Creating a Life-Saving, Blood-Repellent Super Material – Revolutionizing Medical Implants: Colorado State University



  • Biomedical engineers and materials scientists have developed a “superhemophobic” surface treatment for titanium that repels liquids including blood, plasma, and water.
  • The result is a surface that completely repels any liquid with which it would come in contact – a material that could revolutionize medical implants.


Implanted medical devices like stents, catheters, and titanium rods are essential, life-saving tools for patients around the world. Still, having a foreign object in the human body does pose its own risks – chiefly, having the body reject the object or increasing the risk of dangerous blood clots. A new collaboration between two distinct scientific disciplines is working toward making those risks a concern of the past.

Biomedical engineers and materials scientists from Colorado State University (CSU) have developed a “superhemophobic” surface treatment for titanium that repels liquids including blood, plasma, and water. The titanium is essentially studded with nanoscale tubes treated with a non-stick chemical. The result is a surface that completely repels any liquid with which it would come in contact. The team’s findings are published in Advanced Healthcare Materials.

Fluorinated nanotubes provided the best superhemophobic surfaces in the CSU researchers’ experiments. Credit: Kota lab/Colorado State University


In cases where a body does reject a medical implant, the patient’s immune system detects the foreign object and mounts a defense against it, which can lead to serious inflammation and other complications. The real trick to the team’s surface is that the body doesn’t even recognize that it’s there. According to Arun Kota, assistant professor of mechanical engineering and biomedical engineering at CSU, “We are taking a material that blood hates to come in contact with, in order to make it compatible with blood.”

Regarding clotting, patients with medical implants often need to stay on a regimen of blood-thinning drugs to decrease the risk. However, blood thinners are not guaranteed to work, and they also carry the risk of leading to excessive bleeding due to the prevention of even beneficial clotting near wounds. As Ketul Popat, associate professor of mechanical engineering and biomedical engineering at CSU explains, “The reason blood clots is because it finds cells in the blood to go to and attach.” He continues, “if we can design materials where blood barely contacts the surface, there is virtually no chance of clotting.”

This material is only in its earliest stages of development. Should the team’s findings hold up to further scrutinization, these life-saving medical devices could be given an unprecedented boost in safety.


NREL’s Keith Emery Awarded Prestigious Cherry Award: Efficiency of Solar Cells

Top PV award goes to researcher who brought credibility to testing of solar cells and modules

June 19, 2013

QDOTS imagesCAKXSY1K 8An engineer from the Energy Department’s National Renewable Energy Laboratory (NREL) whose testing and characterization laboratory brings credibility to the measurement of efficiency of solar cells and modules has been awarded the prestigious William R. Cherry Award by the Institute of Electrical and Electronics Engineers (IEEE).

Keith Emery, a principal scientist at NREL, received the award at the 39th IEEE’s Photovoltaic Specialists Conference in Tampa Bay.

“Accredited measurements from Emery’s laboratories are considered the gold standard by the U.S. and international PV communities,” said NREL colleague Pete Sheldon, Deputy Director of the National Center for Photovoltaics on the NREL campus in Golden, CO. “His leadership in the development of cell and module performance measurement techniques and the development of standards, has set the foundation for the PV community for the last 25 years.”

The award is named in honor of William R. Cherry, a founder of the photovoltaic community. In the 1950s, Cherry was instrumental in establishing solar cells as the ideal power source for space satellites and for recognizing, advocating and nurturing the use of photovoltaic systems for terrestrial applications. The purpose of the award is to recognize an individual engineer or scientist who devoted a part of their professional life to the advancement of the science and technology of photovoltaic energy conversion.

Emery is the third consecutive Cherry Award winner from NREL. In 2011, Jerry Olson, who developed the multi-junction solar cell, won the award. Last year, Sarah Kurtz, who helped Olson develop the multi-junction cell and now is a global leader in solar module reliability, won the award. Three other NREL scientists won the Cherry Award previously – Paul Rappaport (1980), Larry Kazmerski (1993), and Tim Coutts (2005).

Emery says he was floored by the award, considered among the top one or two annual awards globally in the photovoltaic community.

Others aren’t surprised, citing his work to bring iron-clad certainty to the claims made by solar companies about the efficiency of their photovoltaic cells and modules – not to mention the 320 scientific publications he was able to write.

He has spent his career building the capabilities of that testing and characterization lab, making it one of a handful of premier measurement labs in the world – and the only place in the United States that calibrates primary terrestrial standards for solar-cell characterization.

Unbelievable claims of high efficiency would be out in the literature without any independent verification. “We decided that independent verification was critical for credibility,” Emery said.

“We have to thank DOE for this,” Emery said. “They’ve funded it. We’ve been able to offer the service to all terrestrial PV groups in the U.S. from national labs to universities to low-budget startups. They all get the same quality of service.”

The readily available service is so researchers and companies have equal access to the resources needed for independent efficiency measurement, he said. “We provide the same playing field for everyone.”

Emery spent the first 25 years of his life in Lansing, Michigan, attending public schools, then going on to Lansing Community College and Michigan State University where he earned his bachelor’s and master’s degrees. From there he went to Colorado State University to fabricate and test ITO on silicon solar cells, and then was hired at NREL. At NREL, in the 1980s, Emery developed the test equipment and put together the data-acquisition system for characterizing and measuring the efficiency of solar cells.

Emery gives much of the credit to the colleagues who work in his lab and who have on average about 16 years at NREL. “Take my team away and I wouldn’t have gotten this award – it’s that simple.”

Sheldon said Emery’s work “brings scientific credibility to the entire photovoltaic field, ensuring global uniformity in cell and module measurements. His getting the award is certainly well deserved.”

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.


Visit NREL online at

%d bloggers like this: