Report: Levelized Cost of Energy for Lithium-Ion Batteries Is Plummeting


Bloomberg New Energy Finance finds the long-term costs of multi-hour energy storage can compete with natural gas and coal in an increasing number of markets today.

The long-term cost of supplying grid electricity from today’s lithium-ion batteries is falling even faster than expected, making them an increasingly cost-competitive alternative to natural-gas-fired power plants across a number of key energy markets. 

That’s the key finding from a Tuesday report from Bloomberg New Energy Finance on the levelized cost of energy (LCOE) — the cost of a technology delivering energy over its lifespan — for a number of key clean energy technologies worldwide.

Read More: Four Charts that Show the Future of Battery Storage

According to its analysis of public and proprietary data from more than 7,000 projects worldwide, this benchmark LCOE for lithium-ion batteries has fallen by 35 percent, to $187 per megawatt-hour, since the first half of 2018. This precipitous decline has outpaced the continuing slide in LCOE for solar PV and onshore and offshore wind power. 

Over the past year, offshore wind saw a 24 percent decline in LCOE to fall below $100 per megawatt-hour, compared to about $220 per megawatt-hour only five years ago.

The benchmark LCOE for onshore wind and solar PV fell by 10 percent and 18 percent, respectively, to reach $50 and $57 per megawatt-hour for projects starting construction in early 2019. 

To be sure, these generation technologies are still far cheaper than batteries in terms of their LCOEs — and that’s not mentioning the fact that they actually make electricity, rather than simply storing it for later use. To convert a battery’s storage capacity into a LCOE figure, the report models a utility-scale battery installation running daily cycles, with charging costs assumed to be at 60 percent of the wholesale base power price for the country in question.  

Even so, the pace of the decline in battery LCOE, particularly for multi-hour storage applications that previous generations of lithium-ion technologies have struggled to provide, is startling, BNEF notes. Since 2012, the benchmark LCOE of lithium-ion batteries configured to supply four hours of grid power — a standard requirement for many grid services — has fallen by 74 percent, as extrapolated from historical data.

In comparison, the LCOE per megawatt-hour for onshore wind, solar PV and offshore wind has fallen by 49 percent, 84 percent and 56 percent, respectively, since 2010.

In fact, the LCOE for multi-hour lithium-ion batteries is falling to the point that “batteries co-located with solar or wind projects are starting to compete, in many markets and without subsidy, with coal- and gas-fired generation for the provision of ‘dispatchable power’ that can be delivered whenever the grid needs it (as opposed to only when the wind is blowing, or the sun is shining),” the report notes. 

These findings match those we’ve been covering from our own analysts at Wood Mackenzie Power & Renewables, as well as from the broader industry. In the past year and a half, several large-scale solar-battery requests for proposals have set record-low prices, including Xcel Energy in Colorado with solar-plus-storage bids as low as $36 per megawatt-hour, compared to $25 per megawatt-hour for standalone solar, and NV Energy reporting even lower bids in its solar and solar-plus-storage RFPs.

These price points equate to about a $6 to $7 per megawatt-hour premium for solar projects that are partially “dispatchable” in the manner of a traditional power plant, compared to standalone solar, Ravi Manghani, WoodMac energy storage research director, reported at Greentech Media’s Energy Storage Summit in December. 

Just this week, clean energy advocacy and research organization Energy Innovation and Vibrant Clean Energy released a report finding that the LCOE of new renewables in the U.S. is lower than that of nearly three-quarters of the U.S. coal fleet — a not completely surprising finding, given the coal power industry’s well-documented challenges in competing with cheap natural gas, and increasingly cheap wind and solar power. 

At the same time, it’s worth noting that the current trends in pricing for lithium-ion batteries, what they actually cost today, has been mixed. While continuing technology improvements and increasing scale of manufacturing have continued to push down prices, these have been somewhat counterbalanced in the past year or so by a bottleneck in available supply, driven by a boom in demand from big projects in the U.S. and South Korea. 

WoodMac discovered that battery rack prices fell by only about 6 percent from 2017 to 2018, rather than the 14 percent range previously predicted, based on these supply shortage challenges.

Article from GreenTech Media

Advertisements

Everybody Wants EV Charging Stations ~ Almost Nobody Wants to Build Them – Why?


 

MT Highway 1 images

         A Lonely Stretch of Highway in Wyoming

A driver planning to make the trek from Denver to Salt Lake City can look forward to an eight-hour trip across some of the most beautiful parts of the country, long stretches with nary a town in sight. The fastest route would take her along I-80 through southern Wyoming. For 300 miles between Laramie and Evanston, she would see, according to a rough estimate, no fewer than 40 gas stations where she could fuel up her car. But if she were driving an electric vehicle, she would see just four charging stations where she could recharge her battery.

The same holds true across the country. Gas stations outnumber public charging stations by around seven to one. It’s no wonder people get so nervous about driving an electric car.

