Mobility Disruption by Tony Seba – Silicon Valley Entrepreneur and Lecturer at Stanford University – The Coming EV Revolution by 2030? – YouTube Video

Tony Seba, Silicon Valley entrepreneur, Author and Thought Leader, Lecturer at Stanford University, Keynote

The reinvention and connection between infrastructure and mobility will fundamentally disrupt the clean transport model. It will change the way governments and consumers think about mobility, how power is delivered and consumed and the payment models for usage. Will we be ALL Electric Vehicles by 2030? Is the ICE Dead? Impossible?


The Coming Clean Disruption of Energy and Transportation: YouTube Video

Published on Jan 18, 2018

Mobility Disruption – A Presentation by Tony Seba, Silicon Valley Entrepreneur and Lecturer at Stanford University

The reinvention and connection between infrastructure and mobility will fundamentally disrupt the clean transport model.

It will change the way governments and consumers think about mobility, how power is delivered and consumed and the payment models for usage.

 Bold Predictions

“The industrial age of energy and transportation will be over by 2030. Maybe before.” – Tony Sena

Exponentially improving technologies such as solar, electric vehicles, and autonomous (self-driving) cars will disrupt and sweep away the energy and transportation industries as we know it.

The same Silicon Valley ecosystem that created bit-based technologies that have disrupted atom-based industries is now creating bit- and electron-based technologies that will disrupt atom-based energy industries.

Clean Disruption projections (based on technology cost curves, business model Innovationist as well as product innovation) show that by 2030:

– All new energy will be provided by solar or wind.

– All new mass-market vehicles will be electric.

– All of these vehicles will be autonomous (self-driving) or semi-autonomous.

– The car market will shrink by 80%.

– Gasoline will be obsolete. Nuclear is already obsolete. Natural Gas and Coal will be obsolete.

– Up to 80% of highways will not be needed.

– Up to 80% of parking spaces will not be needed.

– The concept of individual car ownership will be obsolete.

– The Car Insurance industry will be disrupted. The taxi industry will be obsolete.

Genesis Nanotechnology – “Great Things from Small Things”

Watch Our New YouTube Video:

What’s sparking electric-vehicle adoption in the truck industry?

OLYMPUS DIGITAL CAMERACommercial fleets could go electric rapidly. Understanding total cost of ownership and focusing on specific cases is critical.

There’s nothing new about electric trucks; they have labored on the streets of major cities across the world since the first decades of the 20th century.

Fleet managers prized these trucks for their strong pulling power and greater reliability than vehicles powered by early, fitful internal combustion engines (ICEs). And now, in a high-tech second act, both incumbent and nontraditional makers of commercial vehicles across most weight categories and a variety of segments are launching new “eTrucks.” A century on, the question is, why now?

We believe the time for this technology is ripe and that three drivers will support the eTruck market through 2030.

First, based on total cost of ownership (TCO), these trucks could be on par with diesels and alternative powertrains in the relative near term.

Second, robust electric-vehicle (EV) technology and infrastructure is becoming increasingly cost competitive and available.

Nikola Electric Truck 15616_26470_ACT

Nikola CEO: Fuel-Cell Class 8 truck on track for 2021 – SAE International

Third, adoption is being enabled by the regulatory environment, including country-level emission regulations (for example, potential carbon dioxide fleet targets) and local access policies (for example, emission-free zones).

At the same time, barriers to eTruck adoption exist: new vehicles must be proved to be reliable, consumers need to be educated, and employees, dealers, and customers will require training. Furthermore, there are challenges in managing the new supply chain and setting up the production of new vehicles.

Based on the analysis of many different scenarios—which are highly sensitive to a defined set of assumptions—our research shows that commercial-vehicle (CV) electrification will be driven at different rates across segments, depending on the specific characteristics of use cases.

Electrification is happening fast, and it’s happening now

Electric Truck II upsvanMcKinsey developed a granular assessment of battery-electric commercial vehicles (BECVs) for 27 CV segments across three different regions (China, Europe, and the United States), three weight classes, and three applications. The three weight classes are light-duty trucks (LDTs), medium-duty trucks (MDTs), and heavy-duty trucks (HDTs), while the three applications are urban, regional, and long-haul cycles. While our modeling also includes other alternative fuels and technologies such as mild hybrids, plug-in hybrids (PHEVs), natural gas, and fuel-cell electric CVs, this article focuses on full electrification.

Our model concentrates on two scenarios, “early adoption” and “late adoption,” to help place bookends for each weight class and geography (Exhibit 1). The two scenarios reflect different beliefs regarding core assumptions, such as the effectiveness of any regulatory push, the timing of infrastructure readiness, and the supply availability, which results in delay or advancement of uptake.

adoption scenarios for electric trucks in 3 weight classes in Europe, US, and China through 2030

Our research reveals strong potential uptake of BECVs, especially in the light- and medium-duty segments. Unlike decision criteria to purchase passenger cars, CV purchasing decisions place greater emphasis on economic calculations and reflect a greater sensitivity to regulation. Light- and medium-duty BECV segment adoption will probably lag that of passenger-car EVs through 2025 due to a lack of eTruck model availability and fleets that are risk averse. However, our analysis indicates that in an “early adoption” scenario, BECV share in light and medium duty could surpass car EV sales mix in some markets by 2030 due to undeniable TCO advantages for BECVs over diesel trucks.

Comparing the weight classes, our scenarios suggest low uptake in the HDT segment mainly because of high battery costs, and, as such, later TCO parity. In the MDT and LDT segments, our “late adoption” scenario suggests that BECVs could reach 8 to 27 percent sales penetration by 2030, depending on region and application. In our “early-adoption” scenario, with more aggressive assumptions about the expansion of low-emission zones in major cities, BECVs could reach 15 to 34 percent sales penetration by 2030.

The inflection point appears to be shortly after 2025, when demand could be supported by a significant tailwind from the expected tightening of regulation (for example, free-emission zones), in combination with increasing customer confidence, established charging infrastructure, model availability, and improved economics for a variety of use cases and applications.

TCO plays a more important role in commercial-vehicle purchasing considerations and modeling TCO helps companies understand the timing of TCO parity across different powertrain types. We analyzed the sensitivity of TCO parity to see how much earlier a specific use case with a custom-made technology package tailored to a predefined driving and charging pattern can break even. The illustration of the “race of eTrucks” shows the interval of potential TCO breakeven points for various applications and weight classes (Exhibit 2). The light-colored shade behind each point indicates how early a specific use case can potentially break even.

timeline for electric trucks (by weight class and miles traveled) reaching total-cost-of-ownership parity with diesel vehicles in Europe, US, and China through 2030

Medium average daily distances show the earliest TCO breakeven point. Looking across weight classes, we can identify an optimal daily driving distance that establishes TCO parity for eTrucks and diesels. In the example shown, the earliest breakeven point occurs at a distance travelled of about 200 kilometers a day. This sweet spot of operation means the battery is large enough to enable efficient operation without too many recharges, while ensuring sufficient annual distance to benefit from the lower cost per kilometer. At the same time, the battery is still small enough to limit upfront capital expenditures. This effect is strongest where the difference between electricity and diesel prices is high, as in the European Union, where taxes on fuels are high, resulting in a high price differential with electricity prices. In the United States, prices for fuel and electricity are both lower, as is the absolute price differential.

Urban city buses will break even earliest in the heavy-duty segment. Electric city buses—an adaptation of a purpose-built HDT—could break even the earliest in the HDT segment, between 2023 and 2025 for the average application. In China in 2016, the share of new EV bus sales already exceeded 30 percent1due to regulatory considerations. By 2030, EV city buses could reach about 50 percent if municipalities enact conducive policies. City and urban bus segments are likely to experience some of the highest BECV penetration levels in Europe and the United States.

The breakeven point for light-duty urban applications is sensitive to minor changes in use case. While the average LDT-segment truck could break even in 2021, by slightly modifying the use-case characteristics (for example, using a smaller battery, recharging during operation, or assuming higher energy efficiency due to disabled heating for urban parcel delivery), the case can reach parity today.

Three critical assumptions most affect TCO breakeven points.The assumptions that drive TCO uncertainties include the development of fuel and electricity efficiencies for ICE or BECV technologies, the cost of batteries, and the cost of fuel and electricity. Also, our analysis shows that the TCO breakeven of urban applications is more sensitive to changes in assumptions than it is for long-haul applications. That’s because the costs per kilometer associated with both BECVs and ICEs for long hauls remain closer to each other for a longer period. For example, a five percent improvement in a BECV’s TCO would shift the breakeven point by three to four years in urban applications, but only by about two years in long-haul applications.

