Four Emerging Technology Areas That Will Help Define Our World In 2019


Welcome to 2019....

2018 was surely a transformative year for technological innovation. We saw early development of ambient computing, quantum teleportation, cloaks of invisibility, genomics advancements and even robocops.

Granted we’re not flying around in our own cars like the Jetsons did yet, but we’re closer. In 2019 we will continue on the transformation path and expand even more into adopting cutting edge immersive technologies.

What’s ahead for the coming year? I envision four emerging technology areas that will significantly impact our lives in 2019.

1.  The Internet of Things and Smart Cities

The Internet of Things (IoT) refers to the general idea of devices and equipment that are readable, recognizable, locatable, addressable, and/or controllable via the internet. 

This includes everything from home appliances, wearable technology and cars. These days, if a device can be turned on, it most likely can be connected to the internet. Because of this, data can be shared quickly across a multitude of objects and devices increasing the rate of communications.

Cisco, who terms the “Internet of Things,” “The Internet of Everything,” predicts that 50 billion devices (including our smartphones, appliances and office equipment) will be wirelessly connected via a network of sensors to the internet by 2020.

The term “Smart City” connotes creating a public/private infrastructure to conduct activities that protect and secure citizens. The concept of Smart Cities integrates communications (5-G), transportation, energy, water resources, waste collections, smart-building technologies, and security technologies and services. They are the cities of the future.

IoT is the cog of Smart Cities that integrates these resources, technologies, services and infrastructure.

The research firm Frost & Sullivan estimates the combined global market potential of Smart City segments (transportation, healthcare, building, infrastructure, energy and governance) to be $1.5 Trillion ($20B by 2050 on sensors alone according to Navigant Technology).

The combined growth of IoT and Smart Cities will be a force to reckon with in 2019!

     2.  Artificial Intelligence (AI)

Emergent artificial intelligence (AI), machine learning, human-computer interface, and augmented reality technologies are no longer science fiction. Head-spinning technological advances allow us to gain greater data-driven insights than ever before.

The ethical debate about AI is fervent over the threatening implications of future technologies that can think like a human (or better) and make their own decisions. The creation of a “Hal” type entity as depicted in Stanley Kubrick’s film, 2001 A Space Odyssey, is not far-fetched.

To truly leverage our ability to use data driven insights we need to make sure our thinking about how to best use this data keeps pace with its availability.

The vast majority of digital data is unstructured: a complex mesh of images, texts, videos and other data formats. Estimates suggest 80-90 percent of the world’s data is unstructured and growing at an increasingly rapid rate each day.

To even begin to make sense of this much data, advanced technologies are required. Artificial intelligence is the means by which this data is processed today, and it’s already a part of your everyday life.

In 2019, companies and governments will continue to develop technology that distributes artificial intelligence and machine learning software to millions of graphics and computer processors around the world. The question is how far away are we from a “Hal” with the ability for human analysis and techno emotions? 

     3.  Quantum Computing

The world of computing has witnessed seismic advancements since the invention of the electronic calculator in the 1960s. The past few years in information processing have been especially transformational.

What were once thought of as science fiction fantasies are now technological realities. Classical computing has become more exponentially faster and more capable and our enabling devices smaller and more adaptable.

We are starting to evolve beyond classical computing into a new data era called quantum computing. It is envisioned that quantum computing will accelerate us into the future by impacting the landscape of artificial intelligence and data analytics.

The quantum computing power and speed will help us solve some of the biggest and most complex challenges we face as humans.

Gartner describes quantum computing as: “[T]he use of atomic quantum states to effect computation. Data is held in qubits (quantum bits), which have the ability to hold all possible states simultaneously. Data held in qubits is affected by data held in other qubits, even when physically separated.

This effect is known as entanglement.” In a simplified description, quantum computers use quantum bits or qubits instead of using binary traditional bits of ones and zeros for digital communications.

Futurist Ray Kurzweil said that mankind will be able to “expand the scope of our intelligence a billion-fold” and that “the power of computing doubles, on average, every two years.” Recent breakthroughs in physics, nanotechnology and materials science have brought us into a computing reality that we could not have imagined a decade ago.

As we get closer to a fully operational quantum computer, a new world of supercomputing beckons that will impact on almost every aspect of our lives. In 2019 we are inching closer.

