Why Do Most Science Startups Fail? Here’s Why …

Science Start ups fail why getty_629009118_355815

“We need to get a lot better at bridging that gap between discovery and commercialization”

G. Satell – Inc. Magazine

It seems like every day we see or hear about a breakthrough new discovery that will change everything. Some, like perovskites in solar cells and CRISPR are improvements on existing technologies. Others, like quantum computing and graphene promise to open up new horizons encompassing many applications. Still others promise breakthroughs in Exciting Battery Technology Breakthrough News — Is Any Of It Real? or Beyond lithium — the search for a better battery

Nevertheless, we are still waiting for a true market impact. Quantum computing and graphene have been around for decades and still haven’t hit on their “killer app.” Perovskite solar cells and CRISPR are newer, but haven’t really impacted their industries yet. And those are just the most prominent examples.

bright_idea_1_400x400The problem isn’t necessarily with the discoveries themselves, many of which are truly path-breaking, but that there’s a fundamental difference between discovering an important new phenomenon in the lab and creating value in the marketplace.

“We need to get a lot better at bridging that gap. To do so, we need to create a new innovation ecosystem for commercializing science.”

The Valley Of Death And The Human Problem

The gap between discovery and commercialization is so notorious and fraught with danger that it’s been unaffectionately called the “Valley of Death.” Part of the problem is that you can’t really commercialize a discovery, you can only commercialize a product and those are two very different things.

The truth is that innovation is never a single event, but a process of discovery, engineering and transformation. After something like graphene is discovered in the lab, it needs to be engineered into a useful product and then it has to gain adoption by winning customers in the marketplace. Those three things almost never happen in the same place.

So to bring an important discovery to market, you first need to identify a real world problem it can solve and connect to engineers who can transform it into a viable product or service. Then you need to find customers who are willing to drop whatever else they’ve been doing and adopt it on a large scale. That takes time, usually about 30 years.

The reason it takes so long is that there is a long list of problems to solve. To create a successful business based on a scientific discovery, you need to get scientists to collaborate effectively with engineers and a host of specialists in other areas, such as manufacturing, distribution and marketing. Those aren’t just technology problems, those are human problems. Being able to collaborate effectively is often the most important competitive advantage.

Wrong Industry, Wrong Application

One of the most effective programs for helping to bring discoveries out of the lab is I-Corps. First established by the National Science Foundation (NSF) to help recipients of SBIR grants identify business models for scientific discoveries, it has been such an extraordinary success that the US Congress has mandated its expansion across the federal government.

Based on Steve Blank’s lean startup methodology, the program aims to transform scientists into entrepreneurs. It begins with a presentation session, in which each team explains the nature of their discovery and its commercial potential. It’s exciting stuff, pathbreaking science with real potential to truly change the world.

The thing is, they invariably get it wrong. Despite their years of work to discover something of significance and their further efforts to apply and receive commercialization grants from the federal government, they fail to come up with a viable application in an industry that wants what they have to offer. professor-with-a-bright-idea-vector-937691

Ironically, much of the success of the I-Corps program is due to these early sessions. Once they realize that they are on the wrong track, they embark on a crash course of customer discovery, interviewing dozens — and sometimes hundreds — of customers in search of a business model that actually has a chance of succeeding.

What’s startling about the program is that, without it, scientists with important discoveries often wasted years trying to make a business work that never really had a chance in the first place.

The Silicon Valley Myth

Much of the success of Silicon Valley has been based on venture-funded entrepreneurship. Startups with an idea to change the world create an early stage version of the product they want to launch, show it to investors and get funding to bring it to market. Just about every significant tech company was started this way.

Yet most of the success of Silicon Valley has been based on companies that sell either software or consumer gadgets, which are relatively cheap and easy to rapidly prototype. Many scientific startups, however, do not fit into this category. Often, they need millions of dollars to build a prototype and then have to sell to industrial companies with long lead times.

start up imagesThe myth of Silicon Valley is that venture-funded entrepreneurship is a generalizable model that can be applied to every type of business. It is not. In fact, it is a specific model that was conceived in a specific place at a specific time to fund mature technologies for specific markets. It’s not a solution that fits every problem.

The truth is that venture funds are very adept with assessing market risk, but not so good at taking on technology risk, especially in hard sciences. That simply isn’t what they were set up to do.

We Need A New Innovation Ecosystem For Science Entrepreneurship

In 1945, Vannevar Bush delivered a report, Science, The Endless Frontier, to President Truman, in which he made the persuasive argument that expanding the nation’s scientific capacity will expand its economic capacity and well being. His call led, ultimately, to building America’s scientific infrastructure, including programs like the NSF and the National Institutes of Health (NIH).

It was Bush’s vision that made America a technological superpower. Grants from federal agencies to scientists enabled them to discover new knowledge. Then established businesses and, later, venture backed entrepreneurs would then take those discoveries to bring new products and services to market.

Look at any industry today and its most important technologies were largely shaped by investment from the federal government. Today, however, the challenges are evolving. We’re entering a new era of innovation in which technologies like genomics, nanotechnology and robotics are going to reshape traditional industries like energy, healthcare and manufacturing.

That’s exciting, but also poses new challenges, because these technologies are ill-suited to the Silicon Valley model of venture-funded entrepreneurship and need help to them get past the Valley of Death. So we need to build a new innovation ecosystem on top of the scientific architecture Bush created for the post-war world.

There have been encouraging signs. New programs like I-Corps, the Manufacturing InstitutesCyclotron Road and Chain Reaction are beginning to help fill the gap.

Still much more needs to be done, especially at the state and local level to help build regional hubs for specific industries, if we are going to be nearly as successful in the 21st century as were were in the 20th.



The physics of Light and Sound: Examining the Quantum Nature of Nanostructures – Putting Quantum Scientists in the Driver’s Seat

Quantum Scientists 180327141712_1_540x360
An electron beam (teal) hits a nanodiamond, exciting plasmons and vibrations in the nanodiamond that interact with the sample’s nitrogen vacancy center defects. Correlated (yellow) photons are emitted from the nanodiamond, while uncorrelated (yellow) photons are emitted by a nearby diamond excited by surface plasmons (red).
Credit: Raphael Pooser/Oak Ridge National Laboratory, US Department of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory are conducting fundamental physics research that will lead to more control over mercurial quantum systems and materials. Their studies will enable advancements in quantum computing, sensing, simulation, and materials development.

The researchers’ experimental results were recently published in Physical Review B Rapid Communication and Optics Letters.

Quantum information is considered fragile because it can be lost when the system in which it is encoded interacts with its environment, a process called dissipation. Scientists with ORNL’s Computing and Computational Sciences and Physical Sciences directorates and Vanderbilt University have collaborated to develop methods that will help them control — or drive — the “leaky,” dissipative behavior inherent in quantum systems.

“Our goal is to develop experimental platforms that allow us to probe and control quantum coherent dynamics in materials,” said Benjamin Lawrie, a research scientist in the Quantum Sensing Team in ORNL’s Quantum Information Science Group. “To do that, you often have to be able to understand what’s going on at the nanoscale.”

Bringing perspectives from quantum information science, nanoscience and electron microscopy, the scientists exploit existing knowledge of matter and the physics of light and sound to examine the quantum nature of nanostructures — structures that measure about one-billionth of a meter.

One project focused on driving nitrogen vacancy center defects in nanodiamonds with plasmons. The naturally occurring defects are created when a nitrogen atom forms in place of the typical carbon atom, adjacent to an atomless vacancy. The defects are being investigated for use in tests of entanglement, a state that will allow substantially more information to be encoded in a quantum system than can be accomplished with classical computing.

Electrons generate an electric field. When an electron beam is applied to a material, the material’s electrons are spurred to motion — a state called excitation — creating a magnetic field that can then be detected as light. Working with plasmons, electron excitations that couple easily with light, allows scientists to examine electromagnetic fields at the nanoscale.

Matthew Feldman, a Vanderbilt University graduate student conducting doctoral research at ORNL through the National Defense Science and Engineering Graduate Fellowship program and a member of the Quantum Sensing Team, used a high-energy electron beam to excite nitrogen vacancy centers in diamond nanoparticles, causing them to emit light. He then used a cathodoluminescence microscope owned by ORNL’s Materials Science and Technology Division, which measures the visible-spectrum luminescence in irradiated materials, to collect the emitted photons and characterize high-speed interactions among nitrogen vacancy centers, plasmons and vibrations within the nanodiamond.

In other research, Jordan Hachtel, a postdoctoral fellow with ORNL’s Center for Nanophase Materials Sciences, used the cathodoluminescence microscope to excite plasmons in gold nanospirals. He explored how the geometry of the spirals could be harnessed to focus energy in nanoscale systems. Andy Lupini served the project as a microscopy consultant, providing expertise regarding equipment optimization and troubleshooting.

Precise control over nanoscale energy transfer is required to enable long-lived entanglement in a model explored by Eugene Dumitrescu, a research scientist in ORNL’s Quantum Information Science Group. Dumitrescu’s research, published in Physical Review A in late 2017, showed that the photon statistics Feldman collected could be used in calculations to show entanglement.

“This work advances our knowledge of how to control light-matter interactions, providing experimental proof of a phenomenon that had previously been described by simulations,” Lawrie said.

Closed systems, in which quantum information can be kept away from its surroundings, theoretically can prevent dissipation, but real-world quantum systems are open to numerous influences that result in information leakage.

“The elephant in the room in discussions of quantum systems is decoherence,” Feldman said. “If we can model an environment to influence how a quantum system works, we can enable entanglement.”

Dumitrescu agreed. “We know quantum systems will be leaky. One remedy is to drive them,” he said. “The driving mechanisms we’re exploring cancel out the effects of dissipation.”

Dumitrescu used the analogy of a musical instrument to explain the researchers’ attempts to control quantum systems. “If you pluck a violin string, you get the sound, but it begins to dissipate through the environment, the air,” he said. “But if you slowly draw the bow across the string, you get a more stable, longer-lasting sound. You’ve brought control to the system.”

Feldman thinks these are fascinating times for quantum physicists because the field of quantum computing is at the same phase classical computing was in the mid-20th century. “What excites me most is how current research could change our understanding of quantum systems and materials,” he said.

Story Source:

Materials provided by DOE/Oak Ridge National LaboratoryNote: Content may be edited for style and length.

Journal Reference:

  1. Matthew A. Feldman, Eugene F. Dumitrescu, Denzel Bridges, Matthew F. Chisholm, Roderick B. Davidson, Philip G. Evans, Jordan A. Hachtel, Anming Hu, Raphael C. Pooser, Richard F. Haglund, Benjamin J. Lawrie. Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescencePhysical Review B, 2018; 97 (8) DOI: 10.1103/PhysRevB.97.081404

America’s National Laboratories – 75 Breakthroughs We’ve Made that You May Not have Read About


America’s National Laboratories have been changing and improving the lives of millions of people for more than 75 years. Born at a time when the world faced a dire threat, the laboratories came together to advance science, safeguard the nation and protect our freedoms for generations to come. This network of Department of Energy Laboratories has grown into 17 facilities, working together as engines of prosperity and invention. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe. Rooted in the need to serve the public good and support the global community, the National Laboratories have put an American stamp on the last century of science. With equal ingenuity and tenacity, they are now engaged in innovating the future.

National Labs Map downloadDownload and read 75 Breakthroughs by America’s National Laboratories.

75 Breakthroughs

At America’s National Laboratories, we’ve …

Advanced supercomputing

The National Labs operate some of the most significant high performance computing resources available, including 32 of the 500 fastest supercomputers in the world. These systems, working at quadrillions of operations per second, model and simulate complex, dynamic systems – such as the nuclear deterrent – that would be too expensive, impractical or impossible to physically demonstrate. Supercomputers are changing the way scientists explore the evolution of our universe, climate change, biological systems, weather forecasting and even renewable energy.

Decoded DNA 

In 1990, the National Labs joined with the National Institutes of Health and other laboratories to kick off the Human Genome Project, an international collaboration to identify and map all of the genes of the human genome.

Brought the web to the United States 

National Lab scientists, seeking to share particle physics information, were first to install a web server in North America, kick-starting the development of the worldwide web as we know it.

Put eyes in the sky 

Vela satellites, first launched in 1963 to detect potential nuclear detonations, transformed the nascent U.S. space program. The satellites featured optical sensors and data processing, logic and power subsystems designed and created by National Labs.

Revolutionized medical diagnostics and treatment 

Researchers at the National Labs helped to develop the field of nuclear medicine, producing radioisotopes to diagnose and treat disease, designing imaging technology to detect cancer and developing software to target tumors while sparing healthy tissue.

Powered NASA spacecraft 

The National Labs built the enclosure for the radioisotope thermoelectric generators that fuel crafts such as Cassini and have begun producing plutonium-238 for future NASA missions.

Harnessed the power of the atom 

National Lab scientists and engineers have led the world in developing safe, efficient and emissions-free nuclear power. Starting with the first nuclear reactor to generate electricity, National Labs have been the innovation engine behind the peaceful use of nuclear energy. Today’s labs are supporting the next generation of nuclear power that will be available for the nation and world.

Brought safe water to millions 

Removing arsenic from drinking water is a global priority. A long-lasting particle engineered at a National Lab can now do exactly that, making contaminated water safe to drink. Another technology developed at a National Lab uses ultraviolet light to kill water-borne bacteria that cause dysentery, thus reducing child mortality in the developing world.

Filled the Protein Data Bank 

National Lab X-ray facilities have contributed a large portion of more than 100,000 protein structures in the Protein Data Bank. A protein’s structure reveals how it functions, helping scientists understand how living things work and develop treatments for disease. Almost all new medications that hit the market start with these data bank structures.

Invented new materials 

National Labs provide the theory, tools and techniques that offer industry revolutionary materials such as strong, lighter-weight metals and alloys that save fuel and maintenance costs and enable cleaner, more efficient engines.

Found life’s mystery messenger 

National Lab scientists discovered how genetic instructions are carried to the cell’s protein manufacturing center, where all of life’s processes begin. Subsequent light source research on the genetic courier, called messenger RNA, has revealed how the information is transcribed and how mistakes can cause cancer and birth defects.

Mapped the universe — and the dark side of the moon

Credit for producing 3D maps of the sky — and 400 million celestial objects — goes to National Lab scientists, who also developed a camera that mapped the entire surface of the moon.

Shed light on photosynthesis 

Ever wonder how plants turn sunlight into energy? National Lab scientists determined the path of carbon through photosynthesis, and today use X-ray laser technology to reveal how each step in the process is triggered by a single particle of light. This work helps scientists explore new ways to get sustainable energy from the sun.

Solved cultural mysteries 

The works of ancient mathematician Archimedes — written over by medieval monks and lost for millennia — were revealed to modern eyes thanks to the X-ray vision and light-source technology at National Labs. These studies also have revealed secrets of masterpiece paintings, ancient Greek vases and other priceless cultural artifacts.

Revolutionized accelerators 

A National Lab built and operated the first large-scale accelerator based on superconducting radio frequency technology. This more efficient technology now powers research machines for exploring the heart of matter, examining the properties of materials and providing unique information about the building blocks of life.

Los Alamos 1200px-Los_Alamos_aerial_viewRevealed the secrets of matter 

Protons and neutrons were once thought to be indivisible. National Lab scientists discovered that protons and neutrons were made of even smaller parts, called quarks. Over time, experimenters identified six kinds of quarks, three types of neutrinos and the Higgs particle, changing our view of how the material world works.

Confirmed the Big Bang and discovered dark energy

National Lab detectors aboard a NASA satellite revealed the birth of galaxies in the echoes of the Big Bang. Dark energy — the mysterious something that makes up three-quarters of the universe and causes it to expand at an accelerating rate — also was discovered by National Lab cosmologists.

Discovered 22 elements 

The periodic table would be smaller without the National Labs. To date the National Labs have discovered: technetium, promethium, astatine, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, lawrencium, rutherfordium, dubnium, seaborgium, flerovium, moscovium, livermorium, tennessine and oganesson.

Made refrigerators cool 

Next-generation refrigerators will likely put the freeze on harmful chemical coolants in favor of an environmentally friendly alloy, thanks to National Lab scientists.

Got the lead out 

Removing hazardous lead-based solders from the environment is a reality thanks to a lead-free alloy of tin-silver-copper developed at a National Lab. The lead-free solder has been licensed by more than 60 companies worldwide.

Invented a magic sponge to clean up oil spills

National Lab scientists used a nano technique to invent a new sponge that can absorb 90 times its own weight in oil from water. It can be wrung out to collect the oil and reused hundreds of times — and it can collect oil that has sunk below the surface, something previous technology couldn’t do.

Added the punch to additive manufacturing 

High-pressure gas atomization processing pioneered at a National Lab made possible the production of titanium and other metal-alloy powders used in additive manufacturing and powder metallurgy.


Created inexpensive catalysts 

Low-cost catalysts are key to efficient biomass refining. National Lab scientists created catalysts that are inexpensive and stable for biomass conversion. ANL_H_White

Created high-tech coatings to reduce friction 

National Lab scientists created ways to reduce wear and tear in machines from table fans to car engines all the way up to giant wind turbines, such as a diamond-like film that rebuilds itself as soon as it begins to break down — so that engines last longer and need fewer oil additives.

Put the jolt in the Volt 

Chevy’s Volt would not be able to cruise on battery power were it not for the advanced cathode technology that emerged from a National Lab. The same technology is sparking a revival of America’s battery manufacturing industry.

Cemented a new material 

National Lab scientists have developed a novel and versatile material that blends properties of ceramic and concrete to form a non-porous product that can do everything from seal oil w ells to insulate walls with extra fire protection. It even sets in cold weather.

Pioneered efficient power lines 

New kinds of power lines made from superconductors can carry electric current with no energy loss. Now deployed by National Lab scientists, these prototypes could usher in a new era of ultra-efficient power transmission.

Made early universe quark soup 

National Lab scientists used a particle collider to recreate the primordial soup of subatomic building blocks that last existed shortly after the Big Bang. The research is expanding scientists’ understanding of matter at extreme temperatures and densities.

Oak Ridge NL DWKcxYZXkAEY9NVLevitated trains with magnets 

Say goodbye to traffic jams. National Lab scientists developed a technology that uses the attractive and repulsive forces of magnets to levitate and propel trains. Maglev trains now ferry commuters in Japan and China and will be operational in other countries soon.

Developed efficient burners 

National Lab researchers developed cleaner-combusting oil burners, saving consumers more than $25 billion in fuel costs and keeping more than 160 megatons of carbon dioxide out of Earth’s atmosphere.

Improved automotive steel

A company with National Lab roots is pioneering a metal that weighs significantly less than regular steel, retains steel’s strength and malleability and can be fabricated without major modifications to the automotive manufacturing infrastructure.

Looked inside weapons

National Lab researchers created a device that could identify the contents of suspicious chemical and explosive munitions and containers, while minimizing risk to the people involved. The technology, which quickly identifies the chemical makeup of weapons, has been used to verify treaties around the world.

Pioneered nuclear safety modeling 

National Lab scientists began developing the Reactor Excursion and Leak Analysis Program (RELAP) to model nuclear reactor coolant and core behavior. Today, RELAP is used throughout the world and has been licensed for both nuclear and non-nuclear applications, including modeling of jet aircraft engines and fossil-fuel power plant components.

Identified good and bad cholesterol 

The battle against heart disease received a boost in the 1960s when National Lab research unveiled the good and bad sides of cholesterol. Today, diagnostic tests that detect both types of cholesterol save lives.

Unmasked a dinosaur killer 

Natural history’s greatest whodunit was solved in 1980 when a team of National Lab scientists pinned the dinosaurs’ abrupt extinction on an asteroid collision with Earth. Case closed.

Pitted cool roofs against carbon dioxide 

National Lab researchers and policy experts led the way in analyzing and implementing cool roofing materials, which reflect sunlight, lower surface temperature and slash cooling costs.

Squeezed fuel from microbes 

In a milestone that brings advanced biofuels one step closer to America’s gas tanks, National Lab scientists helped develop a microbe that can produce fuel directly from biomass.

Tamed hydrogen with nanoparticles 

To replace gasoline, hydrogen must be safely stored and easy to use, which has proven elusive. National Lab researchers have now designed a new pliable material using nanoparticles that can rapidly absorb and release hydrogen without ill effects, a major step in making fuel-cell powered cars a commercial reality.

Exposed the risk 

You can sleep easier thanks to National Lab research that quantified the health risk posed by radon gas in parts of the country. Subsequent EPA standards, coupled with radon detection and mitigation measures pioneered by a National Lab research team, prevent the naturally occurring gas from seeping into basements, saving thousands of lives every year.

Created a pocket-sized DNA sampler 

A tool that identifies the microbes in air, water and soil samples is fast becoming a workhorse in public health, medical and environmental cleanup projects. Developed by National Lab scientists, the credit-card-sized device pinpoints diseases that kill coral reefs and catalogs airborne bacteria over U.S. cities. It also was used to quickly categorize the oil-eating bacteria in the plumes of the Deepwater Horizon spill.

Fabricated the smallest machines

The world’s smallest synthetic motors — as well as radios, scales and switches that are 100,000 times finer than a human hair — were engineered at a National Lab. These and other forays into nanotechnology could lead to life-saving pharmaceuticals and more powerful computers.

Preserved the sounds of yesteryear 

National Lab scientists engineered a high-tech way to digitally reconstruct aging

sound recordings that are too fragile to play, such as Edison wax cylinders from the late 1800s. Archivists estimate that many of the millions of recordings in the world’s sound archives, including the U.S. Library of Congress, could benefit from the technology.

Exposed explosives 

A credit-card sized detector developed by National Lab scientists can screen for more than 30 kinds of explosives in just minutes. The detector, called ELITE, requires no po wer and is widely used by the military, law enforcement and security personnel.

Toughened airplanes 

A National Lab and industry technique for strengthening metal by bombarding it with laser pulses has saved the aircraft industry hundreds of millions of dollars in engine and aircraft maintenance expenses.

Simulated reality 

Trains, planes and automobiles — and thousands of other objects — are safer, stronger and better-designed thanks to computer simulation software, DYNA 3D, developed by National Lab researchers.

Detected the neutrino 

Starting with the Nobel-Prize winning discovery of the neutrino in 1956 by Fred Reines and Clyde Cowan Jr., National Lab researchers have made numerous contributions to neutrino physics and astrophysics.

Discovered gamma ray bursts

Sensors developed at the National Labs and placed aboard Vela satellites were used in the discovery of gamma-ray bursts (GRBs) in 1973. GRBs are extremely energetic explosions from distant galaxies. Scientists believe that most of these bursts consist of a narrow beam of intense radiation released when a rapidly rotating, high-mass star collapses to form a neutron star, a quark star or a black hole.

Created the first 100-Tesla magnetic field 

National Lab scientists achieved a 100.75-Tesla magnetic pulse in March 2012, setting a world record. The pulse was nearly 2 million times more powerful than Earth’s magnetic field. The 100-Tesla multi-shot magnet can be used over and over again without being destroyed by the force of the field it creates, and produces the most powerful non-destructive magnetic field in the world.

Froze smoke for hot uses 

National Labs researchers perfected aerogels, known as frozen smoke. They are one of the lightest solids ever made and have the highest heat resistance of any material tested. They also are fireproof and extraordinarily strong — able to support more than a thousand times their own weight. As a result of their heat resistance, aerogels are outstanding candidates for insulation in buildings, vehicles, filters and appliances.

Invented the cell sorter 

During the 1960s, a National Lab physicist invented a “cell sorter” — a novel device that works much like an ink jet printer, guiding a tiny flow of cell-containing droplets so cells of interest can be deflected for counting and study. Cell sorters are a vital tool for studying the biochemistry behind many diseases, including cancer and AIDS.

Ushered a domestic energy renaissance 

National Lab research jump-started the shale gas revolution by pointing the way to key technologies and methodologies for cost efficient extraction. An estimated $220 million in research and development expenditures on unconventional gas R&D from 1976 to 1992 have resulted in an estimated $100 billion in annual economic activity from shale gas production alone.

Enabled space exploration 

National Labs invented Laser-Induced Breakdown Spectroscopy (LIBS), the backbone of the device that allowed the Curiosity Rover to analyze material from Mars. Lab researchers also found the right combination of materials to make high-efficiency solar cells for spacecraft.

Sharply curtailed power plant air emissions 

National Lab scientists introduced some 20 innovative technologies — such as low nitrogen oxide (NOx) burners, flue gas desulfurization (scrubbers) and fluidized bed combustion — through the Clean Coal Technology Development Program that have deeply penetrated the marketplace, substantially controlled harmful power plant emissions and benefited energy production and air quality.

Made wind power mainstream 

Increasing wind turbine efficiency with high efficiency airfoils has reduced the cost of wind power by more than 80 percent over the last 30 years. Now deployed in wind farms nationwide, these turbines owe their existence to National Lab research.

Engineered smart windows 

National Lab scientists have created highly insulated windows that change color to modulate interior temperatures and lighting. If broadly installed, they could save about 5 percent of the nation’s total energy budget.

Delivered troops safely 

National Lab researchers have developed computer models that effectively manage the complex logistical tasks of deploying troops and equipment to distant destinations.

Channeled chips and hips 

Integrated circuits and artificial hips owe their success to a National Lab discovery that revealed how to change a material by injecting it with charged atoms, called ions. Ion channeling is now standard practice in industry and science.

Made 3D printing bigger and better 

A large-scale additive manufacturing platform developed by a National Lab and an industry partner printed 3D components 10 times larger and 200 times faster than previous processes. So far, the system has produced a 3D-printed sports car, SUV, house, excavator and aviation components.

Purified vaccines

National Lab researchers adapted nuclear separations technology to develop a zonal centrifuge used to purify vaccines, which reduces or eliminates unwanted side effects. Commercial centrifuges based on the invention produce vaccines for millions of people.

Built a better building 

A National Lab has built one of the world’s most energy efficient office buildings. The facility, operating as a living laboratory at a lab site, uses 50 percent less energy than required by commercial codes and only consumes energy produced by renewable power on or near the building.

Improved airport security 

Weapons, explosives, plastic devices and other concealed tools of terrorists are easier to detect thanks to technology developed at a National Lab and now installed in airports worldwide.

Improved grid resiliency 

A National Lab created an advanced battery that can store large amounts of energy from intermittent renewable sources — such as wind and solar — onto the power grid, while also smoothing over temporary disruptions to the grid. Several companies have licensed the technology and offer it as a commercial product.

Solved a diesel dilemma 

A National Lab insight into how catalysts behave paved the way for a new, “lean-burn” diesel engine that met emissions standards and improved fuel efficiency by 25 percent over conventional engines.

Harvested energy from air 

A miniature device — commercialized by private industry after a National Lab breakthrough — generates enough power from small temperature changes to power wireless sensors or radio frequency transmitters at remote sites, such as dams, bridges and pipelines.

Gone grid friendly 

Regulating the energy use of household appliances — especially at peak times — could slash energy demand and avoid blackouts. A National Lab appliance-control device senses grid stress and responds instantly to turn off machines and reduce end-use demand, balancing the system so that the power stays on.

Put the digital in DVDs 

The optical digital recording technology behind music, video and data storage originated at a National Lab nearly 40 years ago.

Locked nuclear waste in glass 

Disposal of U.S. Cold War waste is safer thanks to National Lab scientists who developed and deployed a process to lock it into glass to keep it from leaching into the environment.

Cleaned up anthrax 

Scientists at a National Lab developed a non-toxic foam that neutralizes chemical and biological agents. This foam was used to clean up congressional office buildings and mail rooms exposed to anthrax in 2001.

Removed radiation from Fukushima seawater 

After a tsunami damaged the Fukushima Daiichi nuclear power plant in 2011, massive amounts of seawater cooled the reactor. A molecular sieve engineered by National Lab scientists was used to extract radioactive cesium from tens of millions of gallons of seawater.11

Sped up Ebola detection 

In 2014, researchers from a National Lab modeled the Liberian blood sample transport system and made recommendations to diagnose patients quicker. This minimized the amount of time people were waiting together, reducing the spread of Ebola.

Prevented unauthorized use of a nuclear weapon 

In 1960, National Lab scientists invented coded electromechanical locks for all U.S. nuclear weapons. The switch blocks the arming signal until it receives the proper presidential authorization code.

Launched the LED lighting revolution 

In the 1990s, scientists at a National Lab saw the need for energy-efficient solid-state lighting and worked with industry to develop white LEDs. Today, white LEDs are about 30 percent efficient, with the potential to reach 70 percent to 80 percent efficiency. Fluorescent lighting is about 20 percent efficient and incandescent bulbs are 5 percent.

Mastered the art of artificial photosynthesis 

National Lab scientists engineered and synthesized multi-layer semiconductor structures in devices that directly convert sunlight to chemical energy in hydrogen by splitting water at efficiencies greater than 15 percent. This direct conversion of sunlight to fuels paves the way for use of solar energy in applications beyond the electrical grid.

Advanced fusion technology

From the first fusion test reactor to briefly produce power at the megawatt scale, and the world’s largest and most energetic laser creating extreme conditions mimicking the Big Bang, the interiors of planets and stars and thermonuclear weapons, to the international experiment to generate industrial levels of fusion energy from burning plasmas, fusion science and applications are advancing because of the National Labs.

Made the first molecular movie 

National Lab scientists have used ultrafast X-rays to capture the first molecular movies in quadrillionths-of-a-second frames. These movies detail the intricate structural dances of molecules as they undergo chemical reactions.

DOE imagesThe National Laboratory System: Protecting America Through Science and Technology

For more than 75 years, the Department of Energy’s National Laboratories have solved important problems in science, energy and national security. This expertise keeps our nation at the forefront of science and technology in a rapidly changing world. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and     ensure our nation’s future prosperity.

New fuel cell technology runs on solid carbon

New Fuel Cell Solid Carbon 160820_webAdvancements allow the fuel cell to utilize about three times as much carbon as earlier direct carbon fuel cell (DCFC) designs


IDAHO FALLS — Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory researchers.

The fuel cell design incorporates innovations in three components: the anode, the electrolyte and the fuel. Together, these advancements allow the fuel cell to utilize about three times as much carbon as earlier direct carbon fuel cell (DCFC) designs.

The fuel cells also operate at lower temperatures and showed higher maximum power densities than earlier DCFCs, according to INL materials engineer Dong Ding. The results appear in this week’s edition of the journal Advanced Materials.

Whereas hydrogen fuel cells (e.g., proton exchange membrane (PEM) and other fuel cells) generate electricity from the chemical reaction between pure hydrogen and oxygen, DCFCs can use any number of carbon-based resources for fuel, including coal, coke, tar, biomass and organic waste.

Because DCFCs make use of readily available fuels, they are potentially more efficient than conventional hydrogen fuel cells. “You can skip the energy-intensive step of producing hydrogen,” Ding said.

But earlier DCFC designs have several drawbacks: They require high temperatures — 700 to 900 degrees Celsius — which makes them less efficient and less durable. Further, as a consequence of those high temperatures, they’re typically constructed of expensive materials that can handle the heat.

Also, early DCFC designs aren’t able to effectively utilize the carbon fuel.

Ding and his colleagues addressed these challenges by designing a true direct carbon fuel cell that’s capable of operating at lower temperatures — below 600 degrees Celsius. The fuel cell makes use of solid carbon, which is finely ground and injected via an airstream into the cell. The researchers tackled the need for high temperatures by developing an electrolyte using highly conductive materials — doped cerium oxide and carbonate. These materials maintain their performance under lower temperatures.

Next, they increased carbon utilization by developing a 3-D ceramic textile anode design that interlaces bundles of fibers together like a piece of cloth. The fibers themselves are hollow and porous. All of these features combine to maximize the amount of surface area that’s available for a chemical reaction with the carbon fuel.

Finally, the researchers developed a composite fuel made from solid carbon and carbonate. “At the operating temperature, that composite is fluidlike,” Ding said. “It can easily flow into the interface.”

The molten carbonate carries the solid carbon into the hollow fibers and the pinholes of the anode, increasing the power density of the fuel cell.

The resulting fuel cell looks like a green, ceramic watch battery that’s about as thick as a piece of construction paper. A larger square is 10 centimeters on each side. The fuel cells can be stacked on top of one another depending on the application. The Advanced Materials journal posted a video abstract here: https://youtu.be/M_wOsvze2qI.

The technology has the potential for improved utilization of carbon fuels, such as coal and biomass, because direct carbon fuel cells produce carbon dioxide without the mixture of other gases and particulates found in smoke from coal-fired power plants, for example. This makes it easier to implement carbon capture technologies, Ding said.

The advanced DCFC design has already attracted notice from industry. Ding and his colleagues are partnering with Salt Lake City-based Storagenergy, Inc., to apply for a Department of Energy Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) Funding Opportunity. The results will be announced in February 2018. A Canadian energy-related company has also shown interest in these DCFC technologies.


Idaho National Laboratory is one of the U.S. Department of Energy’s national laboratories. The laboratory performs work in each of DOE’s strategic goal areas: energy, national security, science and environment. INL is the nation’s leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at http://www.inl.gov. Follow @INL on Twitter or visit our Facebook page at http://www.facebook.com/IdahoNationalLaboratory.

Brookhaven National Lab: The rapid self-assembly of nanoscale patterns for next-generation materials: From Electronics and Computing to Energy and Medicine

Brookhaven II 10-nanoparticleThe ability to quickly generate ultra-small, well-ordered nanopatterns over large areas on material surfaces is critical to the fabrication of next-generation technologies in many industries, from electronics and computing to energy and medicine. For example, patterned media, in which data are stored in periodic arrays of magnetic pillars or bars, could significantly improve the storage density of hard disk drives.

Scientists can coax thin films of self-assembling materials called block copolymers—chains of chemically distinct macromolecules (polymer “blocks”) linked together—into desired nanoscale patterns through heating (annealing) them on a substrate. However, defective structures that deviate from the regular pattern emerge early on during self-assembly.

Brookhaven6-acceleratingMaterials scientist Gregory Doerk preparing a sample for electron microscopy at Brookhaven Lab’s Center for Functional Nanomaterials. The scanning electron microscope image on the computer screen shows a cross-sectional view of line …more

The presence of these defects inhibits the use of block copolymers in the nanopatterning of technologies that require a nearly perfect ordering—such as magnetic media, computer chips, antireflective surfaces, and medical diagnostic devices. With continued annealing, the block copolymer patterns can reconfigure to remove the imperfections, but this process is exceedingly slow. The polymer blocks do not readily mix with each other, so they must overcome an extremely large energy barrier to reconfigure.

Adding small things with a big impact

Now, scientists from the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—have come up with a way to massively speed up the ordering process. They blended a line-forming block copolymer with significantly smaller polymer chains made of only one type of molecule (homopolymers) from each of the two constituent blocks. The electron microscopy images they took after annealing the films for only a few minutes show that the addition of these two smaller homopolymers dramatically increases the size of well-ordered line-pattern areas, or “grains.”

Accelerating the self-assembly of nanoscale patterns for next-generation materials
As shown in the illustration, a block copolymer consists of different molecule chains (red and blue) linked together; a homopolymer chain consists of identical molecules (red or blue). In this study, scientists blended a block copolymer …more

“Without the homopolymers, the same block copolymer cannot produce grains with these sizes,” said CFN materials scientist Gregory Doerk, who led the work, which was published online in an ACS Nano paper on December 1. “Blending in homopolymers that are less than one-tenth of the size of the block copolymer greatly accelerates the ordering process. In the resulting line patterns, there is a constant spacing between each of the lines, and the same directions of line-pattern orientations—for example, vertical or horizontal—persist over longer distances.”

Doerk and coauthor Kevin Yager, leader of the Electronic Nanomaterials Group at CFN, used image analysis software to calculate the grain size and repeat spacing of the line patterns.

While blending different concentrations of homopolymer to determine how much was needed to achieve the accelerated ordering, they discovered that the ordering sped up as more homopolymer was added. But too much homopolymer actually resulted in disordered patterns.

Accelerating the self-assembly of nanoscale patterns for next-generation materials
The scanning electron microscope images taken after thermal annealing at around 480 degrees Fahrenheit for five minutes show that the block copolymer/homopolymer blend generates a line pattern with a significantly higher degree of …more

“The homopolymers accelerate the self-assembly process because they are small enough to uniformly distribute throughout their respective polymer blocks,” said Doerk. “Their presence weakens the interface between the two blocks, lowering the energy barrier associated with the block copolymer reconfiguring to remove the defects. But if the interface is weakened too much through the addition of too much homopolymer, then the blocks will mix together, resulting in a completely disordered phase.”

Guiding the self-assembly of useful nanopatterns in minutes

To demonstrate how the rapid ordering in the blended system could accelerate the self-assembly of well-aligned nanopatterns over large areas, Doerk and Yager used line-pattern templates they had previously prepared through photolithography. Used to build almost all of today’s digital devices, photolithography involves projecting light through a mask (a plate containing the desired pattern) that is positioned over a wafer (usually made of silicon) coated with a light-sensitive material. This template can then be used to direct the self-assembly of block copolymers, which fill in the spaces between the template guides. In this case, after only two minutes of annealing, the polymer blend self-assembles into lines that are aligned across these gaps. However, after the same annealing time, the unblended block copolymer self-assembles into a mostly unaligned pattern with many defects between the gaps.

Accelerating the self-assembly of nanoscale patterns for next-generation materials
The unblended block copolymer aligns well close to the template guides (“sidewalls”), but this alignment degrades further in, as evident by the appearance of the fingerprint-like pattern in the center of the scanning electron microscope …more

“The width of the gaps is more than 80 times the repeat spacing, so the fact that we got this degree of alignment with our polymer blend is really exciting because it means we can use templates with huge gaps, created with very low-resolution lithography,” said Doerk. “Typically, expensive high-resolution lithography equipment is needed to align block copolymer patterns over this large of an area.”

For these patterns to be useful for many nanopatterning applications, they often need to be transferred to other more robust materials that can withstand harsh manufacturing processes—for example, etching, which removes layers from silicon wafer surfaces to create integrated circuits or make the surfaces antireflective. In this study, the scientists converted the nanopatterns into a metal-oxide replica. Through chemical etching, they then transferred the replica  into a silicon dioxide layer on a silicon wafer, achieving clearly defined line patterns.

Doerk suspects that blending homopolymers with other  will similarly yield accelerated assembly, and he is interested in studying blended polymers that self-assemble into more complicated patterns. The x-ray scattering capabilities at the National Synchrotron Light Source II—another DOE Office of Science User Facility at Brookhaven—could provide the structural information needed to conduct such studies.

Accelerating the self-assembly of nanoscale patterns for next-generation materials
A scanning electron microscope image showing a cross-sectional view of the line patterns transferred into a silicon dioxide layer. Credit: Brookhaven National Laboratory

“We have introduced a very simple and easily controlled way of immensely accelerating self-assembly,” concluded Doerk. “Our approach should substantially reduce the number of defects, helping to meet the demands of the semiconductor industry. At CFN, it opens up possibilities for us to use block copolymer self-assembly to make some of the new functional materials that we envision.”

 Explore further: Self-assembling polymers provide thin nanowire template

More information: Gregory S. Doerk et al. Rapid Ordering in “Wet Brush” Block Copolymer/Homopolymer Ternary Blends, ACS Nano (2017). DOI: 10.1021/acsnano.7b06154


Berkeley Lab – DOE – Argonne – “Holy Grail” for Batteries: Solid-State Magnesium Battery a Big Step Closer


Berkeley Lab leads discovery of the fastest magnesium-ion solid-state conductor to date.


A team of Department of Energy (DOE) scientists at the Joint Center for Energy Storage Research (JCESR) has discovered the fastest magnesium-ion solid-state conductor, a major step towards making solid-state magnesium-ion batteries that are both energy dense and safe.

Argonne scientist Baris Key, shown on left at work in his nuclear magnetic resonance lab, worked with researchers at Berkeley Lab on the discovery of the fastest ever magnesium-ion solid-state conductor. (Credit: Argonne National Laboratory)

The electrolyte, which carries charge back and forth between the battery’s cathode and anode, is a liquid in all commercial batteries, which makes them potentially flammable, especially in lithium-ion batteries. A solid-state conductor, which has the potential to become an electrolyte, would be far more fire-resistant.

Researchers at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory were working on a magnesium battery, which offers higher energy density than lithium, but were stymied by the dearth of good options for a liquid electrolyte, most of which tend to be corrosive against other parts of the battery. “Magnesium is such a new technology, it doesn’t have any good liquid electrolytes,” said Gerbrand Ceder, a Berkeley Lab Senior Faculty Scientist. “We thought, why not leapfrog and make a solid-state electrolyte?”

The material they came up with, magnesium scandium selenide spinel, has magnesium mobility comparable to solid-state electrolytes for lithium batteries. Their findings were reported in Nature Communications in a paper titled, “High magnesium mobility in ternary spinel chalcogenides.”JCESR, a DOE Innovation Hub, sponsored the study, and the lead authors are Pieremanuele Canepa and Shou-Hang Bo, postdoctoral fellows at Berkeley Lab.

“With the help of a concerted effort bringing together computational materials science methodologies, synthesis, and a variety of characterization techniques, we have identified a new class of solid conductors that can transport magnesium ions at unprecedented speed,” Canepa said.

Collaboration with MIT and Argonne

The research team also included scientists at MIT, who provided computational resources, and Argonne, who provided key experimental confirmation of the magnesium scandium selenide spinel material to document its structure and function.

Co-author Baris Key, a research chemist at Argonne, conducted nuclear magnetic resonance (NMR) spectroscopy experiments. These tests were among the first steps to experimentally prove that magnesium ions could move through the material as rapidly as the theoretical studies had predicted.

“It was crucial to confirm the fast magnesium hopping experimentally. It is not often that the theory and the experiment agree closely with each other,” Key said. “The solid state NMR experiments for this chemistry were very challenging and would not be possible without dedicated resources and a funding source such as JCESR.

As we’ve shown in this study, an in-depth understanding of short- and long-range structure and ion dynamics will be the key for magnesium ion battery research.”

NMR is akin to magnetic resonance imaging (MRI), which is routinely used in medical settings, where it shows hydrogen atoms of water in human muscles, nerves, fatty tissue, and other biological substances. But researchers can also tune NMR frequency to detect other elements, including the lithium or magnesium ions that are found in battery materials.

The NMR data from the magnesium scandium selenide material, however, involved material of unknown structure with complex properties, making them challenging to interpret.

Canepa noted the challenges of testing materials that are so new. “Protocols are basically non-existent,” he said. “These findings were only possible by combining a multi-technique approach (solid-state NMR and synchrotron measurements at Argonne) in addition to conventional electrochemical characterization.”

Doing the impossible

The team plans to do further work to use the conductor in a battery. “This probably has a long way to go before you can make a battery out of it, but it’s the first demonstration you can make solid-state materials with really good magnesium mobility through it,” Ceder said. “Magnesium is thought to move slowly in most solids, so nobody thought this would be possible.”

Additionally, the research identified two related fundamental phenomena that could significantly affect the development of magnesium solid electrolytes in the near future, namely, the role of anti-site defects and the interplay of electronic and magnesium conductivity, both published recently in Chemistry of Materials.

Bo, now an assistant professor at Shanghai Jiao Tong University, said the discovery could have a dramatic effect on the energy landscape. “This work brought together a great team of scientists from various scientific disciplines, and took the first stab at the formidable challenge of building a solid-state magnesium battery,” he said. “Although currently in its infancy, this emerging technology may have a transformative impact on energy storage in the near future.”

Gopalakrishnan Sai Gautam, another co-author who was an affiliate at Berkeley Lab and is now at Princeton, said the team approach made possible by a DOE hub such as JCESR was critical. “The work shows the importance of using a variety of theoretical and experimental techniques in a highly collaborative environment to make important fundamental discoveries,” he said.

Ceder was excited at the prospects for the finding but cautioned that work remains to be done. “There are enormous efforts in industry to make a solid-state battery. It’s the holy grail because you would have the ultimate safe battery. But we still have work to do. This material shows a small amount of electron leakage, which has to be removed before it can be used in a battery.”

Funding for the project was provided by the DOE Office of Science through the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub. The Advanced Photon Source, a DOE Office of Science User Facility at Argonne, added vital data to the study regarding the structure of the solid conductor.

The National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Berkeley Lab, provided computing resources. Other co-authors on the paper are Juchaun Li of Berkeley Lab, William Richards and Yan Wang of MIT, and Tan Shi and Yaosen Tian of UC Berkeley.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state, and municipal agencies to help them solve their specific problems, advance America’s scientific leadership, and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub, is a major partnership that integrates researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Led by the U.S. Department of Energy’s Argonne National Laboratory, partners include national leaders in science and engineering from academia, the private sector, and national laboratories. Their combined expertise spans the full range of the technology-development pipeline from basic research to prototype development to product engineering to market delivery.

‘Magnesium Mystery’ for (Lithium-Based) Rechargeable Batteries Solved: DOE

Molecular models shows the initial state of battery chemistry that leads to instability in a test cell featuring a magnesium anode

Rechargeable batteries based on magnesium, rather than lithium, have the potential to extend electric vehicle range by packing more energy into smaller batteries. But unforeseen chemical roadblocks have slowed scientific progress.
And the places where solid meets liquid – where the oppositely charged battery electrodes interact with the surrounding chemical mixture known as the electrolyte – are the known problem spots.

Now, a research team at the U.S. Department of Energy’s Joint Center for Energy Storage Research, led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), has discovered a surprising set of chemical reactions involving magnesium that degrade battery performance even before the battery can be charged up.

The findings could be relevant to other battery materials, and could steer the design of next-generation batteries toward workarounds that avoid these newly identified pitfalls.

The team used X-ray experiments, theoretical modeling, and supercomputer simulations to develop a full understanding of the chemical breakdown of a liquid electrolyte occurring within tens of nanometers of an electrode surface that degrades battery performance. Their findings are published online in the journal Chemistry of Materials (“Instability at the Electrode/Electrolyte Interface Induced by Hard Cation Chelation and Nucleophilic Attack”).

The battery they were testing featured magnesium metal as its negative electrode (the anode) in contact with an electrolyte composed of a liquid (a type of solvent known as diglyme) and a dissolved salt, Mg(TFSI)2.

While the combination of materials they used were believed to be compatible and nonreactive in the battery’s resting state, experiments at Berkeley Lab’s Advanced Light Source (ALS), an X-ray source called a synchrotron, uncovered that this is not the case and led the study in new directions.

These molecular models show the initial state of battery chemistry that leads to instability in a test cell featuring a magnesium (Mg) anode. (Credit: Berkeley Lab)

“People had thought the problems with these materials occurred during the battery’s charging, but instead the experiments indicated that there was already some activity,” said David Prendergast, who directs the Theory of Nanostructured Materials Facility at the Molecular Foundry and served as one of the study’s leaders.

“At that point it got very interesting,” he said. “What could possibly cause these reactions between substances that are supposed to be stable under these conditions?”

Molecular Foundry researchers developed detailed simulations of the point where the electrode and electrolyte meet, known as the interface, indicating that no spontaneous chemical reactions should occur under ideal conditions, either. The simulations, though, did not account for all of the chemical details.

“Prior to our investigations,” said Ethan Crumlin, an ALS scientist who coordinated the X-ray experiments and co-led the study with Prendergast, “there were suspicions about the behavior of these materials and possible connections to poor battery performance, but they hadn’t been confirmed in a working battery.”

Commercially popular lithium-ion batteries, which power many portable electronic devices (such as mobile phones, laptops, and power tools) and a growing fleet of electric vehicles, shuttle lithium ions – lithium atoms that become charged by shedding an electron – back and forth between the two battery electrodes. These electrode materials are porous at the atomic scale and are alternatively loaded up or emptied of lithium ions as the battery is charged or discharged.

In this type of battery, the negative electrode is typically composed of carbon, which has a more limited capacity for storing these lithium ions than other materials would.

So increasing the density of stored lithium by using another material would make for lighter, smaller, more powerful batteries. Using lithium metal in the electrode, for example, can pack in more lithium ions in the same space, though it is a highly reactive substance that burns when exposed to air, and requires further research on how to best package and protect it for long-term stability.

Magnesium metal has a higher energy density than lithium metal, meaning you can potentially store more energy in a battery of the same size if you use magnesium rather than lithium.

Magnesium is also more stable than lithium. Its surface forms a self-protecting “oxidized” layer as it reacts with moisture and oxygen in the air. But within a battery, this oxidized layer is believed to reduce efficiency and shorten battery life, so researchers are looking for ways to avoid its formation.

To explore the formation of this layer in more detail, the team employed a unique X-ray technique developed recently at the ALS, called APXPS (ambient pressure X-ray photoelectron spectroscopy). This new technique is sensitive to the chemistry occurring at the interface of a solid and liquid, which makes it an ideal tool to explore battery chemistry at the surface of the electrode, where it meets the liquid electrolyte.

Magnesium Batt id48371_2

Simulations show the weakening of a bond in a liquid solvent due to the presence of free-floating hydroxide ions, which contain a single oxygen atom bound to a hydrogen atom. In this illustration, atoms are color-coded: hydrogen (white), oxygen (red), carbon (light blue), magnesium (green), nitrogen (dark blue), sulfur (yellow), fluorine (brown). This process degrades battery performance. (Credit: Berkeley Lab)

Even before a current was fed into the test battery, the X-ray results showed signs of chemical decomposition of the electrolyte, specifically at the interface of the magnesium electrode. The findings forced researchers to rethink their molecular-scale picture of these materials and how they interact.

What they determined is that the self-stabilizing, thin oxide surface layer that forms on the magnesium has defects and impurities that drive unwanted reactions.

“It’s not the metal itself, or its oxides, that are a problem,” Prendergast said. “It’s the fact you can have imperfections in the oxidized surface. These little disparities become sites for reactions. It feeds itself in this way.”

A further round of simulations, which proposed possible defects in the oxidized magnesium surface, showed that defects in the oxidized surface layer of the anode can expose magnesium ions that then act as traps for the electrolyte’s molecules.

If free-floating hydroxide ions – molecules containing a single oxygen atom bound to a hydrogen atom that can be formed as trace amounts of water react with the magnesium metal – meet these surface-bound molecules, they will react.

This wastes electrolyte, drying out the battery over time. And the products of these reactions foul the anode’s surface, impairing the battery’s function.

It took several iterations back and forth, between the experimental and theoretical members of the team, to develop a model consistent with the X-ray measurements. The efforts were supported by millions of hours’ worth of computing power at the Lab’s National Energy Research Scientific Computing Center.

Researchers noted the importance of having access to X-ray techniques, nanoscale expertise, and computing resources at the same Lab.

The results could be relevant to other types of battery materials, too, including prototypes based on lithium or aluminum metal. Prendergast said, “This could be a more general phenomenon defining electrolyte stability.”

Crumlin added, “We’ve already started running new simulations that could show us how to modify the electrolyte to reduce the instability of these reactions.” Likewise, he said, it may be possible to tailor the surface of the magnesium to reduce or eliminate some of the unwanted chemical reactivity.

“Rather than allowing it to create its own interface, you could construct it yourself to control and stabilize the interface chemistry,” he added. “Right now it leads to uncontrollable events.”

Source: By Glenn Roberts Jr., Lawrence Berkeley National Laboratory



NREL: Demonstrating and Advancing Benefits of Hydrogen Technology

by Bryan S. Pivovar, Ph.D, H2@Scale Lead/Group Manager, Chemistry and Nanosciences Center, National Renewable Energy Laboratory

Over the past several decades, technological advancements and cost reductions have dramatically changed the economic potential of hydrogen in our energy system. 
Fuel cell electric vehicles are now available for commercial sale and hydrogen stations are open to the public (more than 2,000 fuel cell vehicles are on the road and more than 30 fueling stations are open to the public in California). 

Low-cost wind and solar power are quickly changing the power generation landscape and creating a need for technologies that enhance the flexibility of the grid in the mid- to long-term.

The vision of a clean, sustainable energy system with hydrogen serving as the critical centerpiece is the focus of H2@Scale, a major initiative involving multiple U.S. Department of Energy (DOE) program offices, led by DOE’s Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy, and 14 DOE national laboratories. 

H2@Scale expands the focus of hydrogen technologies beyond power generation and transportation, to grid services and industrial processes that use hydrogen.

The Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) serves as a world-class, sophisticated testbed to evaluate and advance the H2@Scale concept. 

The ESIF is a DOE user facility interacting with multiple industrial stakeholders to accelerate the adoption of clean energy, including hydrogen-based technologies. Many of the barriers for making the H2@Scale vision a reality are being addressed today within ESIF by NREL researchers along with other industrial and national laboratory collaborators. 

The unique testbed capabilities at NREL and collaborating national labs are now available for use by industry and several partnerships are currently in development.
Within the ESIF, NREL researchers use electrons and water to produce hydrogen at rates of up to 100 kg/day (enough to fuel ~6,000 miles of travel in today’s fuel cell electric vehicles or more than 20 cars) with plans to expand capacity to four times this level. 

The hydrogen produced is compressed and stored in the 350 kg of on-site storage available at pressures as high as 12,500 psi. The hydrogen is used in multiple applications at the ESIF, including fueling fuel cell electric vehicles, testing and validating hydrogen infrastructure components and systems, producing renewable natural gas (through biological reaction with carbon dioxide), and as a feedstock for fuel cell power generation and research and development efforts.

To accelerate the H2@Scale concept, the cost, performance, and durability of hydrogen production, infrastructure (distribution and storage), and end use technologies need to be improved. NREL researchers, along with other labs, are actively demonstrating and advancing hydrogen technology in a number of areas including low-temperature electrolysis, biological production of renewable natural gas, and infrastructure.

Renewable hydrogen via low-temperature electrolysis

Today’s small-scale electrolysis systems are capable of producing several kilograms (kg) of hydrogen per day, but can cost as much as $10 per watt. At larger scale, megawatt (MW) systems producing more than 400 kg per day can cost under $2 per watt. However, for low-temperature electrolyzer systems to compete with the established steam methane reforming process for hydrogen production, the capital cost needs to be reduced to far below $1 per watt.