Infrastructure readiness

The required charging infrastructure represents a major challenge to BECV uptake. Nevertheless, charging may not be as critical as it is for passenger cars, due to the predictability and repeatability of driving patterns and operational uses and the central nature of refueling. In general, charging infrastructure will be required at depots to enable charging when BECVs are not in use (for example, overnight). Building a supporting infrastructure will require investments by vehicle owners and, potentially, end users as well. (Our TCO modeling reflects the required cost of use-case-supporting charging infrastructure.) The possibility of charging while loading or unloading could drive earlier adoption because it has the potential to reduce cost based on smaller battery-size requirements.

Long-haul (and partly regional) applications will require in-route charging, for example, at motorways or resting areas. On the one hand, the high level of predictability of long-haul routes allows for concentrated investment in charging infrastructure. Companies can identify key routes and charging points and prioritize them for investment. Analysis shows that on popular routes a charging point every 80 to 100 kilometers could suffice for the early phases of HDT adoption, so the sheer number of charging points might not be the limiting factor.

Courtesy Of: McKinsey Center for Future Mobility 

Connecting the Future of Electric Vehicles with Our Exploration of Space – “Back to the Future”

Special Contribution by Jason Torchinsky 

Yesterday, we reported on an alarming development for the future of electric cars: we may not have enough of the crucial minerals needed for their batteries to meet the expected demand. Supplies of nickel and cobalt are going to be needed in far larger quantities than ever before, and it’s looking like we may not have the necessary resources. 

Though, it’s worth mentioning that this is only a problem if you have what the intergalactic call a “planetary mindset.” There’s plenty of what we need just outside our door, in asteroids.

Asteroid mining has been discussed and planned and speculated about for decades, but so far there’s never really been a compelling economic reason to take the risks inherent in starting an entirely new, space-based industry.

Electric car demand may be that crucial factor that changes everything, though. Nickel and cobalt of sufficient quality and quantity may be becoming scarce on Earth, but there’s literally tons and tons and tons of the stuff pirouetting around in the inky black of space.

There’s incredibly, astoundingly valuable asteroids out there, and many we’ve already identified, like 241 Germania, which has as much mineral value in it as the entire Earth’s yearly GDP. Nickel and cobalt are abundant elements in these asteroids, and researchers have even already picked a dozen small asteroids close enough to Earth that they could be mined with just the technology that we have right now.

Those 12 asteroids are close enough to the L1 or L2 Lagrangian Points–stable areas where the gravity between two bodies, like the Earth and moon, cancel one another out–that getting them to these stable, accessible orbits is easy enough that researchers call them EROs, for Easily Retrievable Objects.

Companies like Planetary Resources have been working on asteroid mining for years, but have mostly been focused on the in-space uses of those resources, as opposed to bringing those resources back to Earth. This animation gives a sense of the way they’ve been thinking so far:

While in-space use of asteroid mineral resources is absolutely important, the recently seen expected demand for electric cars–most obviously seen in the amount of interest and pre-orders Tesla got for its upcoming Model 3–changes things dramatically. Electric car demand could easily be the backbone of the justification for asteroid mining that returns resources to Earth.

Where it was once thought that it didn’t make economic sense to mine asteroids for terrestrial use, that thinking is changing. In fact, a recent study by Noah Poponak of Goldman Sachs says the opposite:

“While the psychological barrier to mining asteroids is high, the actual financial and technological barriers are far lower. Prospecting probes can likely be built for tens of millions of dollars each and Caltech has suggested an asteroid-grabbing spacecraft could cost $2.6 billion.”

For comparison, $2.6 billion is how much money Lyft has raised. Lyft! What have they produced? Fuzzy pink car-moustaches and an app, neither of which can grab asteroid one.

Legally, things are looking good, too. An Obama-era law, the U.S. Commercial Space Launch Competitiveness Act, was passed that acknowledges that while legally no one can own the moon or an asteroid, private companies can own any materials taken from those celestial objects, which means asteroid mining for profit is legal.

If electric cars provide the economic push needed to get us to send grizzled robot space prospectors out to get that sweet, sweet space-cobalt, it’s hard not to see a possible significant competitive advantage for one of the key players, Tesla.

That’s because as we all know, Elon Musk is behind not just Tesla but SpaceX, likely the most successful private space-launch company around. SpaceX has capable launch vehicles and likely the expertise to design and build robotic mining spacecraft, which could give Tesla total control of their entire vertical from mining the resources in space, transporting them back to Earth (humans have been sending material from space to Earth since the start of the space program, remember), manufacturing those resources into batteries, and from there into electric cars.

