Electrodes Push Charging Rate Limits in Energy Storage: Using MXene in Electrode Design: Drexel University


Drexel Energy Storage Electrodes Key rd1707_MXene-electrode-crop

Drexel researchers developed electrode designs using MXene that allow for much faster charging because they open up paths for ions to quickly travel within the material. Source: Drexel University

 

Can you imagine fully charging your cell phone in just a few seconds? Researchers in Drexel University’s College of Engineering can, and they took a big step toward making it a reality with their recent work unveiling of a new battery electrode design in the journal Nature Energy.

The team, led by Yury Gogotsi, PhD,Distinguished University and Bach professor in Drexel’s College of Engineering, in the Department of Materials Science and Engineering, created the new electrode designs from a highly conductive, two-dimensional material called MXene. Their design could make energy storage devices like batteries, viewed as the plodding tanker truck of energy storage technology, just as fast as the speedy supercapacitors that are used to provide energy in a pinch — often as a battery back-up or to provide quick bursts of energy for things like camera flashes.

“This paper refutes the widely accepted dogma that chemical charge storage, used in batteries and pseudocapacitors, is always much slower than physical storage used in electrical double-layer capacitors, also known as supercapacitors,” Gogotsi said. “We demonstrate charging of thin MXene electrodes in tens of milliseconds. This is enabled by very high electronic conductivity of MXene. This paves the way to development of ultrafast energy storage devices than can be charged and discharged within seconds, but store much more energy than conventional supercapacitors.”

The key to faster charging energy storage devices is in the electrode design. Electrodes are essential components of batteries, through which energy is stored during charging and from which it is disbursed to power electronic devices. So the ideal design for these components would be one that allows them to be quickly charged and store more energy.

To store more energy, the materials should have places to put it. Electrode materials in batteries offer ports for charge to be stored. In electrochemistry, these ports, called “redox active sites” are the places that hold an electrical charge when each ion is delivered. So if the electrode material has more ports, it can store more energy — which equates to a battery with more “juice.”

Collaborators Patrice Simon, PhD, and Zifeng Lin, from Université Paul Sabatier in France, produced a hydrogel electrode design with more redox active sites, which allows it to store as much charge for its volume as a battery. This measure of capacity, termed “volumetric performance,” is an important metric for judging the utility of any energy storage device.

To make those plentiful hydrogel electrode ports even more attractive to ion traffic, the Drexel-led team, including researchers Maria Lukatskaya, PhD, Sankalp Kota, a graduate student in Drexel’s MAX/MXene Research Group led by Michel Barsoum, PhD,distinguished professor in the College of Engineering; and Mengquiang Zhao, PhD, designed electrode architectures with open macroporosity — many small openings — to make each redox active sites in the MXene material readily accessible to ions.

Mxene 2 containingou“In traditional batteries and supercapacitors, ions have a tortuous path toward charge storage ports, which not only slows down everything, but it also creates a situation where very few ions actually reach their destination at fast charging rates,” said Lukatskayathe first author on the paper, who conducted the research as part of the A.J. Drexel Nanomaterials Institute. “The ideal electrode architecture would be something like ions moving to the ports via multi-lane, high-speed ‘highways,’ instead of taking single-lane roads. Our macroporous electrode design achieves this goal, which allows for rapid charging — on the order of a few seconds or less.”

The overarching benefit of using MXene as the material for the electrode design is its conductivity. Materials that allow for rapid flow of an electrical current, like aluminum and copper, are often used in electric cables. MXenes are  conductive, just like metals, so not only do ions have a wide-open path to a number of storage ports, but they can also move very quickly to meet electrons there. Mikhael Levi, PhD, and Netanel Shpigel, research collaborators from Bar-Ilan University in Israel, helped the Drexel group maximize the number of the ports accessible to ions in MXene electrodes.mxene-polymer-nanocomposite-material

Use in battery electrodes is just the latest in a series of developments with the MXene material that was discovered by researchers in Drexel’s Department of Materials Science and Engineering in 2011. Since then, researchers have been testing them in a variety of applications from energy storage to electromagnetic radiation shielding, and water filtering. This latest development is significant in particular because it addresses one of the primary problems hindering the expansion of the electric vehicle market and that has been lurking on the horizon for mobile devices.

“If we start using low-dimensional and electronically conducting materials as battery electrodes, we can make batteries working much, much faster than today,” Gogotsi said. “Eventually, appreciation of this fact will lead us to car, laptop and cell-phone batteries capable of charging at much higher rates — seconds or minutes rather than hours.”

This research was supported by Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy’s Office of Science and Office of Basic Energy Sciences; as well as the National Science Foundation and Binational Science Foundation, which supported collaborations with France and Israel, respectively.

What are MXenes ?

MXenes are a new family of two-dimensional (2D) transition metal carbides, carbonitrides and nitrides that were discovered and developed in collaboration with Prof. Barsoum’s group, that can be used in many applications. These applications include lithium-ion and sodium-ion energy storage systems, electromagnetic interference (EMI) shielding, and water purification. MXenes are highly desirable in EMI shielding due to their good flexibility, easy processing, and high conductivity with minimal thickness, having the highest EMI shielding effectiveness of all synthetic materials of similar thickness. MXenes are also promising antibacterial agents, with higher efficiency than graphene oxide in diminishing bacterial cell viability.

 

 

AE_Nanomaterials_Figure 1Read More: 2D Carbides and Nitrides (MXenes)

EPPL Creates a low-cost system for splitting carbon dioxide – Turning Renewable Energy into Fuel


Ball-and-stick model of carbon dioxide. Credit: Wikipedia

Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.
The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. 


A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. 

However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into renewable energy expensive and prohibitive. 

EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with tin oxide. 
The system can split CO2 with an efficiency of 13.4%. 
The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

The research was carried out by the lab of Michael Grätzel at EPFL. Grätzel is known worldwide for the invention of the first ever dye-sensitized solar cells (or “Grätzel cells”). 

The catalyst, developed by PhD student Marcel Schreier and postdoc Jingshan Luo, is made by depositing an atomic layer of tin oxide on copper oxide nanowires

By using such Earth-abundant materials, the design keeps the cost of the catalyst low while significantly increasing the yield of CO, as opposed to the other products that are generated from CO2 electrocatalysis.
The catalyst was integrated into a CO2 electrolysis system and linked to a triple-junction solar cell (GaInP/GaInAs/Ge) to make a CO2 electrolyzer. 

The system uses the catalyst as a bifunctional electrode that both reduces CO2 into CO and produces oxygen through what is known as the “oxygen evolution” reaction. The two products are separated with a bipolar membrane.

Using solar energy, the system was able to selectively convert CO2 to CO with an efficiency of 13.4%, and do so with a Faradaic efficiency up to 90%—this describes how efficiently electrical charge is transferred in a electrocatalysis system like the one developed here. “The work sets a new benchmark for solar-driven CO2 reduction,” says Luo.

“This is the first time that such a bi-functional and low-cost catalyst is demonstrated,” adds Schreier. “Very few catalysts—except expensive ones, like gold and silver—can selectively transform CO2 to CO in water, which is crucial for industrial applications.”

 
More information: Marcel Schreier, Florent Héroguel, Ludmilla Steier, Shahzada Ahmad, Jeremy S. Luterbacher, Matthew T. Mayer, Jingshan Luo, Michael Grätzel. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy 2, 17087 (05 June 2017). nature.com/articles/doi:10.1038/nenergy.2017.87
Provided by: Ecole Polytechnique Federale de Lausanne

A Holey Graphene Electrode framework that enables highly efficient charge delivery – Making Better Batteries for the Future


Holey Graphene II grapheneThis visualisation shows layers of graphene used for membranes. Credit: University of Manchester

A team of researchers affiliated with institutions in the U.S., China and the Kingdom of Saudi Arabia has developed a new type of porous graphene electrode framework that is capable of highly efficient charge delivery. In their paper published in the journal Science, the group describes how they overcame traditional conflicts arising between trade-offs involving density and speed to produce an electrode capable of facilitating rapid ion transport. Hui-Ming Cheng and Feng Li with the Chinese Academy of Sciences offer a Perspective piece on the work done by the team in the same journal issue, and include some opinions of their own regarding where such work is likely heading.

In a perfect world, batteries would have unlimited energy storage delivered at speeds high enough to power devices with unlimited needs. The phaser from Star Trek, for example, would require far more power and speed than is possible in today’s devices.

While it is unlikely that such technology will ever come about, it does appear possible that batteries of the future will perform much better than today, likely due to nano-structured materials—they have already shown promise when used as material due to their unique properties. Unfortunately, their use has been limited thus far due to the ultra-thin nature of the resulting electrodes and their extremely low mass loadings compared to those currently in use. In this new effort, the researchers report on a new way to create an electrode using that overcomes such limitations.

The electrode they built is porous, which in this case means that it has holes in it. Those holes, as Cheng and Li note, allow better charge transport while also offering improved capacity retention density. The graphene framework they built, they note, offers a superior means of electron transport and its porous nature allows for a high ion diffusion rate—the holes force the ions to take shortcuts, reducing diffusion.

Cheng and Li suggest the new work is likely to inspire similar designs in the search for better electrode materials, which they further suggest appears likely to lead to new electrodes that are not only practical, but have high mass loadings.

Explore further: New graphene framework bridges gap between traditional capacitors, batteries

More information: Hongtao Sun et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage, Science (2017). DOI: 10.1126/science.aam5852

Abstract
Nanostructured materials have shown extraordinary promise for electrochemical energy storage but are usually limited to electrodes with rather low mass loading (~1 milligram per square centimeter) because of the increasing ion diffusion limitations in thicker electrodes.

We report the design of a three-dimensional (3D) holey-graphene/niobia (Nb2O5) composite for ultrahigh-rate energy storage at practical levels of mass loading (>10 milligrams per square centimeter). The highly interconnected graphene network in the 3D architecture provides excellent electron transport properties, and its hierarchical porous structure facilitates rapid ion transport.

By systematically tailoring the porosity in the holey graphene backbone, charge transport in the composite architecture is optimized to deliver high areal capacity and high-rate capability at high mass loading, which represents a critical step forward toward practical applications.

 

“Holey” graphene improves battery electrodes – May be ‘The Holy Grail’ of Next Generation Batteries 



May 12, 2017

Electrodes containing porous graphene and a niobia composite could help improve electrochemical energy storage in batteries. This is the new finding from researchers at the University of California at Los Angeles who say that the nanopores in the carbon material facilitate charge transport in a battery.

By fine tuning the size of these pores, they can not only optimize this charge transport but also increase the amount of active material in the device, which is an important step forward towards practical applications.


Niobia and holey graphene composite with tailored nanopores

Batteries and supercapacitors are two complementary electrochemical energy-storage technologies. They typically contain positive and negative electrodes with the active electrode materials coated on a metal current collector (normally copper or aluminium foil), a separator between the two electrodes, and an electrolyte that facilitates ion transport.

The electrode materials actively participate in charge (energy) storage, whereas the other components are passive but nevertheless compulsory for making the device work.

Batteries offer high energy density but low power density while supercapacitors provide high power density with low energy density.

Although lithium-ion batteries are the most widely employed batteries today for powering consumer electronics, there is a growing demand for more rapid energy storage (high power) and higher energy density. Researchers are thus looking to create materials that combine the high-energy density of battery materials with the short charging times and long cycle life of supercapacitors.

Such materials need to store a large number of charges (such as Li ions) and have an electrode architecture that can quickly deliver charges (electrons and ions) during a given charge/discharge cycle.

Increasing the mass loading of niobia in electrodes

Nanostructured materials fit the bill here, but unfortunately only for electrodes with low areal mass loading of the active materials (around 1 mg/cm2). “This is much lower than the mass of the passive components (around 10 mg/cm2 or greater),” explains team leader Xiangfeng Duan. “As a result, in spite of the high intrinsic capacity or rate capability of these new nanostructured materials, the scaled area capacity or areal current density of nanostructured electrodes rarely exceeds those of today’s Li-ion batteries.

Thus, these electrodes have not been able to deliver their extraordinary promise in practical commercial devices.

“To take full advantage of these new materials, we must increase the mass loading to a level comparable to or higher than the mass of the passive components. To satisfy the energy storage requirement of an electrode with 10 times higher mass loading requires the rapid delivery of 10 times more charge over a distance that is 10 times greater within a given time. This is a rather challenging task and has proven to be a critical roadblock for new electrode materials.

“We have now addressed this very issue of how we can increase the mass loading of niobia (Nb2O5) in electrode structures without compromising its merit for ultrahigh-rate energy storage,” he continues. “Electrodes with intrinsically high capacity or high rate capability in practical devices require a new architecture that can efficiently deliver sufficient electrons or ions.

We have designed a 3D holey-graphene-Nb2O5 composite with excellent electron and ion transport properties for ultrahigh-rate energy storage at practical levels of mass loading (greater than 10 mg/cm2).”

Porous structure facilitates rapid ion transport

“The highly interconnected graphene network in the 3D architecture provides excellent electron transport properties and its hierarchical porous structure facilitates rapid ion transport,” he adds. “What is more, by systematically tailoring the porosity in the holey graphene backbone, we optimize charge transport in the composite architecture to simultaneously deliver areal capacity and high-rate capability at practical levels of mass loading – something that is a critical step forward towards commercial applications.”

The researchers made their mechanically strong 3D porous composites in a two-step synthesis technique. “We uniformly decorate Nb2O5

Decreasing the fraction of inactive materials

The in-plane pores in the holey graphene sheet function as ion transport “shortcuts” in the hierarchical porous structure to facilitate rapid ion transport throughout the entire 3D electrode and so greatly improve ion transport kinetics and access to ions on the surface of the electrode, Duan tells nanotechweb.org.

Spurred on by these results, the researchers say they will now try to incorporate high-capacity active materials such as silicon and tin oxide to further increase output energy levels in electrochemical cells. “Extremely high mass-loaded electrodes (for example, five times that of practical mass loading, or 50 mg/cm2) could also help decrease the fraction of inactive materials in a device and so simplify the process to make these cells.”


So What’s Next?

Team GNT writes: For the Researchers to take ‘the next step’ further exploration of best outcome and integration of new structured  materials must be completed. And then …

  • Proof of Concept
  • Proof of Scalability 
  • Competitive Market Integration Analysis
  • Manufacturing Platform and Market Distribution 

A lot of hard work! But work that will be well worth the effort if the emerging technology can meet all of the required. Milestones! The current rechargeable battery market is a $112 Billion Market!



The research is detailed in Science DOI: 10.1126/science.aam5852.
Belle Dumé is contributing editor at nanotechweb.org

New battery technology that could run for more than a decade could revolutionize renewable energy – Harvard University


Harvard Battery Research aziz_650

The race is on to build the next-generation battery that could help the world switch over to clean energy. But as Bill Gates explained in his blog last year: “storing energy turns out to be surprisingly hard and expensive”.

 

Now Harvard researchers have developed a cheap, non-toxic battery that lasts more than 10 years, which they say could be a game changer for renewable energy storage.

Solar installers from Baker Electric place solar panels on the roof of a residential home in Scripps Ranch, San Diego, California, U.S. October 14, 2016.  Picture taken October 14, 2016.      REUTERS/Mike Blake - RTX2QGWW

Image: REUTERS/Mike Blake

The researchers from the John A. Paulson School of Engineering and Applied Sciences published a paper in the journal ACS Energy Letters saying that they have developed a breakthrough technology.

 

Their new type of battery stores energy in organic molecules dissolved in neutral pH water. This makes the battery non-toxic and cheaper. It’s suitable for home storage and lasts for more than a decade. “This is a long-lasting battery you could put in your basement,” Roy Gordon, a lead researcher and the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science, said in a Harvard news article.

“If it spilled on the floor, it wouldn’t eat the concrete and since the medium is non-corrosive, you can use cheaper materials to build the components of the batteries, like the tanks and pumps.”

 

The energy storage problem

There’s a big problem with renewable energy sources: Intermittency. In other words, how to keep the lights on when the sun isn’t shining or the wind isn’t blowing.

 Image 2

 Image: International Energy Agency

In recent years, universities and the tech sector have been working on better batteries that they hope could help solve the energy storage problem. Despite significant improvements though, batteries are riddled with issues such as high cost, toxicity and short lifespan.

 

Solar power customers usually have two options to store power: lithium-ion batteries such as the ones found in electronics, which are still very expensive; or lead-acid batteries. These cost half as much, but need a lot of maintenance and contain toxic materials.

 Image 3

Image: Bloomberg New Energy Finance

In one emerging and promising technology is the “v-flow” battery, which uses vanadium in large external tanks of corrosive acids. 

The bigger the tanks, the more energy they store. But there’s a catch: vanadium is an expensive metal and like all other battery technologies, v-flow batteries lose capacity after a few years.

The quest for the next-generation battery

The US Department of Energy has set a goal of building a battery that can store energy for less than $100 per kilowatt-hour, which would make stored wind and solar energy competitive with energy produced from traditional power plants.

 

The Harvard researchers say their breakthrough puts them within sight of this goal.

“If you can get anywhere near this cost target then you change the world,” said Michael Aziz, lead researcher and professor of Materials and Energy Technologies at Harvard. “It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target.”

 

energy_storage_2013-042216-_11-13-1

Video: Next Generation Silicon-Nanowire Batteries

 

A new company has been formed to exploit and commercialize the Next Generation Super-Capacitors and Batteries. The opportunity is based on Technology & Exclusive IP Licensing Rights from Rice University, discovered/ curated by Dr. James M. Tour, named “One of the Fifty (50) most influential scientists in the World today”

The Porous Silicon Nanowires & Lithium Cobalt Oxide technology has been advanced to provide a New Generation Battery that is:

 Energy Dense
 High Specific Power
 Affordable Cost
 Low Manufacturing Cost
 Rapid Charge/ Re-Charge
 Flexible Form Factor
 Long Warranty Life
 Non-Toxic
 Highly Scalable

Key Markets & Commercial Applications

 Motor Cycle/ EV Batteries
 Marine and Drone Batteries
 Medical Devices and
 Power Banks
 Estimated $112 Billion Market for Rechargeable Batteries by 2025

 

 

An EV Battery That Charges Fully In 5 Minutes? Commercialization Step-Up Could Come Soon


storedot-ev-battery-21-889x592 (1)

Electric vehicles now comprise a substantial part of the automotive market. But the fact remains that despite the increasing number of charging stations, it is still inconvenient to charge a car in comparison to getting a tank full of gas.

StoreDot, an Israeli startup, might have the solution to the woes of electric vehicle (EV) owners, with a new battery it claims can fully charge in five minutes and drive the EV 300 miles on a single charge.

StoreDot aa8b81a83f20b19b089ceb4e4a25e036

 

Read About the Company: Enabling the Future of Charging

The battery is made of nano-materials in a layered structure, made of special organic compounds manufactured by the company. This, the company said, is a massive improvement over traditional lithium-ion battery.

The company first demonstrated the technology at Microsoft Think Next in 2015. The company says the batteries are in the “advanced stages of development” and might be integrated into electric vehicles in the next three years. It also says that its chemical compound is not flammable and has a higher level of combustion, reducing the level of resistance in the batteries making it safe for use in cars.

The batteries won’t be too difficult to manufacture either — the company estimates that 80 percent of the manufacturing process is the same as regular lithium-ion batteries.

StoreDot specializes in battery technology. Last year, it showcased a smartphone battery capable of fully charging within 30 seconds. The EV battery is a scaled up version of this battery which has multi-function electrodes, a combination of polymer and metal oxide.

Watch the Video

 

Read More

 

An electric car battery that could charge in just five minutes ~ Where is the Israeli Start-Up “+StoreDot” One Year Later? +Video

storedot-ev-battery-21-889x592 (1)

Dendrite-free lithium metal anodes using Nitrogen-doped graphene matrix – Solves Safety & Power Challenges


Dendrite Free LI Anodes 590c50b37b0b0

 

 

Recently, Researchers in Tsinghua University have proposed a nitrogen-doped graphene matrix with densely and uniformly distributed lithiophilic functional groups for dendrite-free lithium metal anodes, appearing in the journal Angewandte Chemie International Edition.

Since lithium metal possesses an ultrahigh theoretical specific capacity (3860 mAh g-1) and the lowest negative electrochemical potential (-3.040 V vs. the standard hydrogen electrode), lithium metal has been regarded as the most promising electrode material for next-generation high-energy-density batteries. However, the application of lithium metal batteries is still not in sight. “Lithium dendrite growth has hindered the development of lithium metal anodes,” said Dr. Qiang Zhang, the corresponding author, a faculty at Department of Chemical Engineering, Tsinghua University. “Lithium dendrites that form during repeated lithium plating and stripping cycles can not only induce many ‘dead Li’ with irreversible capacity loss, but also cause internal short circuits in batteries and other hazardous issues.”

LI Dendrite separator“We found that a lithiophilic material with good metallic lithium affinity can guide the lithium metal nucleation. Therefore, designing a lithium-plating with a high surface area and lithiophilic surface makes sense for a safe and efficient ,” said Xiao-Ru Chen, an undergraduate student in Tsinghua University. “So we employed a nitrogen-doped graphene matrix with densely and uniformly distributed nitrogen containing to guide lithium metal nucleation and growth.”

“The nitrogen containing functional groups are lithiophilic sites, confirmed by our experimental and DFT calculation results. Lithium metal can plate with uniform nucleation during the charging process, followed by growth into dendrite-free morphology. While on the normal Cu foil-based anode, the nucleation sites are scattered, which may cause lithium dendrite growth more easily,” said Xiang Chen, a Ph.D. student at Tsinghua University.

With the lithiophilic nitrogen-containing functional groups, the N-doped graphene matrix can regulate the nucleation process of lithium electrodeposition. As a result, dendrite-free lithium metal deposits were obtained. Additionally, this matrix shows impressive electrochemical performance. The Coulombic efficiency of the N-doped graphene-based electrode at a current density of 1.0 mA cm-2 and a cycle capacity of 1.0 mAh cm-2 can reach 98 percent for nearly 200 cycles.

“We have proposed a new strategy based on lithiophilic site-guided nucleation to settle the tough dendrite challenge in this publication,” said Qiang. “Further research is required to investigate and control the lithium nucleation in lithium metal batteries. We believe that the practical application of lithium anodes can be finally realized.” The control of the process of plating with a lithiophilic matrix has shed a new light on all -based batteries, such as Li-S, Li-O2 and future Li-ion batteries.

Explore further: New battery coating could improve smart phones and electric vehicles

More information: Rui Zhang et al. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201702099

 

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology


Forge Nano II batterypower-669x272

NREL’s Agreement with Forge Nano helps fundamentally enhance lithium-ion battery safety, durability, and lifetime

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) has entered into an exclusive license agreement with Forge Nano to commercialize NREL’s patented battery materials and systems capable of operating safely in high-stress environments. A particular feature of the technology is the encapsulation of materials with solid electrolyte coatings that can be designed to meet the increasingly demanding needs of any battery application.

These lithium-ion batteries feature a hybrid solid-liquid electrolyte system, in which the electrodes are coated with a solid electrolyte layer. This layer minimizes the potential for the formation of an internal short circuit between electrodes to prevent “thermal runaway,” or the uncontrolled increase in battery cell temperature that can result in a fire or an explosion.

In addition, coating of the electrode materials reduces the stress on traditional polymer separators that are currently necessary components in commercial lithium-ion batteries and can allow for thinner separators designed for higher power devices. This advancement has the potential to reduce both the cost and weight of the battery device, while substantially increasing safety and lifetime.

Lab-scale testing of NREL’s hybrid solid-liquid electrolyte system has shown increased electrode durability and reliability without compromised electrochemical performance. “The cells are less likely to fail, even in demanding, real-world conditions like high temperatures and fast recycle rates,” said Ahmad Pesaran, whose team of engineers in NREL’s Energy Storage group invented the technology.

