NanoCommerce Sdn Bhd (NCSB), a subsidiary of NanoMalaysia Bhd, signed a joint venture with Pulsar UAV Sdn Bhd (PUSB) to commercialize an increased range hydrogen-powered drone known as the High Endurance Fuel Cell Powered Unmanned Aerial Vehicle (On-board H2 Generation).
The partnership will give NanoCommerce a 20 per cent stake in Pulsar UAV, a Malaysian company that builds its unmanned aerial vehicles (UAV) or drones from scratch.
Hydrogen produced within the drone allows for it to fly for a longer time due to the core technology, which is hydrogen fuel cell, known for better endurance. The differentiating factor here is that the drone is equipped with a nanotechnology enhanced hydrogen reactor that produces hydrogen on-demand to the fuel cells. This generates electricity to power the rotors for flight without the need for heavy compressed gas storage thereby, improving the power-to-weight ratio.
According to Izmir Yamin, Chief Executive Officer of Pulsar UAV, the collaboration with NanoMalaysia will help Pulsar UAV to validate the needs of drone services in various sectors particularly, agriculture.
“The market validation gives us reason to further improve our drone services by developing an on-board hydrogen generator. Now, with our in-house hydrogen technology, we are not only improving the drone services, but we are also able to venture into other sectors like energy and transportation,” Izmir said.
In a similar note, Dr Rezal Khairi Ahmad, CEO of NanoCommerce and NanoMalaysia said that NanoMalaysia places an enormous intrinsic value on the project through a congregation of project investments, intellectual properties, and market validation and access.
“The on-board hydrogen powered drone has already been sandboxed for precision agriculture with a level of success,” Rezal said.
The joint venture will also enable NanoMalaysia Berhad to further develop the existing Hydrogen Paired Hybrid Energy Storage System (H2SS) – which currently powers Pulsar’s drones – for another project. It will be Malaysia’s first locally developed electric motorsports vehicle, the Hydrogen Paired Electric Racecar (HyPER).
HyPER, aims to mobilise the Malaysian automotive and transportation sectors in the direction of renewable energy, specifically green hydrogen as a first step towards a Hydrogen Economy.
The global Electric Vehicle (EV) market stood at USD39.8 billion (RM167 billion) in 2018 and is projected to reach USD1.5 trillion (approximately RM6.4 trillion) by 2025.
Currently, the EV market is hindered by the lack of charging infrastructures and the need for an extended charging time, as well as hydrogen refuelling stations for battery and fuel cell versions respectively. The high-pressured hydrogen tanks in fuel cell-EVs also present a substantial safety risk. The H2SS technology will be able to combat these issues.
Firstly, H2SS will be placed in HyPER as a cartridge and is powered using distilled or tap water and powdered hydrides – eliminating the need for expensive hydrogen refuelling stations.
Secondly, it can generate its own hydrogen fuel, which takes away the risk of having a hydrogen tank in the vehicle.
Dr Rezal also commented that HyPER is due for extensive shakedown in August 2020 with participation from potential industrial up-takers for quicker penetration into the automotive sector.
Malaysia will immediately possess an advantage in the form of homegrown hydrogen technology to catalyse the growth of a new and green automotive and transport industry in the near term.
Read the original article on Business Today.
Researchers are building spider-inspired sensors into the shells of autonomous drones and cars so that they can detect objects better. Credit: Taylor Callery
What if drones and self-driving cars had the tingling “spidey senses” of Spider-Man?
They might actually detect and avoid objects better, says Andres Arrieta, an assistant professor of mechanical engineering at Purdue University, because they would process sensory information faster.
Better sensing capabilities would make it possible for drones to navigate in dangerous environments and for cars to prevent accidents caused by human error. Current state-of-the-art sensor technology doesn’t process data fast enough—but nature does.
And researchers wouldn’t have to create a radioactive spider to give autonomous machines superhero sensing abilities.
Instead, Purdue researchers have built sensors inspired by spiders, bats, birds and other animals, whose actual spidey senses are nerve endings linked to special neurons called mechanoreceptors.
The nerve endings—mechanosensors—only detect and process information essential to an animal’s survival. They come in the form of hair, cilia or feathers.
“There is already an explosion of data that intelligent systems can collect—and this rate is increasing faster than what conventional computing would be able to process,” said Arrieta, whose lab applies principles of nature to the design of structures, ranging from robots to aircraft wings.
“Nature doesn’t have to collect every piece of data; it filters out what it needs,” he said.
Many biological mechanosensors filter data—the information they receive from an environment—according to a threshold, such as changes in pressure or temperature.
In nature, ‘spidey-senses’ are activated by a force associated with an approaching object. Researchers are giving autonomous machines the same ability through sensors that change shape when prompted by a predetermined level of force. Credit: ETH Zürich images/Hortense Le Ferrand
A spider’s hairy mechanosensors, for example, are located on its legs. When a spider’s web vibrates at a frequency associated with prey or a mate, the mechanosensors detect it, generating a reflex in the spider that then reacts very quickly. The mechanosensors wouldn’t detect a lower frequency, such as that of dust on the web, because it’s unimportant to the spider’s survival.