Has this been Elon’s plan all along? Has all the Mars colonization hype just been a red-planet herring to distract us from his real preparations for large-scale asteroid mining?

Probably not, but it’s fun to think about. There’s also an environmental argument in favor of asteroid mining for electric car batteries. Where electric cars are far cleaner at the car level, they still take an environmental toll to build, since mining isn’t exactly the most eco-friendly endeavor. Moving that part of the equation off-planet would made the overall life cycle of an electric car vastly better for the Earth, for the simple reason it’s just not happening there.

China’s Electric Vehicle Revolution: Video

China EV Boom 3 f8bc126d980d16f46a1506

China’s electric car production grows three-fold in May

Beijing’s announcement that it is considering banning gasoline and diesel cars from its smog clogged roads promises to accelerate a push toward electric vehicles — a race in which Chinese car makers have everything to gain.


MIT: Tesla Not the Only Battery Game in Town ~ Electric Cars Could Be Cheaper Than Internal Combustion by 2030

German chancellor Angela Merkel visits Accumotive’s plant in Kamenz, Germany.

Tesla gets the headlines, but big battery factories are being built all over the world, driving down prices.

Battery production is booming, and Tesla is far from the only game in town.

According to Bloomberg New Energy Finance, global battery production is forecast to more than double between now and 2021. The expansion is in turn driving prices down, good news both for the budding electric-car industry and for energy companies looking to build out grid-scale storage to back up renewable forms of energy.

While Tesla gets tons of attention for its “gigafactories”—one in Nevada that will produce batteries, and another in New York that will produce solar panels
—the fact is, the company has a lot of battery-building competition.

Exhibit A is a new battery plant in Kamenz, Germany, run by Accumotive. The half-billion-euro facility broke ground on Monday with a visit from German chancellor Angela Merkel and will supply batteries to its parent company, Daimler, which is betting heavily on the burgeoning electric-vehicle market.

But the lion’s share of growth is expected to be in Asia. BYD, Samsung, LG, and Panasonic (which has partnered with Tesla) are all among the world’s top battery producers, and nine of the world’s largest new battery factories are under construction in China (paywall), according to Benchmark Minerals.

That competition means the steady downward trend in battery prices is going to continue. On a per-kilowatt-hour basis, costs have fallen from $542 in 2012 to around $139 today, according to analysis by Benchmark.

That makes for a huge difference in the cost of an electric car, of which 40 percent is usually down to the battery itself.

Bloomberg’s analysts have already said that the 2020s could be the decade in which electric cars take off—and one even went so far as to say that by 2030, electric cars could be cheaper than those powered by internal combustion.

Those watching the industry might worry that a flood of cheap batteries could end up hurting profitability for producers, as happened in the solar-panel business.

That could happen, but India and China, two huge rising automotive markets, are bullish about using electric cars to help solve problems like traffic congestion and air pollution. So even as supply ramps up, there is likely to be plenty of demand to go around.

MIT Technology Review: M. Reilly Sr. Editor

New nanofiber marks important step in next generation battery development

One of the keys to building electric cars that can travel longer distances and to powering more homes with renewable energy is developing efficient and highly capable energy storage systems.

Materials researchers at Georgia Institute of Technology have created a nanofiber that could help enable the next generation of rechargeable batteries and increase the efficiency of hydrogen production from water electrolysis.

In a study that was published in Nature Communications (“A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution”) and was sponsored by the National Science Foundation, the researchers describe the development of double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions – one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries.

Double Perovskite Nanofiber Catalyst

This is a 20 nanometer double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions — one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries. (Image: Georgia Tech)

“Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries,” said Meilin Liu, a Regents Professor in the Georgia Tech School of Materials Science and Engineering. 

“The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process.”

Perovskite refers to the crystal structure of the catalyst the researchers used to form the nanofibers.

“This unique crystal structure and the composition are vital to enabling better activity and durability for the application,” Liu said.

During the synthetization process, the researchers used a technique called composition tuning – or “co-doping” – to improve the intrinsic activity of the catalyst by approximately 4.7 times. The perovskite oxide fiber made during the electrospinning process was about 20 nanometers in diameter – which thus far is the thinnest diameter reported for electrospun perovskite oxide nanofibers.