NREL has ongoing collaborations with Idaho National Laboratory (INL) to demonstrate control of a 250-kW electrolyzer system in a real-time grid simulation using a hardware-in-the-loop (HIL)-based approach to verify the performance of electrolyzer systems in providing grid support. HIL couples modeling and hardware in real-time simulations to better understand the performance of complex systems. 

The electrolyzer system, a building block for megawatt-scale deployment, was remotely controlled based on simulations of signals from a power grid. NREL and INL engineers demonstrated the ability of an electrolyzer to respond to grid signals in sub-seconds, making electrolyzers a viable candidate for “demand response” technologies that help control frequency and voltage on the grid by adjusting their power intake based on grid signals. 

A key enabler of low-cost electrolysis will be for electrolyzer technologies to respond dynamically to grid signals, such that they access low-cost power when available. The potential performance and durability implications of such dynamic operation are being elucidated in ongoing tests. Such experiments are essential to assess the potential for electrolyzers to support grid resiliency and to identify remaining R&D needs toward this value proposition.
NREL’s scientists are developing and exploring new materials for electrolysis systems, including advanced catalysts based on nanowire architecture and alkaline membranes, and approaches for integrating these materials into low-cost, durable membrane electrode assemblies.  

Graphene-wrapped nanocrystals may open door toward next-gen fuel cells

Ultra-Thin  oxide layer (oxygen atoms shown in red) coating graphene-wrapped magnesium nanoparticles (orange) still allows in hydrogen atoms (blue) for hydrogen storage applications

Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory have developed a mix of metal nanocrystals wrapped in graphene that may open the door to the creation of a new type of fuel cell by enabling enhanced hydrogen storage properties.

Graphene-Wrapped Nanocrystals Make Inroads Toward Next-Gen Fuel Cells

Ultra-thin oxide layer (oxygen atoms shown in red) coating graphene-wrapped magnesium nanoparticles (orange) still allows in hydrogen atoms (blue) for hydrogen storage applications

The team studied how graphene can be used as both selective shielding, as well as a performance increasing factor in terms of hydrogen storage. 

The study drew upon a range of Lab expertise and capabilities to synthesize and coat the magnesium crystals, which measure only 3-4 nanometers (billionths of a meter) across; study their nanoscale chemical composition with X-rays; and develop computer simulations and supporting theories to better understand how the crystals and their carbon coating function together.

Reduced graphene oxide (or rGO) has nanoscale holes that permit hydrogen to pass through while keeping larger molecules away. This carbon wrapping was intended to prevent the magnesium – which is used as a hydrogen storage material – from reacting with its environment, including oxygen, water vapor and carbon dioxide. 

Such exposures could produce a thick coating of oxidation that would prevent the incoming hydrogen from accessing the magnesium surfaces. 

The study, however, suggests that an atomically thin layer of oxidation did form on the crystals during their preparation. Surprisingly, this oxide layer doesn’t seem to degrade the material’s performance.

The study’s lead author stated “Most people would suspect that the oxide layer is bad news for hydrogen storage, which it turns out may not be true in this case. Without this oxide layer, the reduced graphene oxide would have a fairly weak interaction with the magnesium, but with the oxide layer the carbon-magnesium binding seems to be stronger. 

That’s a benefit that ultimately enhances the protection provided by the carbon coating. There doesn’t seem to be any downside”.

The researchers noted that the current generation of hydrogen-fueled vehicles power their fuel cell engines using compressed hydrogen gas. “This requires bulky, heavy cylindrical tanks that limit the driving efficiency of such cars”, and the nanocrystals offer one possibility for eliminating these bulky tanks by storing hydrogen within other materials.

NREL, Swiss Scientists Power Past Solar Efficiency Records

NREL scientist Adele Tamboli, co-author of a recent article on silicon-based multijunction solar cells, stands in front of an array of solar panels. Credit: Dennis Schroeder

August 25, 2017

Second collaborative effort proves silicon-based multijunction cells that reach nearly 36% efficiency

Collaboration between researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the Swiss Center for Electronics and Microtechnology (CSEM), and the École Polytechnique Fédérale de Lausanne (EPFL) shows the high potential of silicon-based multijunction solar cells.

The research groups created tandem solar cells with record efficiencies of converting sunlight into electricity under 1-sun illumination. The resulting paper, “Raising the One-Sun Conversion Efficiency of III–V/Si Solar Cells to 32.8% for Two Junctions and 35.9% for Three Junctions,” appears in the new issue of Nature Energy. Solar cells made solely from materials in Groups III and V of the Periodic Table have shown high efficiencies, but are more expensive.

Stephanie Essig, a former NREL post-doctoral researcher now working at EPFL in Switzerland, is lead author of the newly published research that details the steps taken to improve the efficiency of the multijunction cell. While at NREL, Essig co-authored “Realization of GaInP/Si Dual-Junction Solar Cells with 29.8% 1-Sun Efficiency,” which was published in the IEEE Journal of Photovoltaics a year ago.

In addition to Essig, authors of the new research paper are Timothy Remo, John F. Geisz, Myles A. Steiner, David L. Young, Kelsey Horowitz, Michael Woodhouse, and Adele Tamboli, all with NREL; and Christophe Allebe, Loris Barraud, Antoine Descoeudres, Matthieu Despeisse, and Christophe Ballif, all from CSEM.

“This achievement is significant because it shows, for the first time, that silicon-based tandem cells can provide efficiencies competing with more expensive multijunction cells consisting entirely of III-V materials,” Tamboli said. “It opens the door to develop entirely new multijunction solar cell materials and architectures.”

In testing silicon-based multijunction solar cells, the researchers found that the highest dual-junction efficiency (32.8%) came from a tandem cell that stacked a layer of gallium arsenide (GaAs) developed by NREL atop a film of crystalline silicon developed by CSEM. An efficiency of 32.5% was achieved using a gallium indium phosphide (GaInP) top cell, which is a similar structure to the previous record efficiency of 29.8% announced in January 2016. 

A third cell, consisting of a GaInP/GaAs tandem cell stacked on a silicon bottom cell, reached a triple-junction efficiency of 35.9%—just 2% below the overall triple-junction record.

The existing photovoltaics market is dominated by modules made of single-junction silicon solar cells, with efficiencies between 17% and 24%. 

The researchers noted in the report that making the transition from a silicon single-junction cell to a silicon-based dual-junction solar cell will enable manufacturers to push efficiencies past 30% while still benefiting from their expertise in making silicon solar cells.

The obstacle to the adoption of these multijunction silicon-based solar cells, at least in the near term, is the cost. Assuming 30% efficiency, the researchers estimated the GaInP-based cell would cost $4.85 per watt and the GaAs-based cell would cost $7.15 per watt. 

But as manufacturing ramps up and the efficiencies of these types of cells climbs to 35%, the researchers predict the cost per watt could fall to 66 cents for a GaInP-based cell and to 85 cents for the GaAs-based cell. 

The scientists noted that such a precipitous price drop is not unprecedented; for instance, the cost of Chinese-made photovoltaic modules fell from $4.50 per watt in 2006 to $1 per watt in 2011.

The cost of a solar module in the United States accounts for 20% to 40% of the price of a photovoltaic system. Increasing cell efficiency to 35%, the researchers estimated, could reduce the system cost by as much as 45 cents per watt for commercial installations. 

However, if the costs of a III-V cell cannot be reduced to the levels of the researchers’ long-term scenario, then the use of cheaper, high-efficiency materials for the top cell will be needed to make them cost-competitive in general power markets.

The funding for the research came from the Energy Department’s SunShot Initiative—which aims to make solar energy a low-cost electricity source for all Americans through research and development efforts in collaboration with public and private partners—and from the Swiss Confederation and the Nano-Tera.ch initiative.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.