The idea would be to integrate similar sensors straight into the shell of an autonomous machine, such as an airplane wing or the body of a car. The researchers demonstrated in a paper published in ACS Nano that engineered mechanosensors inspired by the hairs of spiders could be customized to detect predetermined forces. In real life, these forces would be associated with a certain object that an autonomous machine needs to avoid.
But the sensors they developed don’t just sense and filter at a very fast rate—they also compute, and without needing a power supply.
“There’s no distinction between hardware and software in nature; it’s all interconnected,” Arrieta said. “A sensor is meant to interpret data, as well as collect and filter it.”
In nature, once a particular level of force activates the mechanoreceptors associated with the hairy mechanosensor, these mechanoreceptors compute information by switching from one state to another.
Purdue researchers, in collaboration with Nanyang Technology University in Singapore and ETH Zürich, designed their sensors to do the same, and to use these on/off states to interpret signals. An intelligent machine would then react according to what these sensors compute.
These artificial mechanosensors are capable of sensing, filtering and computing very quickly because they are stiff, Arrieta said. The sensor material is designed to rapidly change shape when activated by an external force. Changing shape makes conductive particles within the material move closer to each other, which then allows electricity to flow through the sensor and carry a signal. This signal informs how the autonomous system should respond.
“With the help of machine learning algorithms, we could train these sensors to function autonomously with minimum energy consumption,” Arrieta said. “There are also no barriers to manufacturing these sensors to be in a variety of sizes.”
More information: Hortense Le Ferrand et al, Filtered Mechanosensing Using Snapping Composites with Embedded Mechano-Electrical Transduction, ACS Nano (2019). DOI: 10.1021/acsnano.9b01095
As drones increasingly take on the job of inspecting growing solar farms, Raptor Maps’ software makes sense of the data they collect. Image courtesy of Raptor Maps
MIT spinoff Raptor Maps uses machine-learning software to improve the maintenance of solar panels.
As the solar industry has grown, so have some of its inefficiencies. Smart entrepreneurs see those inefficiencies as business opportunities and try to create solutions around them. Such is the nature of a maturing industry.
One of the biggest complications emerging from the industry’s breakneck growth is the maintenance of solar farms. Historically, technicians have run electrical tests on random sections of solar cells in order to identify problems. In recent years, the use of drones equipped with thermal cameras has improved the speed of data collection, but now technicians are being asked to interpret a never-ending flow of unstructured data.
That’s where Raptor Maps comes in. The company’s software analyzes imagery from drones and diagnoses problems down to the level of individual cells. The system can also estimate the costs associated with each problem it finds, allowing technicians to prioritize their work and owners to decide what’s worth fixing.
“We can enable technicians to cover 10 times the territory and pinpoint the most optimal use of their skill set on any given day,” Raptor Maps co-founder and CEO Nikhil Vadhavkar says. “We came in and said, ‘If solar is going to become the number one source of energy in the world, this process needs to be standardized and scalable.’ That’s what it takes, and our customers appreciate that approach.”
Raptor Maps processed the data of 1 percent of the world’s solar energy in 2018, amounting to the energy generated by millions of panels around the world. And as the industry continues its upward trajectory, with solar farms expanding in size and complexity, the company’s business proposition only becomes more attractive to the people driving that growth.
Picking a path
Raptor Maps was founded by Eddie Obropta ’13 SM ’15, Forrest Meyen SM ’13 PhD ’17, and Vadhavkar, who was a PhD candidate at MIT between 2011 and 2016. The former classmates had worked together in the Human Systems Laboratory of the Department of Aeronautics and Astronautics when Vadhavkar came to them with the idea of starting a drone company in 2015.
The founders were initially focused on the agriculture industry. The plan was to build drones equipped with high-definition thermal cameras to gather data, then create a machine-learning system to gain insights on crops as they grew. While the founders began the arduous process of collecting training data, they received guidance from MIT’s Venture Mentoring Service and the Martin Trust Center. In the spring of 2015, Raptor Maps won the MIT $100K Launch competition.
But even as the company began working with the owners of two large farms, Obropta and Vadhavkar were unsure of their path to scaling the company. (Meyen left the company in 2016.) Then, in 2017, they made their software publicly available and something interesting happened.
They found that most of the people who used the system were applying it to thermal images of solar farms instead of real farms. It was a message the founders took to heart.
“Solar is similar to farming: It’s out in the open, 2-D, and it’s spread over a large area,” Obropta says. “And when you see [an anomaly] in thermal images on solar, it usually means an electrical issue or a mechanical issue — you don’t have to guess as much as in agriculture. So we decided the best use case was solar. And with a big push for clean energy and renewables, that aligned really well with what we wanted to do as a team.”
Obropta and Vadhavkar also found themselves on the right side of several long-term trends as a result of the pivot. The International Energy Agency has proposed that solar power could be the world’s largest source of electricity by 2050. But as demand grows, investors, owners, and operators of solar farms are dealing with an increasingly acute shortage of technicians to keep the panels running near peak efficiency.
Since deciding to focus on solar exclusively around the beginning of 2018, Raptor Maps has found success in the industry by releasing its standards for data collection and letting customers — or the many drone operators the company partners with — use off-the-shelf hardware to gather the data themselves. After the data is submitted to the company, the system creates a detailed map of each solar farm and pinpoints any problems it finds.
“We run analytics so we can tell you, ‘This is how many solar panels have this type of issue; this is how much the power is being affected,’” Vadhavkar says. “And we can put an estimate on how many dollars each issue costs.”
The model allows Raptor Maps to stay lean while its software does the heavy lifting. In fact, the company’s current operations involve more servers than people.
The tiny operation belies a company that’s carved out a formidable space for itself in the solar industry. Last year, Raptor Maps processed four gigawatts worth of data from customers on six different continents. That’s enough energy to power nearly 3 million homes.
Vadhavkar says the company’s goal is to grow at least fivefold in 2019 as several large customers move to make the software a core part of their operations. The team is also working on getting its software to generate insights in real time using graphical processing units on the drone itself as part of a project with the multinational energy company Enel Green Power.
Ultimately, the data Raptor Maps collect are taking the uncertainty out of the solar industry, making it a more attractive space for investors, operators, and everyone in between.
“The growth of the industry is what drives us,” Vadhavkar says. “We’re directly seeing that what we’re doing is impacting the ability of the industry to grow faster. That’s huge. Growing the industry — but also, from the entrepreneurial side, building a profitable business while doing it — that’s always been a huge dream.”
The Following articles, one from the Brookings Institute and the other from Green Technology we take a look back to some of the predictions, to get a better understanding of how far we have come in seeking better performing (and safe) batteries and more importantlywhere we might be by 2030 – Team GNT
In This Post:
Five emerging battery technologies for electric vehicles
New Lithium Battery Technology Startups
Mobility Disruption | by Tony Seba, Silicon Valley Entrepreneur and Lecturer at Stanford University
Five Emerging Battery Technologies for Electric Vehicles
September 15, 2015
As the 2016 suite of new car models makes evident, electric vehicles are finally gaining real traction in the market. At the turn of the 20th century, more than one quarter of all cars in the United States were electric, yet the electric car had all but vanished by the 1920s. This disappearance was largely due to the insufficient range and power of electric car batteries compared to gasoline engines. Furthermore, electric cars were significantly more expensive than their gasoline counterparts. These same complaints are still heard today, even though battery technology has certainly improved over the last century. Much research and development is being done on battery technology to improve performance while ensuring that batteries are lightweight, compact, and affordable.
So, what are the newest innovations in battery technology, and what do such advances mean for the electric vehicle market?
Lithium-ion batteries
Lithium-ion batteries (LIBs) are currently used in the majority of electric vehicles, and it’s likely that they will remain dominant into the next decade. Several manufacturers, including Tesla and Nissan, have invested heavily in this technology. In LIBs, positively charged lithium ions travel between the anode and the cathode in the electrolyte. LIBs have a high cyclability – the number of times the battery can be recharged while still maintaining its efficiency – but a low energy density – the amount of energy that can be stored in a unit volume. LIBs have garnered a bad reputation for overheating and catching on fire (e.g. Boeing jets, Tesla cars, laptops), so manufacturers have not only worked to make LIBs more stable, but they have also developed many safety mechanisms to prevent harm if a battery were to catch fire.
The LIBs on the market today primarily use graphite or silicon anodes and a liquid electrolyte. A lithium anode has been the holy grail for a long time because it can store a lot of energy in a small space (i.e. it has a high energy density) and is very lightweight. Unfortunately, lithium heats up and expands during charging, causing leaked lithium ions to build up on a battery’s surface. These growths short-circuit the battery and decrease its overall life. Researchers at Stanford recently made headway on these problems by forming a protective nanosphere layer on the lithium anode that moves with the lithium as it expands and contracts.
Movement of lithium ions and electrons in a lithium-ion battery during charging and use. Source: Argonne National Laboratory. Used under Creative Commons license.
Solid state batteries
Solid-state batteries have solid components. This construction provides several advantages: no worry of electrolyte leaks or fires (provided a flame-resistant electrolyte is used), extended lifetime, decreased need for bulky and expensive cooling mechanisms, and the ability to operate in an extended temperature range. Solid-state batteries can build off of the improvements made in other types of batteries. For example, Sakti3 is trying to commercialize solid-state, LIBs with funding from General Motors Ventures. Other auto manufacturers, such as Toyotaand Volkswagen, are also looking into solid state batteries to power their electric cars.
Aluminum-ion batteries
Aluminum-ion batteries are similar to LIBs but have an aluminum anode. Theypromise increased safety at a decreased cost over LIBs, but research is still in its infancy. Scientists at Stanford recently solved one of the aluminum-ion battery’s greatest drawbacks, its cyclability, by using an aluminum metal anode and a graphite cathode. This also offers significantly decreased charging time and the ability to bend. Researchers at Oak Ridge National Laboratory are also working onimproving aluminum-ion battery technology.
Lithium-sulfur batteries
Lithium-sulfur batteries (Li/S) typically have a lithium anode and a sulfur-carbon cathode. They offer a higher theoretical energy density and a lower cost than LIBs. Their low cyclability, caused by expansion and harmful reactions with the electrolyte, is the major drawback. However, the cyclability of Li/S batteries has recently been improved. Li/S batteries, combined with solar panels, powered the famous 3-day flight of the Zephyr-6 unmanned aerial vehicle. NASA has invested in solid-state Li/S batteries to power space exploration, and Oxis Energyis also working to commercialize Li/S batteries.
Metal-air batteries
Metal-air batteries have a pure-metal anode and an ambient air cathode. As the cathode typically makes up most of the weight in a battery, having one made of air is a major advantage. There are many possibilities for the metal, but lithium, aluminum, zinc, sodium remain the forerunners. Most experimental work uses oxygen as the cathode to prevent the metal from reacting with CO2in the air, because capturing enough oxygen in the ambient air is a major challenge. Furthermore, most metal-air or metal-oxygen prototypes have problems with cyclability and lifetime.
Batteries are often underappreciated when they work as designed, but harshly criticized when they don’t live up to expectations. The technologies highlighted above are by no means an exhaustive list of the developments that have been made. Electric vehicles will undoubtedly become more commonplace as batteries are improved. Advancements in batteries could not only transform the transportation industry, but they could also significantly affect global energy markets. The combination of batteries with renewable energy sources would drastically diminish the need for oil, gas, and coal, thereby altering the foundation of many economic and political norms we currently take for granted. We certainly don’t have to wait until the “perfect battery” is developed to recognize tangible improvements in performance. Despite the current shortcomings of batteries, the potential global impact that even relatively moderate improvements can have is astonishing.
Elsie Bjarnason contributed to this blog post.
New Lithium Battery Technology Startups
March 4, 2017
If you stop and think about it for a second, advances in lithium batteries have powered a fair number of emerging technologies in this decade. Electric cars, drones, smartphones, these are all becoming prolific because of improvements in lithium battery technologies. When it comes to portable batteries, short of some entirely new battery technology being developed, it looks like we’re going to be stuck with lithium batteries for a while. Here’s where all these batteries will be coming from:
It’s been a while since we mentioned anything about battery technology or power cells and the companies looking to advance these technologies. Batteries or power cell systems are generally made up of the anode, the cathode, and the electrolyte. The most popular material for the anode and the cathode is lithium, mainly because it is a safer alternative than most materials for manufacturing batteries. When looking to improve upon the lithium battery, there are two primary areas for improvement:
Cycles need to be improved – Lithium batteries typically have a charge/discharge life cycle of 300 to 500 before they “die”.
Density needs to be increased – The more energy you can store in a battery, the smaller and lighter you can make the appliance that carries the battery.
Since we first started writing about lithium battery technology startups, there have been a few notable acquisitions. Vacuum maker Dyson acquired Sakti3 which was working on solid state batteries. If you recall, solid state batteries eliminate the need for an electrolyte which means they are safer and cheaper to manufacture. Another battery technology startup called Seeo was developing solid state batteries based on a nano-structured polymer electrolyte. Seeo was acquired by Bosch in August of 2015. Both of these acquisitions show promising possible exits for other lithium battery technology startups. We had some of our on-staff PHDs try and put together a list of lithium battery technology startups to watch and here’s what they found.
The biggest lithium battery startup out there is Boston Power, a company we wrote about before that has taken in a whopping $370 million in funding so far to develop a next generation of lithium-ion battery cells that boast a 10-year lifespan. They’ve disappeared across the pond over to China where they are building loads of batteries now for electric vehicles. We couldn’t help but put in this very cool chart from Visual Capitalist on lithium-ion battery production in China and where Boston Power fits into the bigger picture:
China is expected to become a major player in lithium battery production by 2020 with a capacity increase of +521% between 2016 and 2020. Clearly Boston Power sees a future there that avoids having to compete directly with the Tesla Gigafactory.
English startup Nexeon has taken in $108 million in funding so far to develop a unique silicon anode technology which uses nanomaterials that we won’t get into because that’s complicated, innit. Their drop-in approach means that you can just start using their new cathode in your current manufacturing process and cell capacity will increase by 30-40%. They have a fully automated pilot plant in operation at the moment and have recently expanded into Asia via Japan. Their last funding was a $38 million round last year which they plan to use for acquisitions.
We talked about this Israeli company before which has taken in $66 million in funding and is using nanotechnology, specifically quantum dots, to create a battery that charges 100X quicker. The only issue they’re facing is that the technology requires the phone to attach directly to the charger (no wires) with a proprietary 20-pin connector. This means that you would need an entire ecosystem in place before the technology could be adopted. Nonetheless, the CEO and founder Doron Myersdorf believes that this is the year for a mass production launch.
Founded in 2006, Irvine California startup Enevate has taken in around $60 million in funding so far to develop a silicon-dominant anode battery technology referred to as HD-Energy. Phone run tests show 35-50% more use time along with 4X faster charge time than conventional batteries. The Company is currently in negotiations with several original-equipment manufacturers of mobile devices to supply batteries for certain product lines. While initially targeting smartphones, the new battery technology is also expected to be used in drones and electric vehicles as well.
We first wrote about Amprius way back in 2014, a California startup out of Stanford that took in $55 million to develop an anode made out of silicon nanowires. According to the Company, they are “currently designing and selling the highest energy batteries on the market, with 15-30% more energy per unit weight and volume than state-of-the-art batteries“. They also go on to say that “Amprius products are featured in a number of smartphones released in 2013 and 2014“. It seems like they’re pivoting into electric vehicles with their website stating “Amprius silicon nanowire anodes can improve the energy density of lithium-ion batteries by 1.4x to 10x, making them ideally suited for electric vehicles“.
This Massachusetts startup is working on an ultra-thin metal anode that can double energy density while using existing lithium-ion production infrastructure. They’ve taken in $20.5 million so far to further those aspirations, and their 3 funding rounds so far included participation from General Motors. When Samsung had all those phones catching fire recently, SolidEnergy was quick to point out that they are using electrolytes which are not flammable.
ActaCell, Inc. founded in 2007 is based in Austin, Texas, and was acquired by Contour Energy Systems in September 2012. Since the Contour Website isn’t functioning at the moment, we’re not sure if they’ve gone bankrupt or just have an incompetent hosting provider. ActaCell had raised a total of $9.8 million (of which $3 million was a grant from the Department of Commerce received in 2010) to develop cathodes made from magnesium spinel and anodes made from nanocomposite alloys. Prominent among its investors was none other than Google.
Another startup out of Massachusetts called Cadenza Innovation has taken in $5 million in funding to develop a new way of packaging lithium batteries. The founder, Christina Lampe-Onnerud, was also the founder of Boston Power so she knows a thing or two about batteries. Cadenza has also received funding from the U.S. Department of Energy for a 4-year project that began back in 2014 to expand the range of electric car batteries by increasing energy density. Cadenza’s technology is a multifunctional battery pack design that costs less, has double the density, and can manage impact energy in the event of a collision.
Massachusetts startup Ionic Materials was founded in 2011 by CEO Mike Zimmerman Ph.D., a proven serial entrepreneur who has more than 30 years of polymer expertise. The Company has taken in $4.29 million in funding (according to PitchBook) to develop a novel polymer that eliminates the liquid electrolyte, creating a completely solid battery. They plan to be in production in the next two or three years . They were recently awarded with a $3 million Advanced Research Projects Agency-Energy (ARPA-E) grant from the Department of Energy that will begin this year. Science Friday interviewed the company in this article in which the CEO is hopeful that “we’ll see devices supported by Ionic Materials’ plastic battery in two or three years“.
Colorado startup Prieto battery has taken in $2.5 million in funding from investors that included Intel and Stanley Black & Decker (NYSE:SWK). The Company is working on a 3D lithium-ion battery technology that is price-competitive, charges faster, and lasts longer. Their batteries use no liquid electrolytes, and instead use a highly conductive copper foam that can be shaped to fit spaces that are inaccessible – like the sort of custom shapes you might need when creating an ergonomic power tool. We wouldn’t be surprised to see them get acquired by SWK.
Mysterious San Jose startup QuantumScape has taken in an undisclosed amount of funding from investors that included Volkswagen, with the intent of developing a solid-state fireproof battery that can triple the range of its electric cars. The technology, which is being licensed from Stanford, was developed with a grant from the U.S. Department of Energy. QuantumScape continues to operate in stealth mode so if suddenly VW announces a vehicle that has triple the range of a Tesla, we’ll know who is behind it.
Founded in 2004 with an undisclosed amount of funding, a UK-based startup called Oxis Energy is developing and innovating a Lithium-Sulfur (Li-S) battery chemistry. This chemistry is the reason why Oxis’ patented technology is safer, lighter, maintenance-free, and provides 5 times (1,500 cycles) greater energy compared to conventional Li-ion technology. Oxis batteries can withstand the most extreme abuse like nail or bullet penetration. The Company is in the process of building pilot manufacturing facilities.
OneD Material was co-founded by Invention Capital Partners and a group of private investors who acquired Nanosys’ nanowire technologies and Palo Alto R&D activities for an undisclosed amount. Back in the day when nanotechnology first started to come to the attention of investors, Nanosys was expected to be a forerunner and actually came close to having an IPO. The OneD Material technology is a silicon-graphite anode material which improves the performance of lithium-ion batteries. Covered by more than 300 patents, their scalable SiNANOde™ production processes is available now for technology transfer and licensing.
In researching this article, it was decided to exclude lithium technology startups like Brightvolt that are targeting thin film batteries for smaller applications like IoT or credit cards. That’s because the main interest is in lithium technologies that will increase the range of electric vehicles, help smartphones stay charged longer, and enable drones to fly over longer distances.
Adoption of lithium batteries will only accelerate with a predictedreduction of battery prices in 2017 of at least 15% (after a 70% reduction in the past 5 years). With a few successful exits already, we can be assured that a new lithium battery technology from at least one of these startups will be powering a battery near you in the coming years. Think we missed a lithium battery technology company that’s targeting EVs/drones/phones? Drop us a line or a comment at Genesis Nanotechnology Inc.
Mobility Disruption | by Tony Seba, Silicon Valley Entrepreneur and Lecturer at Stanford University
January 18, 2018
Tony Seba, Silicon Valley entrepreneur, Author and Thought Leader, Lecturer at Stanford University, Keynote The reinvention and connection between infrastructure and mobility will fundamentally disrupt the clean transport model. It will change the way governments and consumers think about mobility, how power is delivered and consumed and the payment models for usage.
Watch Our YouTube Video for Our Current Project – Nano Enabled Energy Storage
Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL! – Team GNT
Researchers have turned dragonflies into controllable micro-drones to help track wildlife populations and pollinate flowers. But should we fear weaponized insects?
Engineers at Draper, a technology research company in Cambridge, and neuroscientists at Howard Hughes Medical Institute at Janelia Research Center outfitted dragonflies with miniature “backpack guidance systems” to control the insects.
Joe Register, a biomedical engineer at Draper and senior researcher on the DragonflEye program, says the team outfitted only a few insects with the guidance systems. Lest you fear an insect-drone infestation near your workplace or home, researchers are testing the technology in the safety of the lab–the dragonflies are not being released into the wild, according to Register.
How did the micro-drones come to be?
Researchers at Howard Hughes first genetically modified the dragonflies so that the insects’ neurons associated with its wings now respond to pulses of light. A micro-navigation system sends commands via pulses of light that travel through an optical nerve stimulator to guide the flight path and actions of the dragonfly.
Register says the technology is not ready to leave the lab, but the DragonflEye project is a “broad” technology platform with boundless potential commercial applications.
The applications range from search-and-rescue operations in dangerous buildings to environmental monitoring and large-scale crop pollination, says Register. (The technology, for instance, could be applied to bees to pollinate flowers, according to Draper.)
Other applications could include tracking small animals to help scientists better understand behavior in the wild, or equipping insects with environmental sensors to monitor the influence of climate change. Register says the data from these dragonfly missions could help guide policies to protect fragile ecosystems.
Draper is still looking for a partner to develop the commercial applications, says Register, but he says the platform could be the future of drone technology.
“DragonflEye is the perfect package–it’s a totally new kind of micro-aerial vehicle that’s smaller, lighter, and stealthier than anything else that’s manmade,” says Register.
Back in January, Jesse Wheeler, another biomedical engineer at Draper, said the DragonflEye project is not being funded by the military or government. Nor does anyone need to worry about dragonflies being “weaponized” or leading covert operations, he added.
“Make no mistake: We are not releasing dragonflies to do surveillance or reconnaissance missions,” said Wheeler.
Leaving your phone plugged in for hours could become a thing of the past, thanks to a new type of battery technology that charges in seconds and lasts for over a week.
Watch the Video
While it probably won’t be commercially available for a years, the researchers said it has the potential to be used in phones, wearables and electric vehicles.
“If they were to replace the batteries with these supercapacitors, you could charge your mobile phone in a few seconds and you wouldn’t need to charge it again for over a week,” said Nitin Choudhary, a UCF postdoctoral associate, who conducted much of the research, published in the academic journal ACS Nano.
How does it work?
Unlike conventional batteries, supercapacitors store electricity statically on their surface which means they can charge and deliver energy rapidly. But supercapacitors have a major shortcoming: they need large surface areas in order to hold lots of energy.
To overcome the problem, the researchers developed supercapacitors built with millions of nano-wires and shells made from two-dimensional materials only a few atoms thick, which allows for super-fast charging. Their prototype is only about the size of a fingernail.
“For small electronic devices, our materials are surpassing the conventional ones worldwide in terms of energy density, power density and cyclic stability,” Choudhary said.
Cyclic stability refers to how many times a battery can be charged, drained and recharged before it starts to degrade. For lithium-ion batteries, this is typically fewer than 1,500 times.
Supercapacitors with two-dimensional materials can be recharged a few thousand times. But the researchers say their prototype still works like new even after being recharged 30,000 times.
Those that use the new materials could be used in phones, tablets and other electronic devices, as well as electric vehicles. And because they’re flexible, it could mean a significant development for wearables.
Technology II: Rice University
A new company has been formed (with exclusive licensing rights) to exploit and commercialize the Next Generation Super-Capacitors and Batteries. The opportunity is based on Nanoporous-Nickel Flexible Thin-form, Scalable Super Capacitors and Si-Nanowire Battery Technologies, developed by Rice University and Dr. James M. Tour, PhD – named “One of the Fifty (50) most influential scientists in the World today” is the inventor, patent holder and early stage developer.
Identified Key Markets and Commercial Applications
Medical Devices and Wearable Electronics
Drone/Marine Batteries and Power Banks
Powered Smart Cards and Motor Cycle/ EV Batteries
Sensors & Power Units for the iOT (Internet of Things) [Flexible Form, Energy Dense]
The Coming Power Needs of the iOT
The IoT is populated with billions of tiny devices.
They’re smart.
They’re cheap.
They’re mobile.
They need to communicate.
Their numbers growing at 20%-30%/Year.
The iOT is Hungry for POWER! All this demands supercapacitors that can pack a lot of affordable power in very small volumes …Ten times more than today’s best supercapacitors can provide.
Highly Scalable – Energy Dense – Flexible Form – Rapid Charge
Problem 1: Current capacitors and batteries being supplied to the relevant markets lack the sustainable power density, discharge and recharge cycle, warranty life combined with a ‘flexible form factor’ to scale and satisfy the identified industry need for commercial viability & performance.
Solution I: (Minimal Value Product) Tenka is currently providing full, functional Super Capacitor prototypes to an initial customer in the Digital Powered Smart Card industry and has received two (2) phased Contingent Purchase Orders during the First Year Operating Cycle for 120,000 Units and 1,200,000 Units respectively.
Solution II: For Drone/ Marine Batteries – Power Banks & Medical Devices
Double the current ‘Time Aloft’ (1 hour+)
Reduces operating costs
Marine batteries – Less weight, longer life, flex form
Provides Fast Recharging, Extended Life Warranty.
Full -battery prototypes being developed
Small batteries will be produced first for Powered Digital Smart Cards (In addition to the MVP Super Caps) solving packaging before scaling up drone battery operations. Technical risks are mainly associated with packaging and scaling.
The Operational Plan is to take full advantage of the gained ‘know how’ (Trade Secrets and Processes) of scaling and packaging solutions developed for the Powered Digital Smart Card and the iOT, to facilitate the roll-out of these additional Application Opportunities. Leveraging gained knowledge from operations is projected to significantly increase margins and profitability. We will begin where the Economies of Scale and Entry Point make sense (cents)!
“We are building and Energy Storage Company starting Small & Growing Big!”
Scientists have demonstrated a highly efficient method for wirelessly transferring power to a drone while it is flying.
The breakthrough could in theory allow flying drones to stay airborne indefinitely – simply hovering over a ground support vehicle to recharge – opening up new potential industrial applications.
The technology uses inductive coupling, a concept initially demonstrated by inventor Nikola Tesla over 100 years ago. Two copper coils are tuned into one another, using electronics, which enables the wireless exchange of power at a certain frequency. Scientists have been experimenting with this technology for decades, but have not yet been able to wirelessly power flying technology.
Now, scientists from Imperial College London have removed the battery from an off-the-shelf mini-drone and demonstrated that they can wirelessly transfer power to it via inductive coupling. They believe their demonstration is the first to show how this wireless charging method can be efficiently done with a flying object like a drone, potentially paving the way for wider use of the technology.
To demonstrate their approach the researchers bought an off-the-shelf quadcopter drone, around 12 centimetres in diameter, and altered its electronics and removed its battery. They made a copper foil ring, which is a receiving antennae that encircles the drone’s casing. On the ground, a transmitter device made out of a circuit board is connected to electronics and a power source, creating a magnetic field.
The drone’s electronics are tuned or calibrated at the frequency of the magnetic field. When it flies into the magnetic field an alternating current (AC) voltage is induced in the receiving antenna and the drone’s electronics convert it efficiently into a direct current (DC) voltage to power it.
The technology is still in its experimental stage.The drone can only currently fly ten centimetres above the magnetic field transmission source. The team estimate they are one year away from a commercially available product. When commercialised they believe their breakthrough could have a range of advantages in the development of commercial drone technology and other devices.
The use of small drones for commercial purposes, in surveillance, for reconnaissance missions, and search and rescue operations are rapidly growing. However, the distance that a drone can travel and the duration it can stay in the air is limited by the availability of power and re-charging requirements. Wireless power transfer technology may solve this, say the team.
Dr Samer Aldhaher, a researcher from the Department of Electrical and Electronic Engineering at Imperial College London, said: “There are a number of scenarios where wirelessly transferring power could improve drone technology. One option could see a ground support vehicle being used as a mobile charging station, where drones could hover over it and recharge, never having to leave the air.”
Wirelessly transferring power could have also applications in other areas such as sensors, healthcare devices and further afield, on interplanetary missions.
Professor Paul Mitcheson, from the Department of Electrical and Electronic Engineering at Imperial College London, explains: “Imagine using a drone to wirelessly transmit power to sensors on things such as bridges to monitor their structural integrity. This would cut out humans having to reach these difficult to access places to re-charge them.
“Another application could include implantable miniature diagnostic medical devices, wirelessly powered from a source external to the body. This could enable new types of medical implants to be safely recharged, and reduce the battery size to make these implants less invasive.
“In the future, we may also be able to use drones to re-charge science equipment on Mars, increasing the lifetime of these billion dollar missions.
“We have already made valuable progress with this technology and now we are looking to take it to the next level.”
The next stage will see team exploring collaborations with potential industrial partners.
EnergyOr Technologies Inc., a developer of advanced proton exchange membrane (PEM) fuel cell systems and integrated UAV platforms, has announced that it has launched the H2Quad 1000, a multirotor drone with 1 kg payload capacity and over 2 hours of flight endurance.
EnergyOr’s CEO, Michel Bitton, stated: “The H2Quad 1000 is an industry game-changer. It not only has the ability to carry 1 kg of payload for more than two hours, it can fly a distance of up to 80 km which provides unprecedented multirotor performance.” He continued by saying: “There is no other multirotor drone available with this capability. Even so, EnergyOr will continue to push the envelope and develop fuel cell powered multirotor platforms with even longer endurance and more payload capacity.”
The extended range of the H2Quad 1000 makes it ideal for mail, parcel or component delivery, whether for commercial, medical or military purposes. EnergyOr claims that it effectively triples the delivery radius that is currently possible with existing multirotor UAVs, and thus the potential delivery area is increased by a factor of 9 times.
The commercial market for multirotor drones used in civil applications is expected to increase dramatically in the coming years, with new uses being announced on a daily basis. Current applications include disaster response, hydro and rail line inspections, flare stack inspections, precision agriculture, search and rescue missions and film production, just to name a few. Battery powered multirotor UAVs have very limited flight times due to the relatively low specific energy (Watthours/kg) of existing rechargeable battery technologies.
EnergyOr will exhibit at the AUVSI Xponential Conference and Exposition in New Orleans as part of the Canadian Pavilion.
Drones are used for various applications such as aero picturing, disaster recovery, and delivering. Despite attracting attention as a new growth area, the biggest problem of drones is its small battery capacity and limited flight time of less than an hour. A fuel cell developed by Prof. Gyeong Man Choi (Dept. of Materials Science and Engineering) and his research team at POSTECH can solve this problem.
Prof. Choi and his Ph.D. student Kun Joong Kim have developed a miniaturized solid oxide fuel cell (SOFC) to replace lithium-ion batteries in smartphones, laptops, drones, and other small electronic devices. Their results were published in the March edition of Scientific Reports, the sister journal of Nature.
Their achievement has been highly evaluated because it can be utilized, not only for a small fuel cell, but also for a large-capacity fuel cell that can be used for a vehicle.
The SOFC, referred to as a third-generation fuel cell, has been intensively studied since it has a simple structure and no problems with corrosion or loss of the electrolyte. This fuel cell converts hydrogen into electricity by oxygen-ion migration to fuel electrode through an oxide electrolyte. Typically, silicon has been used after lithography and etching as a supporting component of small oxide fuel cells. This design, however, has shown rapid degradation or poor durability due to thermal-expansion mismatch with the electrolyte, and thus, it cannot be used in actual devices that require fast On/Off.
The research team developed, for the first time in the world, a new technology that combines porous stainless steel, which is thermally and mechanically strong and highly stable to oxidation/reduction reactions, with thin-film electrolyte and electrodes of minimal heat capacity. Performance and durability were increased simultaneously. In addition, the fuel cells are made by a combination of tape casting-lamination-cofiring (TLC) techniques that are commercially viable for large scale SOFC.
The fuel cells exhibited a high power density of ~ 560 mW cm-2 at 550 oC. The research team expects this fuel cell may be suitable for portable electronic devices such as smartphones, laptops, and drones that require high power-density and quick on/off. They also expect to develop large and inexpensive fuel cells for a power source of next-generation automotive.
With this fuel cell, drones can fly more than one hour, and the team expects to have smartphones that charge only once a week.
###
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.
Image: A FLA quadcopter self-navigates around boxes during initial flight data collection using only onboard sensors/software. DARPA’s FLA program aims to develop and test algorithms that could reduce the amount of processing power, communications, and human intervention needed for unmanned aerial vehicles (UAVs) to accomplish low-level tasks, such as navigation around obstacles in a cluttered environment
Inside the Otis Air National Guard Base—in Cape Cod, Mass.—the commercial DJI Flamewheel drone zipped down a row lined with cardboard boxes and tarps. At the end of the row, it smacked against the aircraft hangar’s floor, bounced, and tumbled to a stop.
The Defense Advanced Research Project Agency (DARPA) is playing with commercial drones. Well, not so much playing as experimenting.
Recently, DARPA’s Fast Lightweight Autonomy (FLA) program completed their first-flight data collection. In it, the program’s three performer teams demonstrated the commercial drone’s capability of reaching manned speeds up to 20 m/s, or 45 mph, and successfully navigating obstacles at slower speeds without human aid.
“Very lightweight UAVs (Unmanned Aerial Vehicles) exist today that are agile and can fly faster than 20 m/s, but they can’t carry sensors and computation to fly autonomously in cluttered environments,”said the program’s manager Mark Micire. “And large UAVs exist that can fly high and fast with heavy computing payloads and sensors on board. What makes the FLA program so challenging is finding the sweetspot of a small size, weight and power air vehicle with limited onboard computing power to perform a complex mission completely autonomously.”
The drone—outfitted with E600 motors, 12 in. propellers, and a 3DR Pixhawk autopilot—carried a variety of high-definition cameras and sensors, such as LIDAR, sonar, and inertial measuring instruments.
The three performances teams included Draper, which teamed with Massachusetts Institute of Technology; Univ. of Pennsylvania; and Scientific Systems Company, Inc., which teamed with AeroVironment.
According to Defense News, DARPA was offering $5.5 million in research funding for the program.
“We’re excited that we were able to validate the airspeed goal during the first-flight data collection,” said Micire. “The fact that some teams also demonstrated basic autonomous flight ahead of schedule was an added bonus. The challenge for the teams now is to advance the algorithms and onboard computational efficiency to extend the UAV’s perception range and compensate for the vehicles’ mass to make extremely tight turns and abrupt maneuvers at high speeds.”
Once fully developed, these drone systems will aid the military in surveillance operations, either patrolling hazardous urban environments or responding to disasters. As trials continue, the testing environment will grow more complex, with more obstacles added.
You must be logged in to post a comment.