The researchers found that the new substance showed markedly enhanced oxygen evolution reaction capability when compared to existing catalysts. 
The new nanofiber’s mass-normalized catalytic activity improved about 72 times greater than the initial powder catalyst, and 2.5 times greater than iridium oxide, which is considered a state of the art catalyst by current standards.

That increase in catalytic activity comes in part from the larger surface area achieved with nanofibers, the researchers said. Synthesizing the perovskite structure into a nanofiber also boosted its intrinsic activity, which also improved how efficiently it worked as a catalyst for oxygen evolution reactions (OER).

“This work not only represents an advancement in the development of highly efficient and durable electrocatalysts for OER but may also provide insight into the effect of nanostructures on the intrinsic OER activity,” the researchers wrote.

Beyond its applicability in the development of rechargeable metal air batteries, the new catalyst could also represent the next step in creating more efficient fuel cell technologies that could aid in the creation of renewable energy systems.

“Solar, wind, geothermal – those are becoming very inexpensive today. But the trouble is those renewable energies are intermittent in nature,” Liu said. 

“When there is no wind, you have no power. But what if we could store the energy from the sun or the wind when there’s an excess supply. We can use that extra electricity to produce hydrogen and store that energy for use when we need it.”

That’s where the new nanofiber catalysts could make a difference, he said.

“To store that energy, batteries are still very expensive,” Liu said. “We need a good catalyst in order for the water electrolysis to be efficient. This catalyst can speed up electrochemical reactions in water splitting or metal air batteries.”

An electric car battery that could charge in just five minutes ~ Where is the Israeli Start-Up “+StoreDot” One Year Later? +Video

An Israeli startup is setting its sights on creating a battery for electric carsthat charges in just five minutes. If they meet their goal, the battery would be able to power a car for hundreds of miles in a single charge. StoreDot, founded in 2012, has already developed the FlashBattery for Smartphones that can fully charge in less than a minute. The startup has raised $66 million which it plans to use to get their FlashBattery technology into electric cars.

The relatively slow growth of the electric car market is often blamed upon the inconvenience of recharging. The best batteries currently available can last up to 250 miles, but take several hours to fully charge using a standard charger. Tesla’s high-speed charger takes 30 minutes to give their batteries about 170 miles of range, while Toyota’s Rav4, which takes longer to charge, can only go around 100 miles per charge. A fast-charging, affordable battery with long range, like the one StoreDot has proposed, could be the key to making electric cars more popular than their gas-powered competitors.

Related: The world’s fastest charging electric bus powers up in 10 seconds flat


StoreDot describes their battery as a sponge, which soaks up electricity like a sponge soaks up water. The technology is based on peptides that have been turned into energy-storing nanotubes. The nanotubes, affectionately named Nanodots by the company, can soak up huge amounts of electricity all at once. Using around 7,000 of these Nanodots, they have promised to create an EV battery that goes the distance.

EV batteries, electric cars, electric car batteries, fast-charging batteries, StoreDot, Israel technology, lithium-ion, green technology, green cars

“This fast-charging technology shortens the amount of time drivers will have to wait in line to charge their cars, while also reducing the number of charging posts in each station,” Dr. Doron Myersdorf, StoreDot’s CEO told crowds at the 2014 ThinkNext event. It will result in “considerably cutting the overall cost of owning an electric car.”

For the Latest News About +StoreDot Go to: +StoreDot

Case Western University: Using Solar Cells (Energy) to Charge a lithium-ion Batteries for Electric Vehicles

Berkley Electric Cars iStock_EV-small-628x418Consumers aren’t embracing electric cars and trucks, partly due to the dearth of charging stations required to keep them moving. Even the conservation-minded are hesitant to go electric in some states because, studies show, if fossil fuels generate the electricity, the car is no greener than one powered with an efficient gasoline.

Charging cars by solar cell would appear to be the answer. But most cells fail to meet the power requirements needed to directly charge lithium-ion batteries used in today’s all-electric and plug-in hybrid electric vehicles.

Researchers at Case Western Reserve University, however, have wired four perovskite solar cells in series to enhance the voltage and directly photo-charged lithium batteries with 7.8 percent efficiency–the most efficient reported to date, the researchers believe.

The research, published in the Aug. 27 issue of Nature Communications, holds promise for cleaner transportation, home power sources and more.

“We found the right match between the solar cell and battery,” said Liming Dai, the Kent Hale Smith Professor of macromolecular science and engineering and leader of the research. “Others have used polymer solar cells to charge lithium batteries, but not with this efficiency.”

