EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia


 

global primary energy consumption by region

Source: U.S. Energy Information Administration, International Energy Outlook 2019 Reference case

 

In the International Energy Outlook 2019 (IEO2019) Reference case, released at 9:00 a.m. today, the U.S. Energy Information Administration (EIA) projects that world energy consumption will grow by nearly 50% between 2018 and 2050. Most of this growth comes from countries that are not in the Organization for Economic Cooperation and Development (OECD), and this growth is focused in regions where strong economic growth is driving demand, particularly in Asia.

EIA’s IEO2019 assesses long-term world energy markets for 16 regions of the world, divided according to OECD and non-OECD membership. Projections for the United States in IEO2019 are consistent with those released in the Annual Energy Outlook 2019.

global energy consumption by sector

Source: U.S. Energy Information Administration, International Energy Outlook 2019 Reference case

The industrial sector, which includes refining, mining, manufacturing, agriculture, and construction, accounts for the largest share of energy consumption of any end-use sector—more than half of end-use energy consumption throughout the projection period. World industrial sector energy use increases by more than 30% between 2018 and 2050 as consumption of goods increases. By 2050, global industrial energy consumption reaches about 315 quadrillion British thermal units (Btu).

Transportation energy consumption increases by nearly 40% between 2018 and 2050. This increase is largely driven by non-OECD countries, where transportation energy consumption increases nearly 80% between 2018 and 2050. Energy consumption for both personal travel and freight movement grows in these countries much more rapidly than in many OECD countries.

Energy consumed in the buildings sector, which includes residential and commercial structures, increases by 65% between 2018 and 2050, from 91 quadrillion to 139 quadrillion Btu. Rising income, urbanization, and increased access to electricity lead to rising demand for energy.

global net electricity generation

Source: U.S. Energy Information Administration, International Energy Outlook 2019 Reference case

The growth in end-use consumption results in electricity generation increasing 79% between 2018 and 2050. Electricity use grows in the residential sector as rising population and standards of living in non-OECD countries increase the demand for appliances and personal equipment. Electricity use also increases in the transportation sector as plug-in electric vehicles enter the fleet and electricity use for rail expands.

global primary energy consumption by energy source

Source: U.S. Energy Information Administration, International Energy Outlook 2019 Reference case

With the rapid growth of electricity generation, renewables—including solar, wind, and hydroelectric power—are the fastest-growing energy source between 2018 and 2050, surpassing petroleum and other liquids to become the most used energy source in the Reference case. Worldwide renewable energy consumption increases by 3.1% per year between 2018 and 2050, compared with 0.6% annual growth in petroleum and other liquids, 0.4% growth in coal, and 1.1% annual growth in natural gas consumption.

Global natural gas consumption increases more than 40% between 2018 and 2050, and total consumption reaches nearly 200 quadrillion Btu by 2050. In addition to the natural gas used in electricity generation, natural gas consumption increases in the industrial sector. Chemical and primary metals manufacturing, as well as oil and natural gas extraction, account for most of the growing industrial demand.

Global liquid fuels consumption increases more than 20% between 2018 and 2050, and total consumption reaches more than 240 quadrillion Btu in 2050. Demand in OECD countries remains relatively stable during the projection period, but non-OECD demand increases by about 45%.

Principal contributor: Ari Kahan

Advertisements

Brookhaven National Laboratory – Searching for More Cost Efficient Catalysts for Hydrogen Fuel Cells – Illuminating Nanoparticle Growth With X-Rays


brookhaven fuel cell research 189306_web
Brookhaven Lab scientists Mingyuan Ge, Iradwikanari Waluyo, and Adrian Hunt are pictured left to right at the IOS beamline, where they studied the growth pathway of an efficient catalyst for hydrogen fuel cells. Credit: Brookhaven National Laboratory

Hydrogen fuel cells are a promising technology for producing clean and renewable energy, but the cost and activity of their cathode materials is a major challenge for commercialization. Many fuel cells require expensive platinum-based catalysts–substances that initiate and speed up chemical reactions–to help convert renewable fuels into electrical energy. To make hydrogen fuel cells commercially viable, scientists are searching for more affordable catalysts that provide the same efficiency as pure platinum.

“Like a battery, hydrogen fuel cells convert stored chemical energy into electricity. The difference is that you’re using a replenishable fuel so, in principle, that ‘battery’ would last forever,” said Adrian Hunt, a scientist at the National Synchrotron Light Source II(NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory. “Finding a cheap and effective catalyst for hydrogen fuel cells is basically the holy grail for making this technology more feasible.”

Taking part in this worldwide search for fuel cell cathode materials, researchers at the University of Akron developed a new method of synthesizing catalysts from a combination of metals–platinum and nickel–that form octahedral (eight-sided) shaped nanoparticles. While scientists have identified this catalyst as one of the most efficient replacements for pure platinum, they have not fully understood why it grows in an octahedral shape. To better understand the growth process, the researchers at the University of Akron collaborated with multiple institutions, including Brookhaven and its NSLS-II.

brookhaven fc 6-scientistsbo

Schematic diagram of the oxygen reduction reaction (reduction of O2 into H2O) on the Pt(110) surface of the PtPb/Pt nanoplates, with purple representing Pt atoms and orange representing Pb atoms. Credit: Brookhaven National Laboratory

“Understanding how the faceted catalyst is formed plays a key role in establishing its structure-property correlation and designing a better catalyst,” said Zhenmeng Peng, principal investigator of the catalysis lab at the University of Akron. “The growth process case for the platinum-nickel system is quite sophisticated, so we collaborated with several experienced groups to address the challenges. The cutting-edge techniques at Brookhaven National Lab were of great help to study this research topic.”

Using the ultrabright x-rays at NSLS-II and the advanced capabilities of NSLS-II’s In situ and Operando Soft X-ray Spectroscopy (IOS) beamline, the researchers revealed the chemical characterization of the catalyst’s growth pathway in real time. Their findings are published in Nature Communications.

“We used a research technique called ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to study the surface composition and chemical state of the metals in the nanoparticles during the growth reaction,” said Iradwikanari Waluyo, lead scientist at IOS and a co-corresponding author of the research paper. “In this technique, we direct x-rays at a sample, which causes electrons to be released. By analyzing the energy of these electrons, we are able to distinguish the chemical elements in the sample, as well as their chemical and oxidation states.”

Hunt, who is also an author on the paper, added, “It is similar to the way sunlight interacts with our clothing. Sunlight is roughly yellow, but once it hits a person’s shirt, you can tell whether the shirt is blue, red, or green.”

Rather than colors, the scientists were identifying chemical information on the surface of the catalyst and comparing it to its interior. They discovered that, during the growth reaction, metallic platinum forms first and becomes the core of the nanoparticles. Then, when the reaction reaches a slightly higher temperature, platinum helps form metallic nickel, which later segregates to the surface of the nanoparticle. In the final stages of growth, the surface becomes roughly an equal mixture of the two metals. This interesting synergistic effect between platinum and nickel plays a significant role in the development of the nanoparticle’s octahedral shape, as well as its reactivity.

“The nice thing about these findings is that nickel is a cheap material, whereas platinum is expensive,” Hunt said. “So, if the nickel on the surface of the nanoparticle is catalyzing the reaction, and these nanoparticles are still more active than platinum by itself, then hopefully, with more research, we can figure out the minimum amount of platinum to add and still get the high activity, creating a more cost-effective catalyst.”

The findings depended on the advanced capabilities of IOS, where the researchers were able to run the experiments at gas pressures higher than what is usually possible in conventional XPS experiments.

“At IOS, we were able to follow changes in the composition and chemical state of the nanoparticles in real time during the real growth conditions,” said Waluyo.

Additional x-ray and electron imaging studies completed at the Advanced Photon Source (APS) at DOE’s Argonne National Laboratory–another DOE Office of Science User Facility–and University of California-Irvine, respectively, complemented the work at NSLS-II.

“This fundamental work highlights the significant role of segregated nickel in forming the octahedral-shaped catalyst. We have achieved more insight into shape control of catalyst nanoparticles,” Peng said. “Our next step is to study catalytic properties of the faceted nanoparticles to understand the structure-property correlation.”

Argonne National Laboratory – A New Membrane Discovery Makes Hydrogen Fuel from Water and Sunlight


hydrogen membrane discoveryada
Two membrane-bound protein complexes that work together with a synthetic catalyst to produce hydrogen from water. Credit: Olivia Johnson and Lisa Utschig

A chemical reaction pathway central to plant biology have been adapted to form the backbone of a new process that converts water into hydrogen fuel using energy from the sun.

argonne nlIn a recent study from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have combined two -bound protein complexes to perform a complete conversion of water molecules to  and oxygen.

The work builds on an earlier study that examined one of these protein complexes, called Photosystem I, a membrane protein that can use energy from light to feed electrons to an inorganic  that makes hydrogen. This part of the reaction, however, represents only half of the overall process needed for hydrogen generation.

By using a second  that uses energy from light to split water and take electrons from it, called Photosystem II, Argonne chemist Lisa Utschig and her colleagues were able to take electrons from water and feed them to Photosystem I.

“The beauty of this design is in its simplicity—you can self-assemble the catalyst with the natural membrane to do the chemistry you want”—Lisa Utschig, Argonne chemist

In an earlier experiment, the researchers provided Photosystem I with electrons from a sacrificial electron donor. “The trick was how to get two electrons to the catalyst in fast succession,” Utschig said.

The two protein complexes are embedded in , like those found inside the oxygen-creating chloroplasts in higher plants. “The membrane, which we have taken directly from nature, is essential for pairing the two photosystems,” Utschig said. “It structurally supports both of them simultaneously and provides a direct pathway for inter- electron transfer, but doesn’t impede catalyst binding to Photosystem I.”

According to Utschig, the Z-scheme—which is the technical name for the light-triggered electron transport chain of natural photosynthesis that occurs in the thylakoid membrane—and the synthetic catalyst come together quite elegantly. “The beauty of this design is in its simplicity—you can self-assemble the catalyst with the natural membrane to do the chemistry you want,” she said.

One additional improvement involved the substitution of cobalt or nickel-containing catalysts for the expensive platinum catalyst that had been used in the earlier study. The new cobalt or nickel catalysts could dramatically reduce potential costs.

The next step for the research, according to Utschig, involves incorporating the membrane-bound Z-scheme into a living system. “Once we have an in vivo system—one in which the process is happening in a living organism—we will really be able to see the rubber hitting the road in terms of hydrogen production,” she said.

 Explore further: New research sheds light on photosynthesis and creation of solar fuel

More information: Lisa M. Utschig et al, Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes, Chemical Science (2018). DOI: 10.1039/c8sc02841a

 

New Discovery by DOE and Argonne National Laboratory is BIG on nanoscale – Predictability at the ‘small scale’


nano scale newdiscovery
This shows the size-induced transition to metallicity that takes place in a universal manner for all metallic elements, as gauged by the polarizability-based characteristic called degree of metallicity. As the clusters grow in size, they gradually become metallic and expel an external electric field from their interior (the Faraday cage effect in metals). Credit: Argonne National Laboratory

Imagine if you could look at a small amount of an unidentified chemical element – less than 100 atoms in size – and know what type of material the element would become in large quantities before you actually saw the larger accumulation.

That thought has long animated the work of Julius Jellinek, senior scientist emeritus in the Chemical Sciences and Engineering division at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. His recent discovery with longtime collaborator Koblar Jackson, a professor in the Department of Physics at Central Michigan University, has the potential to dramatically impact the discipline of nanoscale science.

According to Jellinek, the classification of elements and  in bulk quantities into different types – metals, semiconductors and insulators – is well established and understood. But the identification of types of materials on the nanoscale is not so straightforward. In fact, even though the term “nanomaterials” is broadly used, nanoscale materials science has yet to be fully developed.

“Elements and compounds in very small quantities, or nano-quantities, behave very differently from their bulk counterparts,” Jellinek explained. For example, small atomic clusters of elements that are metals in bulk quantities only take on metallic characteristics as they grow in size.

This phenomenon is known as size-induced transition to metallicity, and it prompted Jellinek and Jackson to ask: Is it possible to predict what type of material an unidentified will be in bulk quantities solely based on the properties it exhibits over a limited range of the sub-nano to nano size régime?

The answer turned out to be an emphatic, and somewhat surprising, “yes.”

In their paper, “Universality in size-driven evolution towards bulk polarizability of metals” published as a Communication in the October 7, 2018, issue of Nanoscale, Jellinek and Jackson showed that by using their previously developed atomic-level analysis of polarizability, they could predict whether an unidentified element would be a metal or non-metal in bulk quantities by looking at the polarizability properties of its small clusters. (Polarizability describes how systems and materials respond to an external electric field.)

Moreover, if an unidentified element will be a  in bulk, using the same small-size polarizability data one can establish its exact chemical identity.

Another striking discovery reported in the paper is that clusters of all metallic elements evolve to the bulk metallic state in a universal manner, as gauged by a polarizability-based characteristic Jellinek and Jackson call the “degree of metallicity.” Said Jellinek: “We introduced a new universal constant and new universal scaling equations into the physics of metals.”

The new scaling equations make it easy and straightforward for scientists to determine the polarizability of any size cluster of any metallic element based on the element’s corresponding bulk polarizability. In the past, this would have required lengthy – and costly – calculations for each individual case. “What would have taken days, weeks or even months to cover a range of sizes now takes a fraction of a second using these universal equations,” Jellinek said.

Perhaps most significantly, the study represents a major step in building-up the foundations of nanoscale materials science; it makes a fundamental contribution to the understanding of size evolution toward the bulk metallic state. (Jellinek said the study includes a provision for possible exceptions – what he calls “exotic metals” – should they be found in the future.)

For Jellinek personally, after more than 31 years at Argonne and having recently assumed an emeritus position, the discovery was particularly satisfying – and surprising, because originally he and Jackson were expecting to find something else.

“At first we were hoping to establish commonality on a smaller scale within different groups of metallic elements, and we were disappointed the results were not fulfilling that expectation,” he said. “But then we saw that the different groups were behaving in a universal way. In science, when something emerges differently than what you expect that often turns out to be new and interesting. However, it is very rare to discover something that is universal.”

Jellinek called the result one of the finest things he has done in his long and distinguished career, adding: “This is why it’s fun to be a scientist. When you get something fundamental and truly new, it’s a reward that nothing else can replace. The next task is to try to uncover possible commonalities, maybe even universality, in size-evolution to the bulk state for elements that are not metals.”

 Explore further: Research predicts size-induced transition to nanoscale half-metallicity

More information: Julius Jellinek et al. Universality in size-driven evolution towards bulk polarizability of metals, Nanoscale (2018). DOI: 10.1039/C8NR06307A

“Harvesting Energy from Light” – ORNL: Multimodal imaging shows strain can drive chemistry in a photovoltaic material –


In a thin film of a solar-energy material, molecules in twin domains (modeled in left and right panels) align in opposing orientations within grain boundaries (shown by scanning electron microscopy in the center panel). Strain can change chemical segregation and may be engineered to tune photovoltaic efficiency. Credit: Stephen Jesse/Oak Ridge National Laboratory, U.S. Dept. of Energy (hi-res image)

OAK RIDGE, Tenn., Sept. 25, 2018—A unique combination of imaging tools and atomic-level simulations has allowed a team led by the Department of Energy’s Oak Ridge National Laboratory to solve a longstanding debate about the properties of a promising material that can harvest energy from light.