EV charge 1 images

Numerous studies have shown that consumers steer clear of EVs because they worry about the lack of charging stations. Studies also show that consumers are more likely to buy an electric car when they see stations around town. While fears about range anxiety are largely unfounded — even the cheapest EVs sport enough range to serve nearly all of a driver’s needs — the paucity of charging stations is a real concern on longer trips, and it is deterring consumers from going all-electric.

To be clear, it’s not just consumers who want to see more chargers. Charging stations are a boon to automakers, who want to sell electric cars, as well as to power utilities, who want to sell more electricity. Some utilities and automakers are investing huge sums into setting up charging stations — including Volkswagen’s commitment to spend $2 billion on EV charging infrastructure as part of their settlement over the diesel emissions scandal. But by and large, automakers and power companies are not putting a lot of money towards charging infrastructure.

“I think the biggest problem with charging stations is there is no one responsible for installing charging stations,” said Nick Sifuentes, executive director at Tri-State Transportation Campaign. “So you see some automakers, like Tesla, installing charging stations. You see charging stations occasionally getting put out as part of a municipal planning process,” he said, “but for the most part, there is no one entity or group that feels responsible for that duty.”

Power utilities have a big interest in EVs. Despite continued economic growth, demand for electricity has stayed flat over the last decade, as businesses slash energy use and consumers switch to more power-thrifty appliances — LED light bulbs, flat-screen TVs, high-efficiency washers and dryers. EVs could drive up the demand for electricity, throwing a lifeline to power utilities. And yet, these companies largely aren’t building charging stations.

“For power utilities, the question is whether they see it as something that’s actually in their bailiwick or not,” Sifuentes said. Policymakers have not directed utilities to build out EV infrastructure, and with so few electric cars on the road, utilities are unlikely to take it upon themselves to start building charging stations.

         The Tesla Model 3

“The problem is that the charging infrastructure doesn’t have a viable business model yet,” said David Greene, a professor of civil and environmental engineering at the University of Tennessee. “Although, there are some companies who are working on it really hard.”

Private firms like EvBox and ChargePoint are looking to radically expand the number of available charging stations, but these plans depend on exponential growth in the sale of EVs. ChargePoint is looking to add 2.5 million charging stations to its global network of just 50,000, a goal it said is based on a “conservative view” of future EV sales. EvBox, meanwhile, is aiming for 1 million new charging stations. A spokesperson noted this target is “at least partly dependent on the number of electric vehicles on the road,” though he was similarly bullish on the growth of EVs. Analysts expect EV sales to increasedramatically in the coming years, though major roadblocks stand in the way of future adoption.

Even if EV sales take off and charging stations proliferate, barriers will remain. Making EVs more viable means installing not just more chargers, but more fast chargers that allow drivers to take long journeys. The difference between a fast charger and a slow charger is the difference between a family stopping for coffee while they refuel their car and a family stopping overnight.

A Chargepoint electric vehicle charging station.

 

“It’s 180 miles from Knoxville to Nashville. Supposedly there’s a [direct current] fast charger at a Cracker Barrel in Cookville, which is almost exactly halfway, but it almost never works,” Greene said. “The fact that the range is limited and the recharging time can be quite long if one does not have access to fast charging, that’s another problem.”

There is also the fact that the technology isn’t standardized. Different cars use different plugs. Ford and GM use one kind. Tesla uses another. Fast charging requires a different kind altogether. So, while charging stations dot the country, not every station meets every driver’s needs. Until manufacturers arrive at an industry standard — or policymakers mandate that standard —
“charging stations are going to need to have two or three different types of plugs, and people will need to be able to charge at different speeds because their car might not have a supercharger,” Sifuentes said.

Sifuentes believes that policymakers have a key role to play in building out charging stations. “They have to actually put in place laws and incentives that encourage the development of the necessary infrastructure, and I think that takes place in two ways,” he said. “One, encouraging utilities to do that. But also, I think we can’t ignore the role that public transit plays here.”

Different types of EV plugs.

 

New York City, he said, has pledged to switch to all-electric buses by 2040. “That means they’re going to have to put some serious charging infrastructure in place,” Sifuentes said. “If there’s a charging location that has to be put in because buses need to charge there but that’s available for private use as well, great.”

In addition to building public charging infrastructure, governments can also encourage the development of private charging infrastructure. Policymakers in Iowa and Austin, Texas, for example, are working to lower barriers to setting up charging stations, allowing private firms, as opposed to power utilities, to resell electricity. “I think the other role that policymakers have to play here is they have to actually put in place laws and incentives that encourage the development of the necessary infrastructure,” Sifuentes said.

In Norway, where EVs account for around a third of all new car sales, the government has gone a step further. The government is installing a fast charging station every 30 miles on main roads. EV drivers can get free charging at public stations in addition to free parking and free access to toll roads. Sifuentes said these kinds of policies are needed to spur the growth of EVs and support the installation of EV charging stations.

“We’re absolutely on the tipping point,” Sifeuntes said. “The more that we see EVs rolling out, the more and more it’s going to look like the right move to be putting this infrastructure in place.”