In fact, the researchers say their overall photoelectric conversion and storage outperformed all other reported couplings of a photo-charging component with lithium-ion batteries, flow batteries or super-capacitors.

Perovskite solar cells have active materials with a crystalline structure identical to the mineral perovskite and are considered a promising new design for capturing solar energy. Compared to silicon-based cells, they convert a broader spectrum of sunlight into electricity.

In short order, they have matched the energy conversion of silicon cells, and researchers around the world are pursuing further advances.

Perovskite Film adma201304803-gra-0001-m

Dai’s lab made multilayer solar cells, which increases their energy density, performance and stability. Testing showed that, as desired, the three layers convert into a single perovskite film.

By wiring four lab-sized cells, about 0.1 centimeter square each, in series, the researchers further increased the open circuit voltage. The solar-to-electric power conversion efficiency was 12.65 percent.

To charge button-sized lithium-ion batteries, they used a lithium-ion-phosphate cathode and a lithium-titanium-oxide anode. The photoelectric conversion and storage efficiency was 7.8 percent. Through 10 photo-charge/galvanostatic (steady current) discharge cycles lasting nearly 18 hours, the technology maintained almost identical discharge/charge curves over all cycles, showing high cycling stability and compatibility of the components.

“We envision, in the not too distant future, this is a system that you could have at home to refuel your car and, eventually, because perovskite solar cells can be made as a flexible film, they would be on the car itself,” said Jiantie Xu, who, with Yonghua Chen, is an equally contributing first author of the study. Both are macromolecular science and engineering research associates in Case School of Engineering.

The researchers are developing small-scale prototypes and working to further improve the perovskite cell’s stability and optimize the system.


Story Source:

The above post is reprinted from materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.

Journal Reference:

  1. Jiantie Xu, Yonghua Chen, Liming Dai. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nature Communications, 2015; 6: 8103 DOI: 10.1038/ncomms9103

Oak Ridge National Laboratory: Super Capacitors for Electric Cars … From Scrap Tires … Really??

Super Cap from Tires id41437Some of the 300 million tires discarded each year in the United States alone could be used in supercapacitors for vehicles and the electric grid using a technology developed at the Department of Energy’s Oak Ridge National Laboratory and Drexel University.
By employing proprietary pretreatment and processing, a team led by Parans Paranthaman has created flexible polymer carbon composite films as electrodes for supercapacitors. These devices are useful in applications for cars, buses and forklifts that require rapid charge and discharge cycles with high power and high energy density. Supercapacitors with this technology in electrodes saw just a 2 percent drop after 10,000 charge/discharge cycles.
Instead of ending up in landfills, old tires can supply a key ingredient for supercapacitors
Instead of ending up in landfills, old tires can supply a key ingredient for supercapacitors. (Image: ORNL)
The technology, described in a paper published in ChemSusChem(“Waste Tire Derived Carbon–Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life”), follows an ORNL discovery of a method to use scrap tires for batteries. Together, these approaches could provide some relief to the problems associated with the 1.5 billion tires manufacturers expect to produce annually by 2035.
“Those tires will eventually need to be discarded, and our supercapacitor applications can consume several tons of this waste,” Paranthaman said. “Combined with the technology we’ve licensed to two companies to convert scrap tires into carbon powders for batteries, we estimate consuming about 50 tons per day.”
While that amount represents just a fraction of the 8,000 tons that need to be recycled every day, co-author Yury Gogotsi of Drexel noted that other recycling companies could contribute to that goal.
“Each tire can produce carbon with a yield of about 50 percent with the ORNL process,” Gogotsi said. “If we were to recycle all of the scrap tires, that would translate into 1.5 million tons of carbon, which is half of the annual global production of graphite.”
To produce the carbon composite papers, the researchers soaked crumbs of irregularly shaped tire rubber in concentrated sulfuric acid. They then washed the rubber and put it into a tubular furnace under a flowing nitrogen gas atmosphere. They gradually increased the temperature from 400 degrees Celsius to 1,100 degrees.
After several additional steps, including mixing the material with potassium hydroxide and additional baking and washing with deionized water and oven drying, researchers have a material they could mix with polyaniline, an electrically conductive polymer, until they have a finished product.
“We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost tire-derived activated carbon to achieve even higher electrochemical performance and longer cycle life, a key challenge for electrochemically active polymers,” Gogotsi said.
Source: Oak Ridge National Laboratory
%d bloggers like this: