DOW Chemical CO. – New Research may Enhance Display and LED Lighting Technology: More Efficient – Lower Cost Quantum Dots


U of Illinois QD 150807131233_1_540x360Large-area integration of quantum dots, photonic crystals produce brighter and more efficient light.

Recently, quantum dots (QDs)–nano-sized semiconductor particles that produce bright, sharp, color light–have moved from the research lab into commercial products like high-end TVs, e-readers, laptops, and even some LED lighting. However, QDs are expensive to make so there’s a push to improve their performance and efficiency, while lowering their fabrication costs.

Researchers from the University of Illinois at Urbana-Champaign have produced some promising results toward that goal, developing a new method to extract more efficient and polarized light from quantum dots (QDs) over a large-scale area. Their method, which combines QD and photonic crystal technology, could lead to brighter and more efficient mobile phone, tablet, and computer displays, as well as enhanced LED lighting.

With funding from the Dow Chemical Company, the research team, led by Electrical & Computer Engineering (ECE) Professor Brian Cunningham, Chemistry Professor Ralph Nuzzo, and Mechanical Science & Engineering Professor Andrew Alleyne, embedded QDs in novel polymer materials that retain strong quantum efficiency. They then used electrohydrodynamic jet (e-jet) printing technology to precisely print the QD-embedded polymers onto photonic crystal structures. This precision eliminates wasted QDs, which are expensive to make.

These photonic crystals limit the direction that the QD-generated light is emitted, meaning they produce polarized light, which is more intense than normal QD light output.

According to Gloria See, an ECE graduate student and lead author of the research reported in Applied Physics Letters, their replica molded photonic crystals could someday lead to brighter, less expensive, and more efficient displays. “Since screens consume large amounts of energy in devices like laptops, phones, and tablets, our approach could have a huge impact on energy consumption and battery life,” she noted.

“If you start with polarized light, then you double your optical efficiency,” See explained. “If you put the photonic-crystal-enhanced quantum dot into a device like a phone or computer, then the battery will last much longer because the display would only draw half as much power as conventional displays.”

To demonstrate the technology, See fabricated a novel 1mm device (aka Robot Man) made of yellow photonic-crystal-enhanced QDs. The device is made of thousands of quantum dots, each measuring about six nanometers.

“We made a tiny device, but the process can easily be scaled up to large flexible plastic sheets,” See said. “We make one expensive ‘master’ molding template that must be designed very precisely, but we can use the template to produce thousands of replicas very quickly and cheaply.”


Story Source:

The above post is reprinted from materials provided by University of Illinois College of Engineering. The original item was written by Laura Schmitt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gloria G. See, Lu Xu, Erick Sutanto, Andrew G. Alleyne, Ralph G. Nuzzo, Brian T. Cunningham. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals. Applied Physics Letters, 2015; 107 (5): 051101 DOI: 10.1063/1.4927648
Advertisements

Quantum Dot Company (Nanoco) Meteoric Rise


QDOTS imagesCAKXSY1K 8Shares in AIM 100-quoted technology company Nanoco have quite comfortably beaten every other stock on the market for the past three months and analysts think there could be more to come.

Nanoco Technologies: http://www.nanocotechnologies.com/

 

Manchester-based Nanoco makes what are known as ‘quantum dots’, or nano particles, which are used in televisions, lights and solar cells. More specifically, big name manufacturers of LCD TVs and LED lighting are beginning to use quantum dots in their products because they improve colour quality.

To illustrate this, in February Sony announced details of its new HD Bravia LED TVs which happen to use quantum dots from Nanoco’s competitor, QD Vision. Analysts viewed this development as generally positive for Nanoco because Sony’s adoption of quantum dots in its displays was seen as a ringing endorsement of the technology.

For Sony, however, the good news is limited because QD Vision’s nano particles are made using a heavy metal called cadmium, which is regulated to the point of being banned in some countries. So Sony will only be able to sell its new TVs in certain markets. The good news for Nanoco and its investors is that its quantum dots don’t use cadmium.

