteries to catch fire. The search has been on for a solid material to replace it, which would eliminate that issue.

A variety of promising solid ion conductors exist, but none is stable when in contact with both the positive and negative electrodes in lithium-ion batteries, Shao-Horn says.

Therefore, seeking new solid ion conductors that have both high ion conductivity and stability is critical. But sorting through the many different structural families and compositions to find the most promising ones is a classic needle in a haystack problem. That’s where the new design principle comes in.

The idea is to find materials that have ion conductivity comparable to that of liquids, but with the long-term stability of solids. The team asked, “What is the fundamental principle? What are the design principles on a general structural level that govern the desired properties?” Shao-Horn says. A combination of theoretical analysis and experimental measurements has now yielded some answers, the researchers say.

“We realized that there are a lot of materials that could be discovered, but no understanding or common principle that allows us to rationalize the discovery process,” says Muy, the paper’s lead author. “We came up with an idea that could encapsulate our understanding and predict which materials would be among the best.”

The key was to look at the lattice properties of these solid materials’ crystalline structures. This governs how vibrations such as waves of heat and sound, known as phonons, pass through materials. This new way of looking at the structures turned out to allow accurate predictions of the materials’ actual properties. “Once you know [the vibrational frequency of a given material], you can use it to predict new chemistry or to explain experimental results,” Shao-Horn says.

The researchers observed a good correlation between the lattice properties determined using the model and the lithium ion conductor material’s conductivity. “We did some experiments to support this idea experimentally” and found the results matched well, she says.

They found, in particular, that the vibrational frequency of lithium itself can be fine-tuned by tweaking its lattice structure, using chemical substitution or dopants to subtly change the structural arrangement of atoms.

The new concept can now provide a powerful tool for developing new, better-performing materials that could lead to dramatic improvements in the amount of power that could be stored in a battery of a given size or weight, as well as improved safety, the researchers say.

Already, they used the method to find some promising candidates. And the techniques could also be adapted to analyze materials for other electrochemical processes such as solid-oxide fuel cells, membrane based desalination systems, or oxygen-generating reactions.

The team included Hao-Hsun Chang at MIT; Douglas Abernathy, Dipanshu Bansal, and Olivier Delaire at Oak Ridge; Santoshi Hori and Ryoji Kanno at Tokyo Institute of Technology; and Filippo Maglia, Saskia Lupart, and Peter Lamp at Research Battery Technology at BMW Group in Munich.

The work was supported by BMW, the National Science Foundation, and the U.S. Department of Energy.

Watch a YouTube Video on New Nano-Enabled Super Capacitors and Batteries

Research Focus: “BIG” Things Coming from Nanotechnology (very small things)


It may be a cliché, but in the world of nanotechnology, big things really do come in small packages.

The study and application of nanotechnology—science, engineering, and technology conducted at 1 to 100 nanometers—is rapidly growing across medicine, chemistry, physics, materials science, engineering and more.

According to the U.S. National Nanotechnology Initiative (NNI), nanotechnology as we now know it has only been around approximately 30 years. Despite the field’s relatively young lifespan, it has already made significant strides.

Today, researchers are developing everything from next-generation electronics to more effective drug delivery systems at the nanoscale. In February, R&D Magazine took a special focus on this up-and-coming area of research.

Electronics

We kicked off our nanotechnology coverage highlighting a new method to enhance the capabilities of the memristor—an emerging nanotechnology that offers a simpler and smaller alternative to the transistor. In our article, “Memristor Could Enable More Data Storage” we outlined a new memristor technology that can store up to 128 discernible memory states per switch, which is almost four times higher than what has been previously reported.

In another article, “Achieving Printed Power Electronics Means Going Beyond Silver Nanoparticles we outlined the limitations of 3D printed electronics using silver nanoparticle inks for systems that use high-current density known as “power electronics.” In the article, Greg Fritz, a material scientist in the Charles Stark Draper Laboratory, outlined the challenges with silver nanoparticle inks and his team’s research into alternative nano-layered materials for printing power electronics.

Expert contributor Ahmed A. Busnaina, the director of the Center for High-rate Nanomanufacturing (CHN) at Northeastern University, also shared an article outlining his research on nanoscale high-throughput printing technology. He explained a directed assembly-based printing processes developed by CHN in his article, “Scalable Printing Sensors and Electronics at the Nanoscale.”

In Researchers Use Tin Oxide Nanocrystals to Improve Battery Performance, we highlighted scientists at Washington State University’s School of Mechanical and Materials Engineering who utilized tin oxide nanocrystals to improve the performance of both sodium-ion and lithium-ion batteries.

Medicine

Nanotechnology is not limited to applications within traditional ‘technology.’ Nanoscale science also has a growing presence in the medical field, as nanomaterials are being formulated with conventional pharmaceutical agents to create more effective, safer, and more targeted drug delivery systems. We outlined the overall benefits of this approach in “Nanotechnology Can Improve Safety, Effectiveness in Drug Delivery.”The article highlights the work of the Center for Nanotechnology in Drug Delivery at the UNC Eshelman School of Pharmacy which is investigating nanotechnology to treat stroke, neurodegenerative and neurodevelopmental disorders, nerve agent and pesticide poisoning and other diseases and injuries.

One disease area at the forefront of nanomedicine is oncology. We spoke with Piotr Grodzinski, PhD, the Chief of Nanodelivery Systems and Devices Branch at the Cancer Imaging Program of the National Cancer Institute (NCI), to learn more about the role of nanotechnology in oncology for our article, Nanoparticle-Based Cancer Treatment: A Look at its Origins and What’s Next.” The first nanoparticle-based cancer treatment—a formulation of the chemotherapy agent doxorubicin delivered via the nanoparticle material liposome—was approved in 1995. Today, researchers are working on more complex innovations, such as nanoparticle combination therapies and nanoparticles for delivery of immunostimulatory or immunomodulatory molecules.

Material Science

Graphene—a 2D nanomaterial consisting of a single layer of carbon atoms arranged in a hexagonal lattice—has a host of applications. We highlighted one that could improve food safety in, New Lasing Method Enables Edible Graphene Food Trackers.” The article highlighted researchers from Rice University who had enhanced their laser-induced graphene technique to “write” graphene patterns onto food and other materials, enabling embed conductive identification tags and sensors onto products.

We also highlighted a way nanotechnology could be used to create a safer and cleaner environment in, Nano-Crystals Key to Continuously Self-Cleaning Surfaces.”  The article features New Clean NanoSeptic Self-Cleaning Surfaces—skins and mats that can be adhered to most any surface that utilize mineral nano-crystals to create an oxidation reaction stronger than bleach, without using poisons, heavy metals or chemicals. The nano-crystals, charged by visible light, act as a catalyst and the oxidation reaction breaks down organic material into base components including CO2, enabling the surface to continuously oxidize organic contaminants at the microscopic level.

Chemistry

Finally, we tackled the benefits of nanotechnology in the field of chemistry. In the article “Membrane Allows More Precise Chemical Separation Using Charged Nanochannels,” we highlighted a new type of filter has been designed to allow manufacturers to separate organic compounds not only by their size, but also by their electrostatic charge. The highly selective membrane filters could enable manufacturers to separate and purify chemicals in ways that are currently impossible, allowing them to potentially use less energy and cut carbon emissions.

Next Month’s Special Focus

Next month, R&D Magazine is focusing on technologies that are sustainable and clean, known as “green” technologies. Green technologies are created to mitigate or reverse the effects of human activity on the environment, providing a better future for all.

Check back in April for more on what’s happening within the green technology space in R&D.

Watch Our YouTube Video: Nano-Enabled Energy Storage: Super Capacitors and Batteries