     4.  Cybersecurity (and Risk Management)

Many corporations, organizations and agencies have continued to be breached throughout 2018 despite cybersecurity investments on information assurance. The cyber threats grow more sophisticated and deadly with each passing year. The firm Gemalto estimated that data breaches compromised 4.5 billion records in first half of 2018. And a University of Maryland study found that hackers now attack computers every 39 seconds.

In 2019 we will be facing a new and more sophisticated array of physical security and cybersecurity challenges (including automated hacker tools) that pose significant risk to people, places and commercial networks.

The nefarious global threat actors are terrorists, criminals, hackers, organized crime, malicious individuals, and in some cases, adversarial nation states.

The physical has merged with the digital in the cybersecurity ecosystem. The more digitally interconnected we become in our work and personal lives, the more vulnerable we will become. Now everyone and anything connected is a target.

Cybersecurity is the digital glue that keeps IoT, Smart Cities, and our world of converged machines, sensors, applications and algorithms operational.

Addressing the 2019 cyber-threat also requires incorporating a better and more calculated risk awareness and management security strategy by both the public and private sectors. A 2019 cybersecurity risk management strategy will need to be comprehensive, adaptive and elevated to the C-Suite. 

I have just touched on a few of the implications of four emerging technology areas that will have significant impact in our lives in 2019.

These areas are just the tip of the iceberg as we really are in the midst of a paradigm shift in applied scientific knowledge.  We have entered a new renaissance of accelerated technological development that is exponentially transforming our civilization.

Yet with these benefits come risks. With such catalyzing innovation, we cannot afford to lose control. The real imperative for this new year is for planning and systematic integration.  

Hopefully that will provide us with a guiding technological framework that will keep us prosperous and safe.

Article by Chuck Brooks Special to Forbes Magazine
Chuck Brooks is an Advisor and Contributor to Cognitive World. In his full time role he is the Principal Market Growth Strategist for General Dynamics Mission Systems…MORE
Advertisements

MIT: Novel transmitter protects wireless data from hackers


MIT-Frequenxy-Hopping1

MIT researchers developed a transmitter that frequency hops data bits ultrafast to prevent signal jamming on wireless devices. The transmitter’s design (pictured) features bulk acoustic wave resonators (side boxes) that rapidly switch between radio frequency channels, sending data bits with each hop. A channel generator (top box) each microsecond selects the random channels to send bits. Two transmitters work in alternating paths (center boxes), so one receives channel selection, while the other sends data, to ensure ultrafast speeds. Courtesy of the researchers

Device uses ultrafast “frequency hopping” and data encryption to protect signals from being intercepted and jammed.

Today, more than 8 billion devices are connected around the world, forming an “internet of things” that includes medical devices, wearables, vehicles, and smart household and city technologies. By 2020, experts estimate that number will rise to more than 20 billion devices, all uploading and sharing data online.

But those devices are vulnerable to hacker attacks that locate, intercept, and overwrite the data, jamming signals and generally wreaking havoc. One method to protect the data is called “frequency hopping,” which sends each data packet, containing thousands of individual bits, on a random, unique radio frequency (RF) channel, so hackers can’t pin down any given packet. Hopping large packets, however, is just slow enough that hackers can still pull off an attack.

Now MIT researchers have developed a novel transmitter that frequency hops each individual 1 or 0 bit of a data packet, every microsecond, which is fast enough to thwart even the quickest hackers.

The transmitter leverages frequency-agile devices called bulk acoustic wave (BAW) resonators and rapidly switches between a wide range of RF channels, sending information for a data bit with each hop. In addition, the researchers incorporated a channel generator that, each microsecond, selects the random channel to send each bit. On top of that, the researchers developed a wireless protocol — different from the protocol used today — to support the ultrafast frequency hopping.

“With the current existing [transmitter] architecture, you wouldn’t be able to hop data bits at that speed with low power,” says Rabia Tugce Yazicigil, a postdoc in the Department of Electrical Engineering and Computer Science and first author on a paper describing the transmitter, which is being presented at the IEEE Radio Frequency Integrated Circuits Symposium. “By developing this protocol and radio frequency architecture together, we offer physical-layer security for connectivity of everything.” Initially, this could mean securing smart meters that read home utilities, control heating, or monitor the grid.

“More seriously, perhaps, the transmitter could help secure medical devices, such as insulin pumps and pacemakers, that could be attacked if a hacker wants to harm someone,” Yazicigil says. “When people start corrupting the messages [of these devices] it starts affecting people’s lives.”

Co-authors on the paper are Anantha P. Chandrakasan, dean of MIT’s School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science (EECS); former MIT postdoc Phillip Nadeau; former MIT undergraduate student Daniel Richman; EECS graduate student Chiraag Juvekar; and visiting research student Kapil Vaidya.

Ultrafast frequency hopping

One particularly sneaky attack on wireless devices is called selective jamming, where a hacker intercepts and corrupts data packets transmitting from a single device but leaves all other nearby devices unscathed. Such targeted attacks are difficult to identify, as they’re often mistaken for poor a wireless link and are difficult to combat with current packet-level frequency-hopping transmitters.

With frequency hopping, a transmitter sends data on various channels, based on a predetermined sequence shared with the receiver. Packet-level frequency hopping sends one data packet at a time, on a single 1-megahertz channel, across a range of 80 channels. A packet takes around 612 microseconds for BLE-type transmitters to send on that channel. But attackers can locate the channel during the first 1 microsecond and then jam the packet.

“Because the packet stays in the channel for long time, and the attacker only needs a microsecond to identify the frequency, the attacker has enough time to overwrite the data in the remainder of packet,” Yazicigil says.

To build their ultrafast frequency-hopping method, the researchers first replaced a crystal oscillator — which vibrates to create an electrical signal — with an oscillator based on a BAW resonator. However, the BAW resonators only cover about 4 to 5 megahertz of frequency channels, falling far short of the 80-megahertz range available in the 2.4-gigahertz band designated for wireless communication. Continuing recent work on BAW resonators — in a 2017 paper co-authored by Chandrakasan, Nadeau, and Yazicigil — the researchers incorporated components that divide an input frequency into multiple frequencies. An additional mixer component combines the divided frequencies with the BAW’s radio frequencies to create a host of new radio frequencies that can span about 80 channels.

Randomizing everything

The next step was randomizing how the data is sent. In traditional modulation schemes, when a transmitter sends data on a channel, that channel will display an offset — a slight deviation in frequency. With BLE modulations, that offset is always a fixed 250 kilohertz for a 1 bit and a fixed -250 kilohertz for a 0 bit. A receiver simply notes the channel’s 250-kilohertz or -250-kilohertz offset as each bit is sent and decodes the corresponding bits.

But that means, if hackers can pinpoint the carrier frequency, they too have access to that information. If hackers can see a 250-kilohertz offset on, say, channel 14, they’ll know that’s an incoming 1 and begin messing with the rest of the data packet.

To combat that, the researchers employed a system that each microsecond generates a pair of separate channels across the 80-channel spectrum. Based on a preshared secret key with the transmitter, the receiver does some calculations to designate one channel to carry a 1 bit and the other to carry a 0 bit. But the channel carrying the desired bit will always display more energy. The receiver then compares the energy in those two channels, notes which one has a higher energy, and decodes for the bit sent on that channel.

For example, by using the preshared key, the receiver will calculate that 1 will be sent on channel 14 and a 0 will be sent on channel 31 for one hop. But the transmitter only wants the receiver to decode a 1. The transmitter will send a 1 on channel 14, and send nothing on channel 31. The receiver sees channel 14 has a higher energy and, knowing that’s a 1-bit channel, decodes a 1. In the next microsecond, the transmitter selects two more random channels for the next bit and repeats the process.

Because the channel selection is quick and random, and there is no fixed frequency offset, a hacker can never tell which bit is going to which channel. “For an attacker, that means they can’t do any better than random guessing, making selective jamming infeasible,” Yazicigil says.

As a final innovation, the researchers integrated two transmitter paths into a time-interleaved architecture. This allows the inactive transmitter to receive the selected next channel, while the active transmitter sends data on the current channel. Then, the workload alternates. Doing so ensures a 1-microsecond frequency-hop rate and, in turn, preserves the 1-megabyte-per-second data rate similar to BLE-type transmitters.

“Most of the current vulnerability [to signal jamming] stems from the fact that transmitters hop slowly and dwell on a channel for several consecutive bits. Bit-level frequency hopping makes it very hard to detect and selectively jam the wireless link,” says Peter Kinget, a professor of electrical engineering and chair of the department at Columbia University. “This innovation was only possible by working across the various layers in the communication stack requiring new circuits, architectures, and protocols. It has the potential to address key security challenges in IoT devices across industries.”

The work was supported by Hong Kong Innovation and Technology Fund, the National Science Foundation, and Texas Instruments. The chip fabrication was supported by TSMC University Shuttle Program.