EV Charge 2 Fastned-solar-powered-EV-charger-NL

** Article from EcoWatch

Visualizing the World’s EV Markets – Who is the World’s Undisputed Leader in EV Adoption?


It took five years to sell the first million electric cars. In 2018, it took only six months.

The Tesla Model 3 also passed a significant milestone in 2018, becoming the first electric vehicle (EV) to crack the 100,000 sales mark in a single year. The Nissan LEAF and BAIC EC-Series are both likely to surpass the 100,000 this year as well.

Although the electric vehicle market didn’t grow as fast as some experts initially projected, it appears that EV sales are finally hitting their stride around the world. Below are the countries where electric vehicles are a biggest part of the sales mix.

The EV Capital of the World

Norway, after amassing a fortune through oil and gas extraction, made the conscious decision to create incentives for its citizens to purchase electric vehicles. As a result, the country is the undisputed leader in EV adoption.

In 2018, a one-third of all passenger vehicles were fully electric, and that percentage is only expected to increase in the near future. The Norwegian government has even set the ambitious target of requiring all new cars to be zero-emission by 2025.

That enthusiasm for EVs is spilling over to other countries in the region, which are also seeing a high percentage of EV sales. However, the five countries in which EVs are the most popular – Norway, Iceland, Sweden, Netherlands, and Finland – only account for 0.5% of the world’s population. For EV adoption to make any real impact on global emissions, drivers in high-growth/high–population countries will need to opt for electric powered vehicles. (Of course power grids will need to get greener as well, but that’s another topic.)

China’s Supercharged Impact

One large economy that is embracing plug-in vehicles is China. 

The country leads the world in electric vehicle sales, with over a million new vehicles hitting the roads in 2018. Last year, more EVs were sold in Shenzhen and Shanghai than any country in the world, with the exception of the United States.

China also leads the world in another important metric – charging stations. Not only does China have the highest volume of chargers, many of them allow drivers to charge up faster.

Electric vehicle charging stations

Accelerating from the Slow Lane

In the United States, electric vehicle sales are rising, but they still tend to be highly concentrated in specific areas. In around half of states, EVs account for fewer than 1% of vehicle sales. On the other hand, California is approaching the 10% mark, a significant milestone for the most populous state.

Nationally, EV sales increasedthroughout 2018, with December registering nearly double the sales volume of the same month in 2017. Part of this surge in sales is driven by the Tesla’s Model 3, which led the market in the last quarter of 2018.

U.S. Electric vehicle sales

North of the border, in Canada, the situation is similar. EV sales are increasing, but not fast enough to meet targets set by the government. Canada aimed to have half a million EVs on the road by 2018, but missed that target by around 400,000 vehicles.

The big question now is whether the recent surge in sales is a temporary trend driven by government subsidies and showmanship of Elon Musk, or whether EVs are now becoming a mainstream option for drivers around the world.

High Capacity Silicon Anodes Enabled by MXene Viscous Aqueous Ink ~ 2D MXene Nanosheets found to be of Fundamental Importance to Electrochemical Energy Storage Field ~ Trinity College, Dublin


Mxene for Silcon anodes 41467_2019_8383_Fig2_HTML

** Contributed from Nature Communications Open Source Article

 

The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically encounter electrical/mechanical problems, limiting the achievable areal capacity and rate performance as a result.

Herein, we show that two-dimensional titanium carbide or carbonitride nano sheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives.

“The nano sheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450μm). Consequently, very high areal capacity anodes (up to 23.3 mAh cm-2) have been demonstrated.” Utilization of Li-ion chemistry to store the energy electro-chemically can address the ever-increasing demands from both portable electronics and hybrid electrical vehicles.

 

Such stringent challenges on the battery safety and lifetime issues require high-performance battery components, with most of the focus being on electrodes or electrolytes with novel nano-structures and chemistries.

However, equally important is the development of electrode additives, which are required to main-tain the electrode’s conductive network and mechanical integrity. Traditionally, electrode additives are made of dual components based on a conductive agent (i.e. carbon black, CB) and a poly-meric binder.

 

While the former ensures the charge transport throughout the electrode, the latter mechanically holds the active materials and CB together during cycling. Although these traditional electrode additives have been widely applied in Li-ion battery technologies, they fail to perform well in high-capacity electrodes, especially those displaying large volume changes.

This is because the polymeric binder is not mechanically robust enough to withstand the stress induced during lithiation/deli-thiation, leading to severe disruption of the conducting networks. This results in rapid capacity fade and poor lifetime.

 

Nature Communications content_content_comms275

 

Continue Reading the Full Article from Nature Communications

 

 

 

 

Conclusion

In summary, the efficient utilization of 2D MXene nanosheets as a new class of conductive binder for high volume-change Si electrodes is of fundamental importance to the electrochemical energy storage field.

The continuous network of MXene nanosheets not only provides sufficient electrical conductivity and free space for accommodating the volume change issue but also well resolves the mechanical instability of Si. Therefore, the combination of viscous MXene ink and high-capacity Si demonstrated here offers a powerful technique to construct advanced nanostructures with exceptional performance.

Of equal importance is that the formation of these high-mass-loading Si/MXene electrodes can be achieved by means of a commercially compatible, slurry-casting technique, which is highly scalable and low cost, allowing for large-area production of high-performance, Si-based electrodes for advanced batteries.

Considering that more than 30 MXenes are already reported, with more predicted to exist, there is certainly much room for further improving the electrochemical performance of such electrodes by tuning the electrical, mechanical and physicochemical properties of this exciting 2D MXene family.

Professor Valeria Nicolosi Trinity UniversityProfessor Valeria Nicolosi 

Professor of Nanomaterials and Advanced Microscopy at Trinity College Dublin

LinkedIn Profile

 

Super-stable antinomy carbon composite anodes to boost potassium-ion battery storage performance


id51930_1

Potassium-ion batteries (PIBs) have been considered as promising alternatives to lithium-ion batteries due to the rich natural abundance of potassium (K) and similar redox potential with Li+/Li.

However, due to the large K ion radius and slow reaction dynamics, the previously reported PIB anode materials (carbon-based materials, alloy-based anodes such as tin and antimony, metal oxides, etc.) suffer from a low capacity and fast capacity decay.
In order to achieve a high capacity and excellent cycle stability for K storage process, rational design of the electrode materials and proper selection of the electrolytes should be considered simultaneously.
Recently, two research teams led by Prof. Chunsheng Wang and Prof. Michael R. Zachariah from the University of Maryland, College Park, have designed and fabricated a novel antimony (Sb) carbon composite PIB anode via a facile and scalable electrospray-assisted strategy and found that this anode delivered super high specific capacities as well as cycling stability in a highly concentrated electrolyte (4M KTFSI/EC+DEC).
This work has been published in Energy and Environmental Science (“Super Stable Antimony-carbon composite anodes for potassium-ion batteries”).

 

id51930_1
Figure 1. Schematic illustration of electrospray-assisted strategy for fabricating antimony @carbon sphere network electrode materials. (© Royal Society of Chemistry)
We have successfully fabricated a novel antimony carbon composite with small Sb nanoparticles uniformly confined in the carbon sphere network (Sb@CSN) via a facile and scalable electrospray-assisted strategy.
Such a unique nanostructure can effectively mitigate the deleteriously mechanical damage from large volume changes and provide a highly conductive framework for fast electron transport during alloy/de-alloy cycling process.
Alongside the novel structural design of the anode material, formation of a robust solid-electrolyte-interphase (SEI) on the anode is crucially important to achieve its long-term cycling stability.
The formation of a robust SEI on the anode material is determined by both the surface chemistries of active electrode materials as well as electrolyte compositions such as salt anion types and concentrations.
Therefore, designing a proper electrolyte is extremely important for the anode to achieve a high cycling stability.
In our study, we have for the first time developed a stable and safe electrolyte of highly concentrated 4M KTFSI/EC+DEC for PIBs to promote the formation of a stable and robust KF-rich SEI layer on an Sb@CSN anode, which guarantees stable electrochemical alloy/de-alloy reaction dynamics during long-time cycling process.
Cycling performance of antimony carbon sphere network electrode materials
Figure 2. Cycling performance of antimony carbon sphere network electrode materials at 200mA/g current density in the highly concentrated electrolyte (4M KTFSI/EC+DEC). (© Royal Society of Chemistry)
In the optimized 4M KTFSI/EC+DEC electrolyte, the Sb@CSN composite delivers excellent reversible capacity of 551 mAh/g at 100 mA/g over 100 cycles with a capacity decay of 0.06% per cycle from the 10st to 100th cycling and 504 mAh/g even at 200 mA/g after 220 cycling. This demonstrates the best electrochemical performances with the highest capacity and longest cycle life when compared with all K-ion batteries anodes reported to date.
The electrochemical reaction mechanism was further revealed by density functional theory (DTF) calculation to support such excellent Potassium-storage properties.
Capacity comparison of Sb@CSN anode with previous reported anodes in potassium ion batteries
Figure 3. Capacity comparison of Sb@CSN anode with previous reported anodes in potassium ion batteries. (© Royal Society of Chemistry)
In conclusion, these outstanding performances should be attributed to the novel nanostructure of Sb nanoparticles uniformly encapsulated into conductive carbon network and the formation of a more stable and robust KF-rich SEI layer on Sb@CSN in the optimized 4M KTFSI electrolyte.
These encouraging results will significantly promote the deep understanding of the fundamental electrochemistry in Potassium-ion batteries as well as rational development of efficient electrolyte systems for next generation high-performance Potassium-ion batteries.
Yong Yang, Research Associate, Prof. Zachariah Research Group, Department of Chemical and Environmental Engineering, University of California, Riverside

Cornell University: Pore size influences nature of complex nanostructures – Materials for energy storage, biochemical sensors and electronics


The mere presence of void or empty spaces in porous two-dimensional molecules and materials leads to markedly different van der Waals interactions across a range of distances. Credit: Yan Yang and Robert DiStasio

Building at the nanoscale is not like building a house. Scientists often start with two-dimensional molecular layers and combine them to form complex three-dimensional architectures.

And instead of nails and screws, these structures are joined together by the attractive van der Waals forces that exist between objects at the nanoscale.

Van der Waals forces are critical in constructing  for energy storage, biochemical sensors and electronics, although they are weak when compared to chemical bonds. They also play a crucial role in , determining which drugs bind to the active sites in proteins.

In new research that could help inform development of new materials, Cornell chemists have found that the empty space (“pores”) present in two-dimensional molecular building blocks fundamentally changes the strength of these van der Waals forces, and can potentially alter the assembly of sophisticated nanostructures.

The findings represent an unexplored avenue toward governing the self-assembly of complex nanostructures from porous two-dimensional building blocks.

“We hope that a more complete understanding of these forces will aid in the discovery and development of novel materials with diverse functionalities, targeted properties, and potentially novel applications,” said Robert A. DiStasio Jr., assistant professor of chemistry in the College of Arts and Sciences.

In a paper titled “Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials,” published Jan. 14 in Physical Review Letters, DiStasio, graduate student Yan Yang and postdoctoral associate Ka Un Lao describe a series of mathematical models that address the question of how void space fundamentally affects the attractive physical forces which occur over nanoscale distances.

In three prototypical model systems, the researchers found that particular pore sizes lead to unexpected behavior in the  that govern van der Waals forces.

Further, they write, this behavior “can be tuned by varying the relative size and shape of these void spaces … [providing] new insight into the self-assembly and design of complex nanostructures.”

While strong covalent bonds are responsible for the formation of two-dimensional molecular layers, van der Waals interactions provide the main attractive  between the layers. As such, van der Waals forces are largely responsible for the self-assembly of the complex three-dimensional nanostructures that make up many of the advanced materials in use today.

The researchers demonstrated their findings with numerous two-dimensional systems, including covalent organic frameworks, which are endowed with adjustable and potentially very large pores.

“I am surprised that the complicated relationship between void space and van der Waals forces could be rationalized through such simple models,” said Yang. “In the same breath, I am really excited about our findings, as even  in the van der Waals forces can markedly impact the properties of molecules and materials.”

Explore further: Researchers refute textbook knowledge in molecular interactions

More information: Yan Yang et al, Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials, Physical Review Letters (2019).  DOI: 10.1103/PhysRevLett.122.026001 

Renewable Energy Trends and Updates for 2019: TEDx Presents 5 ‘Under 30′ Entrepreneurs’ Visions


 

 

Share work  with tablet

Visions For the Future of Renewable Energy

2019 is an exciting year for renewable energy. More and more countries and cities are adopting ambitious renewable energy targets and the technology is evolving rapidly. Many of these technologies, such as microgrids and energy storage, could become mainstream technology in the coming years. At this speed of innovation, it is difficult to keep track of all the changes!

This selection of TED Talks covers some of the most fascinating and promising energy topics for 2019. Be sure to read the 2018 Climate Change Overview and list of Energy Trends To Watch In 2019 before diving into these talks to better understand the impact of these new developments.

1. Accelerating The Shift To Clean Energy, Bill Nussey

 

Topic: Building local, consumer-driven electricity markets, such as the Brooklyn Microgrid, with renewable energy resources. (2017).

Nussey is an entrepreneur, investor, speaker, clean tech CEO and founder of the Freeing Energy Project.

“Solar and batteries are governed by something called Swanson‘s law, which states the more product you manufacture, the cheaper it gets. If we want to unleash society’s most powerful force for change, the irresistible economics of a lower price, we just need to make more and more solar panels and batteries. This is where you come in.  For the first time in energy history, each of us can play a role in creating the future. All we have to do is embrace clean, local energy ourselves. Install solar panels. Purchase community solar. Buy an electric vehicle to drive up the battery volumes. Do business with companies powered by clean energy. Every little thing we do adds up.”

2. Batteries Not Included, Marek Kubik

Topic: How energy storage technologies are transforming our approach to electricity generation with renewables. (2018).

Kubik is an energy and sustainability futurist, Forbes 30 Under 30 Honouree and TEDx speaker.

“Solar and wind are already cost-competitive today. The cost of these technologies has fallen to a point where, in many countries, they are already the cheapest forms of electricity generation. And that trend is set to continue.”

3. Ground Zero For Global Energy Transition, Justin Locke

Topic: The role of leadership that small islands are taking in developing sustainable energy solutions. (2017).

Locke is a writer and speaker on sustainable energy and the director for the Islands Energy Program at the Rocky Mountain Institute. (See also: Electric Vehicles in Barbados).

“Islands have been determined as victims of colonization, occupation and now climate change. But now they are flipping that script and actually providing the solutions to the world’s most difficult challenge: how to combat climate change.”

global energy storage ii battery_storage_illustration_xl_721_420_80_s_c1Read More: “5 Predictions for the Global Energy Storage Market in 2019” from Green Tech Media

4. A Printable, Flexible, Organic Solar Cell, Hannah Bürckstümmer

Topic: Efficient, flexible organic solar cells that can be printed in any shape to allow the facades of buildings to capture solar from every exposed surface. (2017).

Bürckstümmer has a background in chemistry and a curiosity about our environment, which she has translated into research into third-generation solar cells and work on the strategy and marketing for organic photovoltaics.

“This is pointing towards a future where buildings are no longer energy consumers, but energy providers. I want to see solar cells seamlessly integrated into our building shells to be both resource-efficient and a pleasure to look at. To exploit the potential of all facades and other areas, organic photovoltaics can offer a significant contribution, and they can be made in any form architects and planners will want them to.”

5. The Thrilling Potential For Off-Grid Solar Energy, Amar Inamdar

Topic: How the factors of distributed generation- lower costs, infrastructure and decentralization- are revolutionizing the energy market, to the benefit of the environment. (2017).

Inamdar works with businesses and entrepreneurs to imagine, create and grow markets that address our biggest social and environmental challenges.

“We aspire towards energy access for everybody, and we aspire towards a fully-functioning low-carbon economy. And we’re getting to the point where we’re seeing the fully-functioning low-carbon economy is not just about getting people onto the grid, it’s about getting people onto electricity and doing it in a way that’s really dignified.”
What’s Next?
To learn more about the latest energy trends, you should read the 2018 Climate Change Overview and list of Energy Trends To Watch In 2019. Stay tuned for another selection of TED Talks in February with a focus on the latest science and action combating global climate change. Presented by James Ellsmoor is a Forbes 30 Under 30 entrepreneur.

Twitter Icon 042616.jpg Follow Genesis Nanotech on Twitter @Genesisnanotech

 

Lithium ion Battery Tech gets a ‘Cool’ rival: Frozen Liquid Air – Could LAES ‘de-throne’ the King?


schematic-of-liquid-air-energy-storage-laes-system

In a bid to help scale renewable energy, many companies are working on new ways to store energy long-term. But the plain old battery is still king. Can ultra-cold liquid air make all the difference?

Elon Musk’s Tesla took less than 100 days to install its Hornsdale Power Reserve – the world’s largest lithium ion battery – in dusty, sunny South Australia, following a Twitter bet. UK-based Highview Power has been a bit slower than that. After years of delays, its Liquid Air Energy Storage (LAES) plant near Manchester has come online.

It’s the world’s first grid-scale liquid air energy storage plant – and with off-the-shelf components, it’s relatively easy and cheap to build and to scale. Air is cooled down, made liquid, and stored in tanks for weeks until you need electricity again. Sounds pretty cool, doesn’t it?

While it’s certainly a moment of success for alternative energy storage, don’t break out the confetti yet: lithium ion isn’t about to give up its crown, says Dan Finn-Foley, a senior analyst at GTM Research. In the US alone, li-ion battery technology accounts for more than 95 per cent of annual storage deployments. But batteries, even the most efficient ones, fail to store energy for longer than a few hours.

So where does it leave solar and wind power, with their need to smooth out the supply peaks and troughs?

“Alternative energy storage could be a holy grail for the grid, a missing link that could get us towards renewables much faster,” explains Ravi Manghani, the director of the energy storage section of GTM Research.

One thing is certain: without reliable energy storage technology, the world will struggle to wean itself off dirty coal and other fossil fuels. If an economy and society wants to rely on renewables on a massive scale, it needs a backup solution. Renewables are growing fast – last year, 29 per cent of all electricity in the UK was generated by renewable energy plants; in Germany, it was 33 per cent.

But the sun doesn’t shine at night, and wind doesn’t always blow. Right now, the storage market is dominated by lithium ion battery technology, but despite Tesla’s worldwide total of one gigawatt-hour of energy storage, the available batteries can last about eight hours tops. “We absolutely must install multiple days worth of energy storage – we can’t get away with four to six hours only,” says Manghani.

Storing electricity for longer

Hornsdale Power Reserve 100 MW storage system can provide 129 megawatt-hours of electricity and is connected to the Hornsdale Wind Farm. Its primary aim is to increase grid stability during system contingencies events like extremely hot summer afternoons, or when a large gas plant will trip – it improves the grid’s ability to cope with small blips in energy generation, which typically means replacing about one to one and half hour of energy supply.

“It’s designed to handle very short duration contingency needs,” says Finn-Foley. That’s why batteries simply can’t provide peak power, or compete with and replace so-called ‘peaker’ plants – power plants like natural gas power stations that are only switched on to fill the gap at times of peak energy demand. They also can’t help extend the use of solar power to later in the day. “You’ll need 10 to 12 hours of continuous discharge duration, which means you’ll need four times the battery or more,” says Finn-Foley.

That’s where alternative energy storage technologies could change things.

Currently, the best long-duration energy storage solutions are thermal storage, pumped hydro, compressed air energy storage – and the newest kid on the block, liquid air energy storage. There are also alternative battery technologies such as flow batteries, which researchers believe may one day scale up to discharge energy for longer than lithium ion.

At the end of the day, though, it all comes down to cost. And developing and operating novel tech is not cheap. The cost of lithium ion batteries, meanwhile, keeps on plummeting, thanks to the ever-surging demand for consumer electronics and electric cars, with all the giga and megafactories mushrooming around the globe. Over the past few years, li-ion battery prices dropped by more than 60 per cent – and are expected to fall by another 40 per cent by 2022.

These cost drops are impressive – but while batteries are good for providing power over short timescales, they quickly get very expensive for storing large amounts of energy over hours and days.

What is liquid air energy storage?

Enter LAES. First dreamt up in the 1970s in the UK and then toyed with in the 1980s and 90s by Hitachi and Mitsubishi (without any proper pilot plants though), this tech has the potential to scale up at low cost, says professor Yulong Ding at the University of Birmingham, who together with Highview developed the technology.

liquid air energy ii

LAES works by using electricity from the grid to cool atmospheric air until it liquifies, and then storing it in big tanks at low pressure at –196C – at a fraction of the air’s original volume. “The working principle is quite similar to a domestic fridge – just the temperature and pressure ranges are different,” says Ding. The air can stay in the tanks for weeks and even months, dissipating slowly – and the better the insulation, the slower it will vanish. “It can easily be kept in tanks for about two months,” adds Ding.

When you need to generate electricity, you just have to heat the air to ambient temperature. In the process it will expand a whopping 700 times, creating a lot of air pressure that can be used to spin a turbine in the same way that, say, steam would in conventional generators – and produce electricity.

Because it’s so similar to a traditional fridge, the individual components of LAES for cooling, storing, and re-pressurising gases can be bought quite cheaply off the shelf. “These are well-understood, decades and centuries-old processes that are highly cost-efficient,” says Finn-Foley. The only novel bit here, says Ding, is the integration of the different parts in the most-optimised way.

LAES is not that efficient, though: Tesla’s battery in Australia is 88 per cent efficient, while LAES is 60 to 70 per cent, says Manghani. But as batteries can only store energy for a few hours, if they need to supply energy for longer, they quickly get very costly.

LAES also cannot respond to grid signals in a matter of milliseconds like batteries do. On the upside, the liquid air project can provide energy in bulk, around a day’s worth of it (although the pilot can store just 5 MW of electricity – enough to power roughly 5,000 homes for about three hours; on a commercial scale, Manchester’s LAES plant could have the capacity of 50 MW).

Still, as the liquid air energy storage is so cheap and can scale easily, it could, potentially, fill a crucial gap in the successful energy ecosystem geared towards renewables. Why, then, is it just the UK looking into it? Jonathan Radcliffe, an energy researcher at the University of Birmingham, has a simple answer: because of the UK’s ambitious plans for electricity generation from offshore wind in the 2020s. Also, he adds, “as an island, we have fewer connections to other electricity networks that could help balance supply and demand”.

Manghani is even more prosaic: the world isn’t ready for LAES just yet. Even at the scale of current use of renewables in countries like Germany and Australia, “there is no market out there that needs such longer duration of storage solutions,” he says – experimental plants like LAES are looking for a problem that doesn’t yet exist. But in a decade from now, once solar panel arrays and wind turbines produce more than 60 or 70 per cent of our energy, long-duration storage will be crucial. And we can’t wait a decade to start finding a viable solution, says Manghani – we have to get ready now.

De-Throning the king?

Highview claims that overall, LAES plants will be cheaper than lithium ion; if that’s confirmed at scale: “I expect the technology to go global quickly,” says Finn-Foley. But first, it has to start competing in multiple markets and applications, and existing regulations, as well as incentives to invest in energy storage, are a challenge.

laes iii application-comparison-for-various-energy-storage-technologies-with-the-addition-of-ptes

The LAES plant “will need to operate for some time to demonstrate that they have truly worked out the kinks, says Finn-Foley. It also has to prove viability, which is tricky for a project that is supposed to run for decades. “Batteries degrade and must be replaced – but proving a forty-year lifetime is hard to do until you’ve run it for 40 years,” he adds.

But in the end of the day, alternative technologies aren’t trying to usurp li-ion’s throne, but “carve out their own kingdom, with applications and use cases that they think they can do better,” he says. “So far they have been unsuccessful, but a pilot project proving cost-effectiveness is a crucial step.” For the next five years though, he says, “lithium ion will keep the crown”.

 

Volkswagen is Rolling Out Mobile EV Charging Stations – Charge Your EV in as Little as 17 Minutes


“Charge Up in as little as 17 minutes.”