Janardan Menon and Eoin Lambe from Liberum Capital, concluded that the Sony development was “not particularly negative” for Nanoco and said they though that the likes of Samsung and LG were highly unlikely to use quantum dots containing cadmium.

Market re-rating

Nanoco originally floated on AIM in May 2009 after reversing in to then-cash shell Evolutec. Back then its revenues stood at just short of £2 million, with pre-tax losses of £0.78 million. By 2012, those revenues had risen only modestly to £2.95 million but losses had widened to £4.35 million. So what’s changed?

Its stellar recent performance began last December after a comparatively muted 12 months where the stock struggled to break out from a narrow range that peaked in March 2012 at 80p. By late February 2013 the shares were touching 199p and although they have retraced slightly, the stock remains around 100p ahead of where it was three months ago.

Behind that meteoric rise was an announcement in January that Dow Chemical Materials – part of the global giant Dow Chemical – had agreed to licence Nanoco’s quantum dots for use in TVs. Dow is a major supplier of electronic materials to the global display industry and is planning to boost manufacturing capacity in Asia to supply these products to its customers in the region. Full production is slated to begin in the first half of 2014.

While no financial details were released (they are expected later this year), analysts are agreed that the impact of this licensing deal will be significant for Nanoco. John-Marc Bunce at Nomura Code said it was likely that Nanoco would have sought “a significant multimillion dollar upfront licensing fee” for the global exclusive manufacturing rights and that the announcement should be seen as “financially significant”.

Liberum Capital described it as “a game changer”, with major potential customers like Samsung and LG likely to move much faster in adopting its quantum dot technology in their displays due to confidence in Dow’s high volume manufacturing capabilities. In response the broker raised its price target from 160p to 260p and maintained a strong buy recommendation on the stock.

In addition, Nanoco’s contribution (estimated at £10 million) to the capex required to establish the new production facilities may not need to be pulled from its current cash pile of around £15 million. Liberum reckons the costs should be covered by customer funding, customer pre-payments or from future royalty cash flows.

Consensus view

With a market cap of £366 million, Nanoco’s valuation has plainly lost touch with its fundamentals, with analysts setting price targets based somewhere between 20 and 25x 2016 earnings. House broker Canaccord Genuity claim that Nanoco is “a genuinely unique asset” with technology that could prove truly disruptive to the $100bn LCD market and as such warrants a ‘strategic valuation’. Its 275p price target is based on 20x estimated FY16 earnings – based on the assumption there will be no contribution from the Dow deal until FY15. Thereafter it estimates that revenues will grow fourfold in year one.

But not everyone is as bullish. Nomura Code, another broker, offers a more conservative view, raising its price target to 150p and predicting that the Dow deal could signal a short term peak in Nanoco’s valuation. Thereafter, its analysts “expect calculations of the timescales and real financial impact to potentially put a more restrained view on Nanoco’s near term value”.

Overall, there is a consensus view that Nanoco’s Dow deal will transform the company over the medium term and that other industry partnerships are likely to follow. After a three month surge, investors may now be waiting for more financial details, more deals and more revenue before driving the share price further. Nanoco’s interim results are due on 18 March.

The Rise of the Nanoco (NANO) and the efficiency game – Quantum Dots in Solar, LED’s and LCD TV’s


Original article By Charlie Hayter PUBLISHED: 23 Jan 2013 @ 14:41

QDOTS imagesCAKXSY1K 8Note to Readers: “Nanoco” has been making some significant headlines recently. As noted in this article, there are some very good reasons for that, most recently, the announcement of the JV Alliance with DOW Chemical (Electronics). It is noted that there are still some significant risks in both the cost and scale-up inputs yet to come, as Nanoco (and others) move forward to scalable commercialization. Another significant risk is the mass production of heavy-metal free (cadmium) QD’s.   There seems to be an assumption as to a “cost” per gram that will still remain high and a process of manufacture that will “limit” the amount of nano-materials available to be incorporated into existing product development and commercialization.

We wonder however, like the comments of “Ken G.” at the end of this article, if indeed there are not “others” out there developing H.M free, low cost and mass producible Quantum Dots that will dramatically change the risk/ reward investment equation. Cheers!   BWH

Quantum Dots were discovered in 1980 by Alexei Ekimov, and have been playing an ever more important role in tech advances for televisions and solar cells, as well as a host of applications further away from commercialisation. The unique properties of quantum dots allow the photonic emissions to be tuned by the size of the dot and this has meaningful benefits to solar cell efficiency and LCD power consumption, as well as bringing the colour array of LCD/LED into the OLED league potentially at a much lower cost. There are a number of Companies involved in this space, Nanosolar (privately held) – focuses on Quantum Dot CIS Solar Cells, Nanosys & QD Vision (privately held) concentrating on TV displays and LEDs, and Nanoco (LSE:NANO) concentrating on solar with Tokyo Electron and TV displays with other unnamed Asian partners, which announced today its licensing agreement for distributing cadmium free quantum dots for the display market with DOW Chemical.

For Nanoco, this follows on from stake building by Henderson pre-Christmas, an initiation of coverage by Liberum with a TP of 160p on the 16th of Jan and upgrade today to 260p, an upgrade today by Canaccord to 265p and finally the first commercial display exhibited by Sony in conjunction with QD Vision at the start of this year.

Announcement and Take

Nanoco announced today a global licensing agreement whereby DOW Electronic Materials will have exclusive worldwide right to market and manufacture Nanoco’s Quantum dots for use in electronic displays, with Nanoco receiving an undisclosed royalty payment. DOW Electronic Material will build a facility in Asia. The capacity has not been disclosed.

It looks like the Runcorn facility will be put on hold and it is not clear whether electronic displays include Diodes alongside the LCD/LED segment.

Quantum Dots – A bit of science

Quantum dots are small crystals that emit light of varying colours depending on the size of the crystal. Generally the smaller the crystal, the harder it is to produce, and the higher the frequency it emits. So a small crystal will emit blue light and a larger one red light.

Applications 1 – Solar

The major technological battle in solar has been between the flexible, low weight and efficiency thin Film vs the cumbersome, higher efficiency Crystalline silicon. In 2008 Thin Film was all the rage with sky high Polysilicon prices and bets were on Thin Film gradually taking market share. Firstsolar had a cost per Watt that was 50% below polysilicon competitors and an efficiency of c.10%, compared to crystalline silicon technologies at roughly 15%. Now, the cost per Watt for Firstsolar sits at around $0.67 and the average efficiency of its modules at around 12.7% compared to crystalline silicon technology at approximately $0.75 and an efficiency of 16-17%.

The relative catch up of crystalline silicon in terms of cost has been mainly due to the falling polysilicon price coupled with the increasing economies of scale. Breakthroughs, in terms of efficiency, have been made with anti-reflective layers (stopping light bouncing of the cell surface – analogous to a cats-eye), selective doping, and thinner printing of the silver conductors on the cell surface or burying them altogether.  However the theoretical limit to single junction solar cells/modules is constrained by the Schockley-Quiesser limit to 33%.

The Schockley-Queisser limit comes about due to the solar spectrum, i.e. the light emitted from the sun and the bandgap of the material being used to convert it to electricity. With our sun, the optimum bandgap is about 1.4eV, and silicon is chosen due to its close approximation to that, 1.1eV, also taking into account its properties as a conductor. The theoretical limit with single junction crystalline silicon is about 29% as the bandgap doesn’t match the optimum point due to the trade off for better conductivity and less electron hole recombination. Simply put, in standard solar cells, a high energy photon comes in 2eV and kicks off an electron, leaving the other 0.9eV as heat and so limiting the efficiency.

There are a few methods to counteract this, such as multi-junction cells. They (mostly GaAs) provide band gaps across at multiple points across the spectrum to maximise the theoretical efficiency. Essentially they vertically stack different materials with different bandgaps to capture more of the light. An infinitely layered multi-junction cell has a theoretical limit of 86%. At the moment these cells are only used in satellites because of their high cost due to the complex process of depositing multiple layers.

There is another way of breaching the single junction limit of 33% by using Quantum Dots, as they can emit multiple electrons from a single photon. As such the theoretical efficiency can be increased to 42% for single junction solar modules. Nanosolar, a Californian based Google funded venture, has reached a laboratory efficiency of 17.1% with its CIGS (Copper Indium Gallium Di-Selenide) product, but bear in mind laboratory efficiencies take 5 plus years to translate 50% of their advances into commercial production.

Application 2: TV’s

The turmoil that has been the history of televisions is a story of ever more violent upheavals and rapid technological shifts. Cathode rays have been made obsolete by plasma’s and LCD’s, and now flexible OLED’s have set the challenge to hybrid LED/LCD’s.

LCD’s provided lower costs, thinner screens and better colours compared to CRT’s, and OLED’S did the same to LCD’s whilst eliminating the backlight . Finally hybrid LCD/LED TV’s, either backlit or side-lit with their respective advantages, incorporated the low energy consumption by using LED’s whilst maintaining the filtering element of the LCD crystal displays. The threat of OLED’s and its better colour rendering has reared its head, and is being sold as a premium due to its cost but isn’t gaining market share.

The race has all been about slimmer, sexier and more extras – like a combination catwalk and page 3 model. LCD’s and their hybrid LED/LCD’s have an estimated 70% market share in 2012 from less than 5% in 2005. OLEDS have started to make an appearance but are priced at a significant premium – for example the 55inch Samsung OLED sells for just over £6000 compared to LCD’s and their variants at £1000-1500. Even though there is a distinctive price premium, OLED’s are easily degraded by water and continued use – specifically with the blue colour OLED (losing 50% of effectiveness over five years at eight hrs usage per day). Quantum Dots also have their problems, although not insurmountable, by being oxidised readily in air.

The plan for OLED’S is to follow the cost curve lower, but yet again the disruptive element of quantum dots could change the game. The concept was displayed earlier this month by Sony, where a gallium nitride blue LED light passes through a layer of Quantum dots and then out via the LCD display. The advantages over the traditional side-lit or backlit white LED being a colour scale comparable with OLED’s, power savings and potential cost savings – so an OLED quality TV that doesn’t break the bank. Another advantage of the quantum dot model is that old LCD fabs can be modified to include it instead of a dramatic overhaul with specialised deposition equipment as in the case of OLED’s. Clearly this is where DOW is positioning itself.

Application 3: LED’s

LED’s are gaining market share across the world in the traditional lighting segment as well as being an integral part of the LCD/LED hybrid display. At present white colour light is made in two ways, either through phosphorous doped blue LED’s that stretch out light spectrum to give the appearance of white light, or by combining Red, Green and Blue diodes. The problem with the RGB combination is that it costs a lot – 3 diodes instead of one that is modified, whilst phosphor doping leaves a large spike in the blue end of the visible spectrum and gives an unnatural hue to end viewing.

You’ve guessed it, Quantum dots can be married with the blue gallium nitride diodes, to give off truer colour. Nanosys simply has a Quantum dot lens that covers the blue light and gives off more natural light.

With TV’s however, the plan is to incorporate the Quantum Dots as a film across the back of the TV. Most broker notes haven’t highlighted this, but surely it would be better to just have Quantum Dot enhanced LED’s in the background. This could have effects on sales/volumes estimated so far.

Nanoco

The Company is Manchester based spin-off of its home city’s university, alongside Imperial College. The Market cap is nearing £300m with 2011 revenues of £2.6m, so is this premium justified or is the Company too hot to touch right now – are we back in the days of Fuel Cell Companies, such as ITM in 2006-7.

Financials

The problem is placing an estimate on revenues. At present the Company sells most of its product as milestone payments for about £2m per Kg. Most brokers are estimating prices in the region of £200k-50k per Kg declining through to 2017, with a volume ramp increased from 100-250kg in 2014 through to 12,000kg – or FY ‘17 revenues of £150m after taking into account an estimated 25% royalty payment. As for earnings, a pie in the sky guess of 30%, meaning a forward ’17 multiple of 6.7.

So what does this mean for market share of display televisions. According to the Company an estimate of 0.7g of quantum dots per 60 inch TV can be used – so a 40% market penetration in 2018 would require 12,000kg – which is what Dow Chemicals two largest clients, LG and Samsung, roughly hold in the high end TV market. Definitely plausible, but a lot of assumptions on price, royalty and production.

Let’s look at it another way – with yet another load of estimates. What about the replacement costs for what’s out there already. Estimating the LED cost for a 40inch TV (about 750 LEDs) and using low range costs off various websites, the total white SMD (surface mounted design) LED costs would be roughly $23. With blue LEDs the cost would be $8 and the quantum dots $28 – assuming £50,000 per Kg and not including assembly. So a bit of an extra cost but nothing compared to the CAPEX required for OLED’s and yet the same visual result– and it’s not clear whether this 0.7g estimate is for entire films of QD’s or for coated or “lensed” diode’s. Just consider this a thought experiment before getting lambasted on the bulletin boards.

Nanoco’s USP for mitigating risks

There are three major linked risks to Nanoco: Competition, scaling production and the Cadmium free saga.

Nanoco has produced Cadmium free Quantum Dots by complying with the ROHS (Restriction of Hazardous Materials Directive, which have given it a head start with regards to competitors QD Vision and Nanosys who don’t. Samsung have abandoned their Cadmium quantum dot campaign for this reason.

The issue with scaling a nascent product could also restrict market take up. Nanoco says it’s molecular seeding process is more appropriate than its competitors dual injection, as temperature control is more easily maintained – but you have to take their word for that, and DOW has. So it looks like Nanoco has won the first round.

Industry News and potential M&A

The solar space has picked up yet again with a whole new wave of MA. Q-cells and its Hanergy Hanwha sale, Hanergy and Miasole and its stake in Apollo solar, and finally Oerlikon buyout by Tokyo Electron, who have the agreement for a solar ink with Nanoco. But Nanoco’s ink has only reached efficiencies of 8% in respect to Nanosolar’s NREL approved 17%. So with solar it’s probably long way off, leaving the lighting and the screen display market as the most immediately cash generative.

You have to ask the question will it be taken out? Private equity has both of its major competitors. Diode companies, such as Cree, Epistar and Osram, have a lot to lose by not being a first mover in this market, but they’re electronics Companies not Chemical Companies. Furthermore, Dow has already taken the bait saying “we want this product” proving its tastiness to the majors – and could make more moves for further distributorship rights, i.e. to LED makers if the present agreement doesn’t include it.

Conclusion

A risky nascent tech that has clearly huge market potential: Richly priced but for these reasons. But strategically it is a sitting duck for Chemical Companies, and, most likely for Dow to consolidate, although this could be heavily premature. However, the news of DOWS involvement is a strong catalyst for earlier revenue generation as well as being a confirmation of the technologies scalability and potential, although the lack of clarity on the specifics of the deal are somewhat irksome. Bear in mind the potential for scale up delays on the downside and lack of revenue visibility, and on the upside, announcements for the LED market primarily as well as the solar space. Looks like a buy, hold and buy on dips if or as enthusiasm wanes – but this is a highly speculative stock with uncertainties galore, so something for the growth section of your portfolio that you can afford to lose – maybe prudent to wait for a pull back before entry, but then you might miss out.

Ken G says:

I believe one company you left off your list has the solutions to many of the issues regaurding mass productionn and scale of economy.They are a publically listed company QTMM and were recently covered by Frost and Sullivan recieving the “2012 North American Enabling Technology Award for Advanced Quantum Dot Manufacturing”.

Quantum Materials Corp First-Tetrapods Synthesis with over 92%> Full Shape First-Tetrapods with over 92% Uniformity of Size First-Tetrapods w/precise control of arm width & length First-Tetrapods Eco-Friendly Green Synthesis First-Tetrapods Continuous Flow Chemistry Process First-Tetrapods Mass Production by Continuous Flow Wide Variety of Group II-VI Tetrapods; Cd or Cd-Free Dec. 2012: New Tetrapod with 80%> Quantum Yield Best Tetrapod for Commercializing New Applications Best Company for Nanotech Joint Venture Partnering Proprietary QD Printed Electronics Technologies Precision printed lithography, gravure, inkjet printing Roll to Roll QD Printing at high speed on flexible substrates

QMC is the parent company for Solterra Renewable Technologies who are developing 3rd generation solar using quantum dots..

Solterra Renewable Technologies Solterra Renewable Technologies developing Non-REE Flexible Thin-Film Photovoltaic Tetrapod Quantum Dot Solar Plants. Our objective is to become the first bulk manufacture of high quality tetrapod quantum dots and the first solar cell manufacturer to be able to offer a solar electricity solution that competes on a non-subsidized basis with the price of retail electricity in key markets in North America, Europe, the Middle East and Asia.

 

 

Dow Chemical and NANOCO Enter Into Agreement for Quantum Dots


Dow to sell, market and manufacture cadmium-free quantum dots for LCD displays

QDOTS imagesCAKXSY1K 823/01/2013 Manchester

Philadelphia, PA and Manchester, UK,January 23, 2013 – Dow Electronic Materials, a business unit of The Dow Chemical Company (NYSE: DOW) and Nanoco Group plc (AIM: NANO) today announced they have entered into a global licensing agreement for Nanoco’s cadmium-free quantum dot technology. Under the terms of the agreement, Dow Electronic Materials will have exclusive worldwide rights for the sale, marketing and manufacture of Nanoco’s cadmium-free quantum dots for use in electronic displays.

The agreement brings together Nanoco’s world-leading technology with Dow’s large-scale manufacturing capability and well-established sales, marketing and distribution network. Dow Electronic Materials is already a major supplier of critical electronic materials to the global display industry.

The financial details of the agreement are not being disclosed though Nanoco will receive royalty payments related to Dow’s sales of cadmium-free quantum dots. Nanoco will continue to provide any technology advances to its cadmium-free quantum dot technology throughout the lifetime of the agreement and participate with Dow in the marketing and technical support of these materials.

Dow intends to build production capacity in Asia where it has extensive manufacturing capabilities to supply high-performance materials to its customers in the display and semiconductor-related segments. Full commercial production is expected to begin in the first half of 2014.

“We believe that Nanoco’s cadmium-free quantum dots will become a new standard in the display industry owing to their ability to significantly improve the color performance of LCD displays both cost-effectively and by avoiding the use of heavy metals,” said C.G. Park, Global Business Director, Dow Electronic Materials. “When coupled with Nanoco’s technology, Dow’s deep technical, engineering and industry knowledge in films, LCD, LED, and OLED display segments brings our customers an unmatched portfolio of materials solutions.”

Michael Edelman, Nanoco’s Chief Executive Officer, commented: “We are delighted to sign this agreement with Dow Electronic Materials. This agreement is transformational for the quantum dot industry and a significant endorsement of Nanoco’s cadmium-free quantum dot technology. With Dow’s production expertise and deep customer relationships, display makers can begin to plan their quantum dot production requirements with further confidence.”