The researchers used multimodal imaging to “see” nanoscale interactions within a thin film of hybrid organic–inorganic perovskite, a material useful for solar cells.

They determined that the material is ferroelastic, meaning it can form domains of polarized strain to minimize elastic energy. This finding was contrary to previous assumptions that the material is ferroelectric, meaning it can form domains of polarized electric charge to minimize electric energy.

“We found that people were misguided by the mechanical signal in standard electromechanical measurements, resulting in the misinterpretation of ferroelectricity,” said Yongtao Liu of ORNL, whose contribution to the study became a focus of his PhD thesis at the University of Tennessee, Knoxville (UTK).

Olga Ovchinnikova, who directed the experiments at ORNL’s Center for Nanophase Materials Sciences (CNMS), added, “We used multimodal chemical imaging—scanning probe microscopy combined with mass spectrometry and optical spectroscopy—to show that this material is ferroelastic and how the ferroelasticity drives chemical segregation.”

The findings, reported in Nature Materials, revealed that differential strains cause ionized molecules to migrate and segregate within regions of the film, resulting in local chemistry that may affect the transport of electric charge.

The understanding that this unique suite of imaging tools enables allows researchers to better correlate structure and function and fine-tune energy-harvesting films for improved performance.

“We want to predictively make grains of particular sizes and geometries,” Liu said. “The geometry is going to control the strain, and the strain is going to control the local chemistry.”

For their experiment, the researchers made a thin film by spin-casting a perovskite on an indium tin oxide–coated glass substrate. This process created the conductive, transparent surface a photovoltaic device would need—but also generated strain.

To relieve the strain, tiny ferroelastic domains formed. One type of domain was “grains,” which look like what you might see flying over farmland with patches of different crops skewed in relation to one another. Within grains, sub-domains formed, similar to rows of two plant types alternating in a patch of farmland. These adjacent but opposing rows are “twin domains” of segregated chemicals.

The technique that scientists previously used to claim the material was ferroelectric was piezoresponse force microscopy (“piezo” means “pressure), in which the tip of an atomic force microscope (AFM) measures a mechanical displacement due to its coupling with electric polarization—namely, electromechanical displacement. “But you’re not actually measuring the true displacement of the material,” Ovchinnikova warned. “You’re measuring the deflection of this whole ‘diving board’ of the cantilever.” Therefore, the researchers used a new measurement technique to separate cantilever dynamics from displacement of the material due to piezoresponse—the Interferometric Displacement Sensor (IDS) option for the Cypher AFM, developed by co-author Roger Proksch, CEO of Oxford Instruments Asylum Research.

They found the response in this material is from cantilever dynamics alone and is not a true piezoresponse, proving the material is not ferroelectric.

“Our work shows the effect believed due to ferroelectric polarization can be explained by chemical segregation,” Liu said.

The study’s diverse microscopy and spectroscopy measurements provided experimental data to validate atomic-level simulations. The simulations bring predictive insights that could be used to design future materials.

We’re able to do this because of the unique environment at CNMS where we have characterization, theory and synthesis all under one roof,” Ovchinnikova said.

“We didn’t just utilize mass spectrometry because [it] gives you information about local chemistry. We also used optical spectroscopy and simulations to look at the orientation of the molecules, which is important for understanding these materials. Such a cohesive chemical imaging capability at ORNL leverages our functional imaging.”

Collaborations with industry allow ORNL to have unique tools available for scientists, including those that settled the debate about the true nature of the light-harvesting material. For example, an instrument that uses helium ion microscopy (HIM) to remove and ionize molecules was coupled with a secondary ion mass spectroscopy (SIMS) to identify molecules based on their weights.

The HIM-SIMS instrument ZEISS ORION NanoFab was made available to ORNL from developer ZEISS for beta testing and is one of only two such instruments in the world. Similarly, the IDS instrument from Asylum Research, which is a laser Doppler vibrometer, was also made available to ORNL for beta testing and is the only one in existence.

“Oak Ridge National Laboratory researchers are naturally a good fit for working with industry because they possess unique expertise and are able to first use the tools the way they’re meant to,” said Proksch of Asylum. “ORNL has a facility [CNMS] that makes instruments and expertise available to many scientific users who can test tools on different problems and provide strong feedback during beta testing as vendors develop and improve the tools, in this case our new IDS metrological AFM.”

The title of the paper is “Chemical Nature of Ferroelastic Twin Domains in CH3NH3PbI3 Perovskite.”

The research was supported by ORNL’s Laboratory Directed Research and Development Program and conducted at CNMS, a DOE Office of Science User Facility at ORNL.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov/.

Why Do Most Science Startups Fail? Here’s Why …


Science Start ups fail why getty_629009118_355815

“We need to get a lot better at bridging that gap between discovery and commercialization”

G. Satell – Inc. Magazine

It seems like every day we see or hear about a breakthrough new discovery that will change everything. Some, like perovskites in solar cells and CRISPR are improvements on existing technologies. Others, like quantum computing and graphene promise to open up new horizons encompassing many applications. Still others promise breakthroughs in Exciting Battery Technology Breakthrough News — Is Any Of It Real? or Beyond lithium — the search for a better battery

Nevertheless, we are still waiting for a true market impact. Quantum computing and graphene have been around for decades and still haven’t hit on their “killer app.” Perovskite solar cells and CRISPR are newer, but haven’t really impacted their industries yet. And those are just the most prominent examples.

bright_idea_1_400x400The problem isn’t necessarily with the discoveries themselves, many of which are truly path-breaking, but that there’s a fundamental difference between discovering an important new phenomenon in the lab and creating value in the marketplace.

“We need to get a lot better at bridging that gap. To do so, we need to create a new innovation ecosystem for commercializing science.”

The Valley Of Death And The Human Problem

The gap between discovery and commercialization is so notorious and fraught with danger that it’s been unaffectionately called the “Valley of Death.” Part of the problem is that you can’t really commercialize a discovery, you can only commercialize a product and those are two very different things.

The truth is that innovation is never a single event, but a process of discovery, engineering and transformation. After something like graphene is discovered in the lab, it needs to be engineered into a useful product and then it has to gain adoption by winning customers in the marketplace. Those three things almost never happen in the same place.

So to bring an important discovery to market, you first need to identify a real world problem it can solve and connect to engineers who can transform it into a viable product or service. Then you need to find customers who are willing to drop whatever else they’ve been doing and adopt it on a large scale. That takes time, usually about 30 years.

The reason it takes so long is that there is a long list of problems to solve. To create a successful business based on a scientific discovery, you need to get scientists to collaborate effectively with engineers and a host of specialists in other areas, such as manufacturing, distribution and marketing. Those aren’t just technology problems, those are human problems. Being able to collaborate effectively is often the most important competitive advantage.

Wrong Industry, Wrong Application

One of the most effective programs for helping to bring discoveries out of the lab is I-Corps. First established by the National Science Foundation (NSF) to help recipients of SBIR grants identify business models for scientific discoveries, it has been such an extraordinary success that the US Congress has mandated its expansion across the federal government.

Based on Steve Blank’s lean startup methodology, the program aims to transform scientists into entrepreneurs. It begins with a presentation session, in which each team explains the nature of their discovery and its commercial potential. It’s exciting stuff, pathbreaking science with real potential to truly change the world.

The thing is, they invariably get it wrong. Despite their years of work to discover something of significance and their further efforts to apply and receive commercialization grants from the federal government, they fail to come up with a viable application in an industry that wants what they have to offer. professor-with-a-bright-idea-vector-937691

Ironically, much of the success of the I-Corps program is due to these early sessions. Once they realize that they are on the wrong track, they embark on a crash course of customer discovery, interviewing dozens — and sometimes hundreds — of customers in search of a business model that actually has a chance of succeeding.

What’s startling about the program is that, without it, scientists with important discoveries often wasted years trying to make a business work that never really had a chance in the first place.

The Silicon Valley Myth

Much of the success of Silicon Valley has been based on venture-funded entrepreneurship. Startups with an idea to change the world create an early stage version of the product they want to launch, show it to investors and get funding to bring it to market. Just about every significant tech company was started this way.

Yet most of the success of Silicon Valley has been based on companies that sell either software or consumer gadgets, which are relatively cheap and easy to rapidly prototype. Many scientific startups, however, do not fit into this category. Often, they need millions of dollars to build a prototype and then have to sell to industrial companies with long lead times.

start up imagesThe myth of Silicon Valley is that venture-funded entrepreneurship is a generalizable model that can be applied to every type of business. It is not. In fact, it is a specific model that was conceived in a specific place at a specific time to fund mature technologies for specific markets. It’s not a solution that fits every problem.

The truth is that venture funds are very adept with assessing market risk, but not so good at taking on technology risk, especially in hard sciences. That simply isn’t what they were set up to do.

We Need A New Innovation Ecosystem For Science Entrepreneurship

In 1945, Vannevar Bush delivered a report, Science, The Endless Frontier, to President Truman, in which he made the persuasive argument that expanding the nation’s scientific capacity will expand its economic capacity and well being. His call led, ultimately, to building America’s scientific infrastructure, including programs like the NSF and the National Institutes of Health (NIH).

It was Bush’s vision that made America a technological superpower. Grants from federal agencies to scientists enabled them to discover new knowledge. Then established businesses and, later, venture backed entrepreneurs would then take those discoveries to bring new products and services to market.

Look at any industry today and its most important technologies were largely shaped by investment from the federal government. Today, however, the challenges are evolving. We’re entering a new era of innovation in which technologies like genomics, nanotechnology and robotics are going to reshape traditional industries like energy, healthcare and manufacturing.

That’s exciting, but also poses new challenges, because these technologies are ill-suited to the Silicon Valley model of venture-funded entrepreneurship and need help to them get past the Valley of Death. So we need to build a new innovation ecosystem on top of the scientific architecture Bush created for the post-war world.

There have been encouraging signs. New programs like I-Corps, the Manufacturing InstitutesCyclotron Road and Chain Reaction are beginning to help fill the gap.

Still much more needs to be done, especially at the state and local level to help build regional hubs for specific industries, if we are going to be nearly as successful in the 21st century as were were in the 20th.

Cape-Starman

The physics of Light and Sound: Examining the Quantum Nature of Nanostructures – Putting Quantum Scientists in the Driver’s Seat


Quantum Scientists 180327141712_1_540x360
An electron beam (teal) hits a nanodiamond, exciting plasmons and vibrations in the nanodiamond that interact with the sample’s nitrogen vacancy center defects. Correlated (yellow) photons are emitted from the nanodiamond, while uncorrelated (yellow) photons are emitted by a nearby diamond excited by surface plasmons (red).
Credit: Raphael Pooser/Oak Ridge National Laboratory, US Department of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory are conducting fundamental physics research that will lead to more control over mercurial quantum systems and materials. Their studies will enable advancements in quantum computing, sensing, simulation, and materials development.

The researchers’ experimental results were recently published in Physical Review B Rapid Communication and Optics Letters.

Quantum information is considered fragile because it can be lost when the system in which it is encoded interacts with its environment, a process called dissipation. Scientists with ORNL’s Computing and Computational Sciences and Physical Sciences directorates and Vanderbilt University have collaborated to develop methods that will help them control — or drive — the “leaky,” dissipative behavior inherent in quantum systems.

“Our goal is to develop experimental platforms that allow us to probe and control quantum coherent dynamics in materials,” said Benjamin Lawrie, a research scientist in the Quantum Sensing Team in ORNL’s Quantum Information Science Group. “To do that, you often have to be able to understand what’s going on at the nanoscale.”

Bringing perspectives from quantum information science, nanoscience and electron microscopy, the scientists exploit existing knowledge of matter and the physics of light and sound to examine the quantum nature of nanostructures — structures that measure about one-billionth of a meter.

One project focused on driving nitrogen vacancy center defects in nanodiamonds with plasmons. The naturally occurring defects are created when a nitrogen atom forms in place of the typical carbon atom, adjacent to an atomless vacancy. The defects are being investigated for use in tests of entanglement, a state that will allow substantially more information to be encoded in a quantum system than can be accomplished with classical computing.

Electrons generate an electric field. When an electron beam is applied to a material, the material’s electrons are spurred to motion — a state called excitation — creating a magnetic field that can then be detected as light. Working with plasmons, electron excitations that couple easily with light, allows scientists to examine electromagnetic fields at the nanoscale.

Matthew Feldman, a Vanderbilt University graduate student conducting doctoral research at ORNL through the National Defense Science and Engineering Graduate Fellowship program and a member of the Quantum Sensing Team, used a high-energy electron beam to excite nitrogen vacancy centers in diamond nanoparticles, causing them to emit light. He then used a cathodoluminescence microscope owned by ORNL’s Materials Science and Technology Division, which measures the visible-spectrum luminescence in irradiated materials, to collect the emitted photons and characterize high-speed interactions among nitrogen vacancy centers, plasmons and vibrations within the nanodiamond.

In other research, Jordan Hachtel, a postdoctoral fellow with ORNL’s Center for Nanophase Materials Sciences, used the cathodoluminescence microscope to excite plasmons in gold nanospirals. He explored how the geometry of the spirals could be harnessed to focus energy in nanoscale systems. Andy Lupini served the project as a microscopy consultant, providing expertise regarding equipment optimization and troubleshooting.

Precise control over nanoscale energy transfer is required to enable long-lived entanglement in a model explored by Eugene Dumitrescu, a research scientist in ORNL’s Quantum Information Science Group. Dumitrescu’s research, published in Physical Review A in late 2017, showed that the photon statistics Feldman collected could be used in calculations to show entanglement.

“This work advances our knowledge of how to control light-matter interactions, providing experimental proof of a phenomenon that had previously been described by simulations,” Lawrie said.

Closed systems, in which quantum information can be kept away from its surroundings, theoretically can prevent dissipation, but real-world quantum systems are open to numerous influences that result in information leakage.

“The elephant in the room in discussions of quantum systems is decoherence,” Feldman said. “If we can model an environment to influence how a quantum system works, we can enable entanglement.”

Dumitrescu agreed. “We know quantum systems will be leaky. One remedy is to drive them,” he said. “The driving mechanisms we’re exploring cancel out the effects of dissipation.”

Dumitrescu used the analogy of a musical instrument to explain the researchers’ attempts to control quantum systems. “If you pluck a violin string, you get the sound, but it begins to dissipate through the environment, the air,” he said. “But if you slowly draw the bow across the string, you get a more stable, longer-lasting sound. You’ve brought control to the system.”

Feldman thinks these are fascinating times for quantum physicists because the field of quantum computing is at the same phase classical computing was in the mid-20th century. “What excites me most is how current research could change our understanding of quantum systems and materials,” he said.

Story Source:

Materials provided by DOE/Oak Ridge National LaboratoryNote: Content may be edited for style and length.


Journal Reference:

  1. Matthew A. Feldman, Eugene F. Dumitrescu, Denzel Bridges, Matthew F. Chisholm, Roderick B. Davidson, Philip G. Evans, Jordan A. Hachtel, Anming Hu, Raphael C. Pooser, Richard F. Haglund, Benjamin J. Lawrie. Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescencePhysical Review B, 2018; 97 (8) DOI: 10.1103/PhysRevB.97.081404

America’s National Laboratories – 75 Breakthroughs We’ve Made that You May Not have Read About


Oak Ridge NL DWKcxYZXkAEY9NV

America’s National Laboratories have been changing and improving the lives of millions of people for more than 75 years. Born at a time when the world faced a dire threat, the laboratories came together to advance science, safeguard the nation and protect our freedoms for generations to come. This network of Department of Energy Laboratories has grown into 17 facilities, working together as engines of prosperity and invention. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe. Rooted in the need to serve the public good and support the global community, the National Laboratories have put an American stamp on the last century of science. With equal ingenuity and tenacity, they are now engaged in innovating the future.

National Labs Map downloadDownload and read 75 Breakthroughs by America’s National Laboratories.

75 Breakthroughs

At America’s National Laboratories, we’ve …

Advanced supercomputing

The National Labs operate some of the most significant high performance computing resources available, including 32 of the 500 fastest supercomputers in the world. These systems, working at quadrillions of operations per second, model and simulate complex, dynamic systems – such as the nuclear deterrent – that would be too expensive, impractical or impossible to physically demonstrate. Supercomputers are changing the way scientists explore the evolution of our universe, climate change, biological systems, weather forecasting and even renewable energy.

Decoded DNA 

In 1990, the National Labs joined with the National Institutes of Health and other laboratories to kick off the Human Genome Project, an international collaboration to identify and map all of the genes of the human genome.

Brought the web to the United States 

National Lab scientists, seeking to share particle physics information, were first to install a web server in North America, kick-starting the development of the worldwide web as we know it.

Put eyes in the sky 

Vela satellites, first launched in 1963 to detect potential nuclear detonations, transformed the nascent U.S. space program. The satellites featured optical sensors and data processing, logic and power subsystems designed and created by National Labs.

Revolutionized medical diagnostics and treatment 

Researchers at the National Labs helped to develop the field of nuclear medicine, producing radioisotopes to diagnose and treat disease, designing imaging technology to detect cancer and developing software to target tumors while sparing healthy tissue.

Powered NASA spacecraft 

The National Labs built the enclosure for the radioisotope thermoelectric generators that fuel crafts such as Cassini and have begun producing plutonium-238 for future NASA missions.

Harnessed the power of the atom 

National Lab scientists and engineers have led the world in developing safe, efficient and emissions-free nuclear power. Starting with the first nuclear reactor to generate electricity, National Labs have been the innovation engine behind the peaceful use of nuclear energy. Today’s labs are supporting the next generation of nuclear power that will be available for the nation and world.

Brought safe water to millions 

Removing arsenic from drinking water is a global priority. A long-lasting particle engineered at a National Lab can now do exactly that, making contaminated water safe to drink. Another technology developed at a National Lab uses ultraviolet light to kill water-borne bacteria that cause dysentery, thus reducing child mortality in the developing world.

Filled the Protein Data Bank 

National Lab X-ray facilities have contributed a large portion of more than 100,000 protein structures in the Protein Data Bank. A protein’s structure reveals how it functions, helping scientists understand how living things work and develop treatments for disease. Almost all new medications that hit the market start with these data bank structures.

Invented new materials 

National Labs provide the theory, tools and techniques that offer industry revolutionary materials such as strong, lighter-weight metals and alloys that save fuel and maintenance costs and enable cleaner, more efficient engines.

Found life’s mystery messenger 

National Lab scientists discovered how genetic instructions are carried to the cell’s protein manufacturing center, where all of life’s processes begin. Subsequent light source research on the genetic courier, called messenger RNA, has revealed how the information is transcribed and how mistakes can cause cancer and birth defects.

Mapped the universe — and the dark side of the moon

Credit for producing 3D maps of the sky — and 400 million celestial objects — goes to National Lab scientists, who also developed a camera that mapped the entire surface of the moon.

Shed light on photosynthesis 

Ever wonder how plants turn sunlight into energy? National Lab scientists determined the path of carbon through photosynthesis, and today use X-ray laser technology to reveal how each step in the process is triggered by a single particle of light. This work helps scientists explore new ways to get sustainable energy from the sun.

Solved cultural mysteries 

The works of ancient mathematician Archimedes — written over by medieval monks and lost for millennia — were revealed to modern eyes thanks to the X-ray vision and light-source technology at National Labs. These studies also have revealed secrets of masterpiece paintings, ancient Greek vases and other priceless cultural artifacts.

Revolutionized accelerators 

A National Lab built and operated the first large-scale accelerator based on superconducting radio frequency technology. This more efficient technology now powers research machines for exploring the heart of matter, examining the properties of materials and providing unique information about the building blocks of life.

Los Alamos 1200px-Los_Alamos_aerial_viewRevealed the secrets of matter 

Protons and neutrons were once thought to be indivisible. National Lab scientists discovered that protons and neutrons were made of even smaller parts, called quarks. Over time, experimenters identified six kinds of quarks, three types of neutrinos and the Higgs particle, changing our view of how the material world works.

Confirmed the Big Bang and discovered dark energy

National Lab detectors aboard a NASA satellite revealed the birth of galaxies in the echoes of the Big Bang. Dark energy — the mysterious something that makes up three-quarters of the universe and causes it to expand at an accelerating rate — also was discovered by National Lab cosmologists.

Discovered 22 elements 

The periodic table would be smaller without the National Labs. To date the National Labs have discovered: technetium, promethium, astatine, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, lawrencium, rutherfordium, dubnium, seaborgium, flerovium, moscovium, livermorium, tennessine and oganesson.

Made refrigerators cool 

Next-generation refrigerators will likely put the freeze on harmful chemical coolants in favor of an environmentally friendly alloy, thanks to National Lab scientists.

Got the lead out 

Removing hazardous lead-based solders from the environment is a reality thanks to a lead-free alloy of tin-silver-copper developed at a National Lab. The lead-free solder has been licensed by more than 60 companies worldwide.

Invented a magic sponge to clean up oil spills

National Lab scientists used a nano technique to invent a new sponge that can absorb 90 times its own weight in oil from water. It can be wrung out to collect the oil and reused hundreds of times — and it can collect oil that has sunk below the surface, something previous technology couldn’t do.

Added the punch to additive manufacturing 

High-pressure gas atomization processing pioneered at a National Lab made possible the production of titanium and other metal-alloy powders used in additive manufacturing and powder metallurgy.

 

Created inexpensive catalysts 

Low-cost catalysts are key to efficient biomass refining. National Lab scientists created catalysts that are inexpensive and stable for biomass conversion. ANL_H_White

Created high-tech coatings to reduce friction 

National Lab scientists created ways to reduce wear and tear in machines from table fans to car engines all the way up to giant wind turbines, such as a diamond-like film that rebuilds itself as soon as it begins to break down — so that engines last longer and need fewer oil additives.