 

To say Volkswagen has ambitious plans for electric vehicles may be an understatement.

The automaker projects it will produce 15 million vehicles on its new MEB platform in the first wave of its EV assault, and it plans to invest 9 billion euros in the new VW I.D. familythrough 2023.

The marque will have 20 electric models in its lineup by 2025, up from just two entries now. To support this barrage of new EVs, Volkswagen is getting ready to introduce mobile quick-charging stations.

The charging columns are based on the battery pack used with the automaker’s MEB platform.

These stations can be set up in public parking lots, at a company building, or at large events, then removed when no longer needed. VW says the charging process takes an average of 17 minutes.

With a battery storage capacity of 360 kilowatt-hours, each station can charge up to 15 electric vehicles before themselves needed to be recharged.

Volkswagen Nails Down $25 Billion in Batteries for EV’s

As many as four vehicles can be charged at the same time, two with DC quick-charging connections and two with AC connections.

Charging stations that have depleted their energy storage would be exchanged for full ones.

When linked up to a power supply, however, the mobile station can be recharged constantly. The charging stations can be juiced up via solar or wind energy, providing C02 neutrality.

Furthermore, VW suggests reusing batteries from electric vehicles to power the stations.

Watch a Short YouTube Video on NextGen Nano-Enabled Batteries and Super Capacitors

 

Promising New Battery Technology – Disordered Magnesium Crystals – Could make Batteries that are Smaller and that store More Energy – Longer Lasting Phones and EV Batteries


Magneseum Battery Nano 5c1966937fa4cTiny, disordered particles of magnesium chromium oxide may hold the key to new magnesium battery energy storage technology. Credit: UCL

 

Tiny, disordered particles of magnesium chromium oxide may hold the key to new magnesium battery energy storage technology, which could possess increased capacity compared to conventional lithium-ion batteries, find UCL and University of Illinois at Chicago researchers.

The study, published today in Nanoscale, reports a new, scalable method for making a material that can reversibly store  at high-voltage, the defining feature of a cathode.

While it is at an , the researchers say it is a significant development in moving towards -based batteries. To date, very few inorganic materials have shown reversible magnesium removal and insertion, which is key for the magnesium battery to function.

“Lithium-ion technology is reaching the boundary of its capability, so it’s important to look for other chemistries that will allow us to build batteries with a bigger storage capacity and a slimmer design,” said co-lead author, Dr. Ian Johnson (UCL Chemistry).

“Magnesium battery technology has been championed as a possible solution to provide longer-lasting phone and electric car batteries, but getting a practical material to use as a cathode has been a challenge.”

One factor limiting  is the anode. Low-capacity carbon anodes have to be used in lithium-ion batteries for safety reasons, as the use of pure lithium metal anodes can cause dangerous short circuits and fires.

In contrast, magnesium metal anodes are much safer, so partnering magnesium metal with a functioning cathode material would make a battery smaller and store more energy.

Previous research using computational models predicted that magnesium chromium oxide (MgCr2O4) could be a promising candidate for Mg battery cathodes.

Inspired by this work, UCL researchers produced a ~5 nm, disordered magnesium chromium oxide material in a very rapid and relatively low temperature reaction.

Collaborators at the University of Illinois at Chicago then compared its magnesium activity with a conventional, ordered magnesium chromium oxide material ~7 nm wide.

They used a range of different techniques including X-ray diffraction, X-ray absorption spectroscopy and cutting-edge electrochemical methods to see the structural and chemical changes when the two materials were tested for magnesium activity in a cell.

The two types of crystals behaved very differently, with the disordered particles displaying reversible magnesium extraction and insertion, compared to the absence of such activity in larger, ordered crystals.

“This suggests the future of batteries might lie in disordered and unconventional structures, which is an exciting prospect and one we’ve not explored before as usually disorder gives rise to issues in battery materials. It highlights the importance of seeing if other structurally defective materials might give further opportunities for reversible battery chemistry” explained Professor Jawwad Darr (UCL Chemistry).

“We see increasing the surface area and including disorder in the crystal structure offers novel avenues for important chemistry to take place compared to ordered crystals.

Conventionally, order is desired to provide clear diffusion pathways, allowing cells to be charged and discharged easily—but what we’ve seen suggests that a disordered structure introduces new, accessible diffusion pathways that need to be further investigated,” said Professor Jordi Cabana (University of Illinois at Chicago).

These results are the product of an exciting new collaboration between UK and US researchers. UCL and the University of Illinois at Chicago intend to expand their studies to other disordered, high  , to enable further gains in magnesium storage capability and develop a practical magnesium .

 Explore further: Research overcomes major technical obstacles in magnesium-metal batteries

More information: Linhua Hu et al, Tailoring the Electrochemical Activity of Magnesium Chromium Oxide Towards Mg Batteries Through Control of Size and Crystal Structure, Nanoscale (2018). DOI: 10.1039/C8NR08347A