Forge Nano 2017 AAEAAQAAAAAAAAdtAAAAJDgzZGI5OTYxLTcwYjUtNDdiMy05Yjc5LWFkZDZlOWU1OTg3YwForge Nano, formerly PneumatiCoat Technologies, is a Colorado-based company specializing in the scale-up and manufacturing of cost-effective Atomic Layer Deposition (ALD) encapsulated materials. Forge Nano presented its technology at the 2013 and 2017 NREL Industry Growth Forum, the nation’s premier clean energy investment event. A year later, NREL approached the company as a potential licensee after conducting a licensee search in the battery technology area.

“This license agreement will allow Forge Nano to offer further customized lithium-ion battery materials for high performance devices by utilizing our patented high-throughput ALD system that has already been successfully tested at the pilot scale and in large format pouch cells,” Paul Lichty, CEO of Forge Nano, said. “The incorporation of this technology into Forge Nano’s offering will lead to a substantial reduction in cost per unit energy of lithium-ion batteries.”

NREL has more than 800 technologies available for licensing. Companies interested in partnering to advance research on or commercialize renewable energy technologies can visit the EERE Energy Innovation Portal, which features descriptions of all renewable energy technologies funded by the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Visit NREL online at www.nrel.gov

To learn more about Forge Nano visit: Forge Nano

World’s first images of electric currents in Graphene released: Applications for Next Generation Electronics, Quantum Computing, Energy Storage (batteries), Flexible Displays & Bio-Chem Sensors.



Artist’s impression of a diamond quantum sensor. The ‘spotlight’ represents light passing through the diamond defect and detecting the movement of electrons. Electrons are shown as red spheres, trailed by red threads that reveal their path through graphene (a single layer of carbon atoms). Credit: David A. Broadway/cqc2t.org


Researchers at the University of Melbourne are the first in the world to image how electrons move in two-dimensional graphene, a boost to the development of next-generation electronics.

Capable of imaging the behaviour of moving electrons in structures only one atom in thickness, the new technique overcomes significant limitations with existing methods for understanding electric currents in devices based on ultra-thin materials.

“Next-generation electronic devices based on ultra-thin materials, including quantum computers, will be especially vulnerable to contain minute cracks and defects that disrupt current flow,” said Professor Lloyd Hollenberg, Deputy Director of the Centre for Quantum Computation and Communication Technology (CQC2T) and Thomas Baker Chair at the University of Melbourne.

A team led by Hollenberg used a special quantum probe based on an atomic-sized ‘colour centre’ found only in diamonds to image the flow of electric currents in graphene. The technique could be used to understand electron behaviour in a variety of new technologies.

“The ability to see how electric currents are affected by these imperfections will allow researchers to improve the reliability and performance of existing and emerging technologies. We are very excited by this result, which enables us to reveal the microscopic behaviour of current in quantum computing devices, graphene and other 2D materials,” he said.

graphenehydrWatch the video:

The Diamond Quantum Sensor is controlled by lasers.

Artist’s impression of a diamond quantum sensor. The ‘spotlight’ represents light passing through the diamond defect and detecting the movement of electrons. Electrons are shown as red spheres, trailed by red threads that reveal their path through graphene (a single layer of carbon atoms). Credit: David A. Broadway/cqc2t.org

“Next-generation electronic devices based on ultra-thin materials, including quantum computers, will be especially vulnerable to contain minute cracks and defects that disrupt current flow,” said Professor Lloyd Hollenberg, Deputy Director of the Centre for Quantum Computation and Communication Technology (CQC2T) and Thomas Baker Chair at the University of Melbourne.
We are very excited by this result, which enables us to reveal the microscopic behaviour of current in quantum computing devices, graphene and other 2D materials,” he said.

“Researchers at CQC2T have made great progress in atomic-scale fabrication of nanoelectronics in silicon for quantum computers. Like graphene sheets, these nanoelectronic structures are essentially one atom thick.
The success of our new sensing technique means we have the potential to observe how electrons move in such structures and aid our future understanding of how quantum computers will operate.”
In addition to understanding nanoelectronics that control quantum computers, the technique could be used with 2D materials to develop next generation electronics, energy storage (batteries), flexible displays and bio-chemical sensors.

“Our technique is powerful yet relatively simple to implement, which means it could be adopted by researchers and engineers from a wide range of disciplines,” said lead author Dr Jean-Philippe Tetienne from CQC2T at the University of Melbourne.

“Using the magnetic field of moving electrons is an old idea in physics, but this is a novel implementation at the microscale with 21st Century applications.”

The work was a collaboration between diamond-based quantum sensing and graphene researchers. Their complementary expertise was crucial to overcoming technical issues with combining diamond and graphene.

img_0118-1
Seeing is believing: Diamond quantum sensor reveals current flows in next-gen materials. An image of the current flow in graphene, obtained using a diamond quantum sensor. The colour reveals where defects lie by showing the current intensity i.e. the number of electrons passing through each second. Credit: University of Melbourne/cqc2t.org

“No one has been able to see what is happening with electric currents in graphene before,” said Nikolai Dontschuk, a graphene researcher at the University of Melbourne School of Physics.

“Building a device that combined graphene with the extremely sensitive nitrogen vacancy colour centre in diamond was challenging, but an important advantage of our approach is that it’s non-invasive and robust – we don’t disrupt the current by sensing it in this way,” he said.

Tetienne explained how the team was able to use diamond to successfully image the current. “Our method is to shine a green laser on the diamond, and see red light arising from the colour centre’s response to an electron’s magnetic field,” he said. “By analysing the intensity of the red light, we determine the magnetic field created by the electric current and are able to image it, and literally see the effect of material imperfections.”
The current-imaging results were published today in the journal Science Advances.

More information: “Quantum imaging of current flow in graphene,” Science Advances (2017). DOI: 10.1126/sciadv.1602429 , advances.sciencemag.org/content/3/4/e1602429

Provided by: Centre for Quantum Computation & Communication Technology

 

Batteries that Really Keep Going and Going and Going …


U of Waterloo: Forget the graphite-based lithium batteries currently powering your devices. Next-generation batteries could last for decades. Really.

With a potential lifespan of 10 to 20 years, Professor Zhongwei Chen’s next-generation rechargeable batteries are set to put the Energizer Bunny to shame.

This battery could last 10 years, or even more than 20 years.Energizer_Bunny

Dr. Chen and his team are developing next-generation batteries and fuel cells. They are working on two types of batteries that are destined to be longer lasting and more efficient. One of these batteries is a rechargeable zinc battery that uses renewable energy, such as solar and wind. It could also be cost effective, which means that everyone could use it in the future.

Dr. Chen and his team are using novel materials to upgrade the traditional battery. He says that the key is to use silicon-based materials instead of graphite materials, which are currently being used in the commercial battery. Why? Silicon’s energy density is 10 times higher.

The result is a potential 150% energy density increase compared to its graphite-based lithium battery counterpart, which is currently being used to power electric cars and our cell phones. With the popularity of electric cars on the rise, companies such as Tesla and Panasonic are already looking to move beyond the limitations of the lithium battery.

Dr. Chen explains how he plans to solve the problems associated with the traditional battery as we move forward to meet the increased energy demands of the future.

MORE: Watch Our Current Battery Technology Project Video

A new company has been formed to exploit and commercialize the Next Generation Super-Capacitors and Batteries. The opportunity is based on Technology & Exclusive IP Licensing Rights from Rice University, discovered/ curated by Dr. James M. Tour, named “One of the Fifty (50) most influential scientists in the World today”

The Silicon Nanowires & Lithium Cobalt Oxide technology has been further advanced to provide a New Generation Battery that is:

 Energy Dense
 High Specific Power
 Affordable Cost
 Low Manufacturing Cost
 Rapid Charge/ Re-Charge
 Flexible Form Factor
 Long Warranty Life
 Non-Toxic
 Highly Scalable

Key Markets & Commercial Applications

 Motor Cycle/ EV Batteries
 Marine Batteries
 Drone Batteries and
 Power Banks
 Estimated $112B Market for Rechargeable Batteries by 2025