Put the jolt in the Volt 

Chevy’s Volt would not be able to cruise on battery power were it not for the advanced cathode technology that emerged from a National Lab. The same technology is sparking a revival of America’s battery manufacturing industry.

Cemented a new material 

National Lab scientists have developed a novel and versatile material that blends properties of ceramic and concrete to form a non-porous product that can do everything from seal oil w ells to insulate walls with extra fire protection. It even sets in cold weather.

Pioneered efficient power lines 

New kinds of power lines made from superconductors can carry electric current with no energy loss. Now deployed by National Lab scientists, these prototypes could usher in a new era of ultra-efficient power transmission.

Made early universe quark soup 

National Lab scientists used a particle collider to recreate the primordial soup of subatomic building blocks that last existed shortly after the Big Bang. The research is expanding scientists’ understanding of matter at extreme temperatures and densities.

Oak Ridge NL DWKcxYZXkAEY9NVLevitated trains with magnets 

Say goodbye to traffic jams. National Lab scientists developed a technology that uses the attractive and repulsive forces of magnets to levitate and propel trains. Maglev trains now ferry commuters in Japan and China and will be operational in other countries soon.

Developed efficient burners 

National Lab researchers developed cleaner-combusting oil burners, saving consumers more than $25 billion in fuel costs and keeping more than 160 megatons of carbon dioxide out of Earth’s atmosphere.

Improved automotive steel

A company with National Lab roots is pioneering a metal that weighs significantly less than regular steel, retains steel’s strength and malleability and can be fabricated without major modifications to the automotive manufacturing infrastructure.

Looked inside weapons

National Lab researchers created a device that could identify the contents of suspicious chemical and explosive munitions and containers, while minimizing risk to the people involved. The technology, which quickly identifies the chemical makeup of weapons, has been used to verify treaties around the world.

Pioneered nuclear safety modeling 

National Lab scientists began developing the Reactor Excursion and Leak Analysis Program (RELAP) to model nuclear reactor coolant and core behavior. Today, RELAP is used throughout the world and has been licensed for both nuclear and non-nuclear applications, including modeling of jet aircraft engines and fossil-fuel power plant components.

Identified good and bad cholesterol 

The battle against heart disease received a boost in the 1960s when National Lab research unveiled the good and bad sides of cholesterol. Today, diagnostic tests that detect both types of cholesterol save lives.

Unmasked a dinosaur killer 

Natural history’s greatest whodunit was solved in 1980 when a team of National Lab scientists pinned the dinosaurs’ abrupt extinction on an asteroid collision with Earth. Case closed.

Pitted cool roofs against carbon dioxide 

National Lab researchers and policy experts led the way in analyzing and implementing cool roofing materials, which reflect sunlight, lower surface temperature and slash cooling costs.

Squeezed fuel from microbes 

In a milestone that brings advanced biofuels one step closer to America’s gas tanks, National Lab scientists helped develop a microbe that can produce fuel directly from biomass.

Tamed hydrogen with nanoparticles 

To replace gasoline, hydrogen must be safely stored and easy to use, which has proven elusive. National Lab researchers have now designed a new pliable material using nanoparticles that can rapidly absorb and release hydrogen without ill effects, a major step in making fuel-cell powered cars a commercial reality.

Exposed the risk 

You can sleep easier thanks to National Lab research that quantified the health risk posed by radon gas in parts of the country. Subsequent EPA standards, coupled with radon detection and mitigation measures pioneered by a National Lab research team, prevent the naturally occurring gas from seeping into basements, saving thousands of lives every year.

Created a pocket-sized DNA sampler 

A tool that identifies the microbes in air, water and soil samples is fast becoming a workhorse in public health, medical and environmental cleanup projects. Developed by National Lab scientists, the credit-card-sized device pinpoints diseases that kill coral reefs and catalogs airborne bacteria over U.S. cities. It also was used to quickly categorize the oil-eating bacteria in the plumes of the Deepwater Horizon spill.

Fabricated the smallest machines

The world’s smallest synthetic motors — as well as radios, scales and switches that are 100,000 times finer than a human hair — were engineered at a National Lab. These and other forays into nanotechnology could lead to life-saving pharmaceuticals and more powerful computers.

Preserved the sounds of yesteryear 

National Lab scientists engineered a high-tech way to digitally reconstruct aging

sound recordings that are too fragile to play, such as Edison wax cylinders from the late 1800s. Archivists estimate that many of the millions of recordings in the world’s sound archives, including the U.S. Library of Congress, could benefit from the technology.

Exposed explosives 

A credit-card sized detector developed by National Lab scientists can screen for more than 30 kinds of explosives in just minutes. The detector, called ELITE, requires no po wer and is widely used by the military, law enforcement and security personnel.

Toughened airplanes 

A National Lab and industry technique for strengthening metal by bombarding it with laser pulses has saved the aircraft industry hundreds of millions of dollars in engine and aircraft maintenance expenses.

Simulated reality 

Trains, planes and automobiles — and thousands of other objects — are safer, stronger and better-designed thanks to computer simulation software, DYNA 3D, developed by National Lab researchers.

Detected the neutrino 

Starting with the Nobel-Prize winning discovery of the neutrino in 1956 by Fred Reines and Clyde Cowan Jr., National Lab researchers have made numerous contributions to neutrino physics and astrophysics.

Discovered gamma ray bursts

Sensors developed at the National Labs and placed aboard Vela satellites were used in the discovery of gamma-ray bursts (GRBs) in 1973. GRBs are extremely energetic explosions from distant galaxies. Scientists believe that most of these bursts consist of a narrow beam of intense radiation released when a rapidly rotating, high-mass star collapses to form a neutron star, a quark star or a black hole.

Created the first 100-Tesla magnetic field 

National Lab scientists achieved a 100.75-Tesla magnetic pulse in March 2012, setting a world record. The pulse was nearly 2 million times more powerful than Earth’s magnetic field. The 100-Tesla multi-shot magnet can be used over and over again without being destroyed by the force of the field it creates, and produces the most powerful non-destructive magnetic field in the world.

Froze smoke for hot uses 

National Labs researchers perfected aerogels, known as frozen smoke. They are one of the lightest solids ever made and have the highest heat resistance of any material tested. They also are fireproof and extraordinarily strong — able to support more than a thousand times their own weight. As a result of their heat resistance, aerogels are outstanding candidates for insulation in buildings, vehicles, filters and appliances.

Invented the cell sorter 

During the 1960s, a National Lab physicist invented a “cell sorter” — a novel device that works much like an ink jet printer, guiding a tiny flow of cell-containing droplets so cells of interest can be deflected for counting and study. Cell sorters are a vital tool for studying the biochemistry behind many diseases, including cancer and AIDS.

Ushered a domestic energy renaissance 

National Lab research jump-started the shale gas revolution by pointing the way to key technologies and methodologies for cost efficient extraction. An estimated $220 million in research and development expenditures on unconventional gas R&D from 1976 to 1992 have resulted in an estimated $100 billion in annual economic activity from shale gas production alone.

Enabled space exploration 

National Labs invented Laser-Induced Breakdown Spectroscopy (LIBS), the backbone of the device that allowed the Curiosity Rover to analyze material from Mars. Lab researchers also found the right combination of materials to make high-efficiency solar cells for spacecraft.

Sharply curtailed power plant air emissions 

National Lab scientists introduced some 20 innovative technologies — such as low nitrogen oxide (NOx) burners, flue gas desulfurization (scrubbers) and fluidized bed combustion — through the Clean Coal Technology Development Program that have deeply penetrated the marketplace, substantially controlled harmful power plant emissions and benefited energy production and air quality.

Made wind power mainstream 

Increasing wind turbine efficiency with high efficiency airfoils has reduced the cost of wind power by more than 80 percent over the last 30 years. Now deployed in wind farms nationwide, these turbines owe their existence to National Lab research.

Engineered smart windows 

National Lab scientists have created highly insulated windows that change color to modulate interior temperatures and lighting. If broadly installed, they could save about 5 percent of the nation’s total energy budget.

Delivered troops safely 

National Lab researchers have developed computer models that effectively manage the complex logistical tasks of deploying troops and equipment to distant destinations.

Channeled chips and hips 

Integrated circuits and artificial hips owe their success to a National Lab discovery that revealed how to change a material by injecting it with charged atoms, called ions. Ion channeling is now standard practice in industry and science.

Made 3D printing bigger and better 

A large-scale additive manufacturing platform developed by a National Lab and an industry partner printed 3D components 10 times larger and 200 times faster than previous processes. So far, the system has produced a 3D-printed sports car, SUV, house, excavator and aviation components.

Purified vaccines

National Lab researchers adapted nuclear separations technology to develop a zonal centrifuge used to purify vaccines, which reduces or eliminates unwanted side effects. Commercial centrifuges based on the invention produce vaccines for millions of people.

Built a better building 

A National Lab has built one of the world’s most energy efficient office buildings. The facility, operating as a living laboratory at a lab site, uses 50 percent less energy than required by commercial codes and only consumes energy produced by renewable power on or near the building.

Improved airport security 

Weapons, explosives, plastic devices and other concealed tools of terrorists are easier to detect thanks to technology developed at a National Lab and now installed in airports worldwide.

Improved grid resiliency 

A National Lab created an advanced battery that can store large amounts of energy from intermittent renewable sources — such as wind and solar — onto the power grid, while also smoothing over temporary disruptions to the grid. Several companies have licensed the technology and offer it as a commercial product.

Solved a diesel dilemma 

A National Lab insight into how catalysts behave paved the way for a new, “lean-burn” diesel engine that met emissions standards and improved fuel efficiency by 25 percent over conventional engines.

Harvested energy from air 

A miniature device — commercialized by private industry after a National Lab breakthrough — generates enough power from small temperature changes to power wireless sensors or radio frequency transmitters at remote sites, such as dams, bridges and pipelines.

Gone grid friendly 

Regulating the energy use of household appliances — especially at peak times — could slash energy demand and avoid blackouts. A National Lab appliance-control device senses grid stress and responds instantly to turn off machines and reduce end-use demand, balancing the system so that the power stays on.

Put the digital in DVDs 

The optical digital recording technology behind music, video and data storage originated at a National Lab nearly 40 years ago.

Locked nuclear waste in glass 

Disposal of U.S. Cold War waste is safer thanks to National Lab scientists who developed and deployed a process to lock it into glass to keep it from leaching into the environment.

Cleaned up anthrax 

Scientists at a National Lab developed a non-toxic foam that neutralizes chemical and biological agents. This foam was used to clean up congressional office buildings and mail rooms exposed to anthrax in 2001.

Removed radiation from Fukushima seawater 

After a tsunami damaged the Fukushima Daiichi nuclear power plant in 2011, massive amounts of seawater cooled the reactor. A molecular sieve engineered by National Lab scientists was used to extract radioactive cesium from tens of millions of gallons of seawater.11

Sped up Ebola detection 

In 2014, researchers from a National Lab modeled the Liberian blood sample transport system and made recommendations to diagnose patients quicker. This minimized the amount of time people were waiting together, reducing the spread of Ebola.

Prevented unauthorized use of a nuclear weapon 

In 1960, National Lab scientists invented coded electromechanical locks for all U.S. nuclear weapons. The switch blocks the arming signal until it receives the proper presidential authorization code.

Launched the LED lighting revolution 

In the 1990s, scientists at a National Lab saw the need for energy-efficient solid-state lighting and worked with industry to develop white LEDs. Today, white LEDs are about 30 percent efficient, with the potential to reach 70 percent to 80 percent efficiency. Fluorescent lighting is about 20 percent efficient and incandescent bulbs are 5 percent.

Mastered the art of artificial photosynthesis 

National Lab scientists engineered and synthesized multi-layer semiconductor structures in devices that directly convert sunlight to chemical energy in hydrogen by splitting water at efficiencies greater than 15 percent. This direct conversion of sunlight to fuels paves the way for use of solar energy in applications beyond the electrical grid.

Advanced fusion technology

From the first fusion test reactor to briefly produce power at the megawatt scale, and the world’s largest and most energetic laser creating extreme conditions mimicking the Big Bang, the interiors of planets and stars and thermonuclear weapons, to the international experiment to generate industrial levels of fusion energy from burning plasmas, fusion science and applications are advancing because of the National Labs.

Made the first molecular movie 

National Lab scientists have used ultrafast X-rays to capture the first molecular movies in quadrillionths-of-a-second frames. These movies detail the intricate structural dances of molecules as they undergo chemical reactions.

DOE imagesThe National Laboratory System: Protecting America Through Science and Technology

For more than 75 years, the Department of Energy’s National Laboratories have solved important problems in science, energy and national security. This expertise keeps our nation at the forefront of science and technology in a rapidly changing world. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and     ensure our nation’s future prosperity.

New fuel cell technology runs on solid carbon


New Fuel Cell Solid Carbon 160820_webAdvancements allow the fuel cell to utilize about three times as much carbon as earlier direct carbon fuel cell (DCFC) designs

DOE/IDAHO NATIONAL LABORATORY

IDAHO FALLS — Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory researchers.

The fuel cell design incorporates innovations in three components: the anode, the electrolyte and the fuel. Together, these advancements allow the fuel cell to utilize about three times as much carbon as earlier direct carbon fuel cell (DCFC) designs.

The fuel cells also operate at lower temperatures and showed higher maximum power densities than earlier DCFCs, according to INL materials engineer Dong Ding. The results appear in this week’s edition of the journal Advanced Materials.

Whereas hydrogen fuel cells (e.g., proton exchange membrane (PEM) and other fuel cells) generate electricity from the chemical reaction between pure hydrogen and oxygen, DCFCs can use any number of carbon-based resources for fuel, including coal, coke, tar, biomass and organic waste.

Because DCFCs make use of readily available fuels, they are potentially more efficient than conventional hydrogen fuel cells. “You can skip the energy-intensive step of producing hydrogen,” Ding said.

But earlier DCFC designs have several drawbacks: They require high temperatures — 700 to 900 degrees Celsius — which makes them less efficient and less durable. Further, as a consequence of those high temperatures, they’re typically constructed of expensive materials that can handle the heat.

Also, early DCFC designs aren’t able to effectively utilize the carbon fuel.

Ding and his colleagues addressed these challenges by designing a true direct carbon fuel cell that’s capable of operating at lower temperatures — below 600 degrees Celsius. The fuel cell makes use of solid carbon, which is finely ground and injected via an airstream into the cell. The researchers tackled the need for high temperatures by developing an electrolyte using highly conductive materials — doped cerium oxide and carbonate. These materials maintain their performance under lower temperatures.

Next, they increased carbon utilization by developing a 3-D ceramic textile anode design that interlaces bundles of fibers together like a piece of cloth. The fibers themselves are hollow and porous. All of these features combine to maximize the amount of surface area that’s available for a chemical reaction with the carbon fuel.

Finally, the researchers developed a composite fuel made from solid carbon and carbonate. “At the operating temperature, that composite is fluidlike,” Ding said. “It can easily flow into the interface.”

The molten carbonate carries the solid carbon into the hollow fibers and the pinholes of the anode, increasing the power density of the fuel cell.

The resulting fuel cell looks like a green, ceramic watch battery that’s about as thick as a piece of construction paper. A larger square is 10 centimeters on each side. The fuel cells can be stacked on top of one another depending on the application. The Advanced Materials journal posted a video abstract here: https://youtu.be/M_wOsvze2qI.

The technology has the potential for improved utilization of carbon fuels, such as coal and biomass, because direct carbon fuel cells produce carbon dioxide without the mixture of other gases and particulates found in smoke from coal-fired power plants, for example. This makes it easier to implement carbon capture technologies, Ding said.

The advanced DCFC design has already attracted notice from industry. Ding and his colleagues are partnering with Salt Lake City-based Storagenergy, Inc., to apply for a Department of Energy Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) Funding Opportunity. The results will be announced in February 2018. A Canadian energy-related company has also shown interest in these DCFC technologies.

###

Idaho National Laboratory is one of the U.S. Department of Energy’s national laboratories. The laboratory performs work in each of DOE’s strategic goal areas: energy, national security, science and environment. INL is the nation’s leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at http://www.inl.gov. Follow @INL on Twitter or visit our Facebook page at http://www.facebook.com/IdahoNationalLaboratory.

Brookhaven National Lab: The rapid self-assembly of nanoscale patterns for next-generation materials: From Electronics and Computing to Energy and Medicine


Brookhaven II 10-nanoparticleThe ability to quickly generate ultra-small, well-ordered nanopatterns over large areas on material surfaces is critical to the fabrication of next-generation technologies in many industries, from electronics and computing to energy and medicine. For example, patterned media, in which data are stored in periodic arrays of magnetic pillars or bars, could significantly improve the storage density of hard disk drives.

Scientists can coax thin films of self-assembling materials called block copolymers—chains of chemically distinct macromolecules (polymer “blocks”) linked together—into desired nanoscale patterns through heating (annealing) them on a substrate. However, defective structures that deviate from the regular pattern emerge early on during self-assembly.

Brookhaven6-acceleratingMaterials scientist Gregory Doerk preparing a sample for electron microscopy at Brookhaven Lab’s Center for Functional Nanomaterials. The scanning electron microscope image on the computer screen shows a cross-sectional view of line …more

The presence of these defects inhibits the use of block copolymers in the nanopatterning of technologies that require a nearly perfect ordering—such as magnetic media, computer chips, antireflective surfaces, and medical diagnostic devices. With continued annealing, the block copolymer patterns can reconfigure to remove the imperfections, but this process is exceedingly slow. The polymer blocks do not readily mix with each other, so they must overcome an extremely large energy barrier to reconfigure.

Adding small things with a big impact

Now, scientists from the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—have come up with a way to massively speed up the ordering process. They blended a line-forming block copolymer with significantly smaller polymer chains made of only one type of molecule (homopolymers) from each of the two constituent blocks. The electron microscopy images they took after annealing the films for only a few minutes show that the addition of these two smaller homopolymers dramatically increases the size of well-ordered line-pattern areas, or “grains.”

Accelerating the self-assembly of nanoscale patterns for next-generation materials
As shown in the illustration, a block copolymer consists of different molecule chains (red and blue) linked together; a homopolymer chain consists of identical molecules (red or blue). In this study, scientists blended a block copolymer …more

“Without the homopolymers, the same block copolymer cannot produce grains with these sizes,” said CFN materials scientist Gregory Doerk, who led the work, which was published online in an ACS Nano paper on December 1. “Blending in homopolymers that are less than one-tenth of the size of the block copolymer greatly accelerates the ordering process. In the resulting line patterns, there is a constant spacing between each of the lines, and the same directions of line-pattern orientations—for example, vertical or horizontal—persist over longer distances.”

Doerk and coauthor Kevin Yager, leader of the Electronic Nanomaterials Group at CFN, used image analysis software to calculate the grain size and repeat spacing of the line patterns.

While blending different concentrations of homopolymer to determine how much was needed to achieve the accelerated ordering, they discovered that the ordering sped up as more homopolymer was added. But too much homopolymer actually resulted in disordered patterns.

Accelerating the self-assembly of nanoscale patterns for next-generation materials
The scanning electron microscope images taken after thermal annealing at around 480 degrees Fahrenheit for five minutes show that the block copolymer/homopolymer blend generates a line pattern with a significantly higher degree of …more

“The homopolymers accelerate the self-assembly process because they are small enough to uniformly distribute throughout their respective polymer blocks,” said Doerk. “Their presence weakens the interface between the two blocks, lowering the energy barrier associated with the block copolymer reconfiguring to remove the defects. But if the interface is weakened too much through the addition of too much homopolymer, then the blocks will mix together, resulting in a completely disordered phase.”

Guiding the self-assembly of useful nanopatterns in minutes

To demonstrate how the rapid ordering in the blended system could accelerate the self-assembly of well-aligned nanopatterns over large areas, Doerk and Yager used line-pattern templates they had previously prepared through photolithography. Used to build almost all of today’s digital devices, photolithography involves projecting light through a mask (a plate containing the desired pattern) that is positioned over a wafer (usually made of silicon) coated with a light-sensitive material. This template can then be used to direct the self-assembly of block copolymers, which fill in the spaces between the template guides. In this case, after only two minutes of annealing, the polymer blend self-assembles into lines that are aligned across these gaps. However, after the same annealing time, the unblended block copolymer self-assembles into a mostly unaligned pattern with many defects between the gaps.

Accelerating the self-assembly of nanoscale patterns for next-generation materials
The unblended block copolymer aligns well close to the template guides (“sidewalls”), but this alignment degrades further in, as evident by the appearance of the fingerprint-like pattern in the center of the scanning electron microscope …more

“The width of the gaps is more than 80 times the repeat spacing, so the fact that we got this degree of alignment with our polymer blend is really exciting because it means we can use templates with huge gaps, created with very low-resolution lithography,” said Doerk. “Typically, expensive high-resolution lithography equipment is needed to align block copolymer patterns over this large of an area.”

For these patterns to be useful for many nanopatterning applications, they often need to be transferred to other more robust materials that can withstand harsh manufacturing processes—for example, etching, which removes layers from silicon wafer surfaces to create integrated circuits or make the surfaces antireflective. In this study, the scientists converted the nanopatterns into a metal-oxide replica. Through chemical etching, they then transferred the replica  into a silicon dioxide layer on a silicon wafer, achieving clearly defined line patterns.

Doerk suspects that blending homopolymers with other  will similarly yield accelerated assembly, and he is interested in studying blended polymers that self-assemble into more complicated patterns. The x-ray scattering capabilities at the National Synchrotron Light Source II—another DOE Office of Science User Facility at Brookhaven—could provide the structural information needed to conduct such studies.

Accelerating the self-assembly of nanoscale patterns for next-generation materials
A scanning electron microscope image showing a cross-sectional view of the line patterns transferred into a silicon dioxide layer. Credit: Brookhaven National Laboratory

“We have introduced a very simple and easily controlled way of immensely accelerating self-assembly,” concluded Doerk. “Our approach should substantially reduce the number of defects, helping to meet the demands of the semiconductor industry. At CFN, it opens up possibilities for us to use block copolymer self-assembly to make some of the new functional materials that we envision.”

 Explore further: Self-assembling polymers provide thin nanowire template

More information: Gregory S. Doerk et al. Rapid Ordering in “Wet Brush” Block Copolymer/Homopolymer Ternary Blends, ACS Nano (2017). DOI: 10.1021/acsnano.7b06154