Nanoparticles for Controlled Drug Release

QDOTS imagesCAKXSY1K 8Scientists at CIC bioGUNE and the Laboratoire de Chimie des Polymères Organiques (LCPO) in Bordeaux have undertaken a project for developing ‘intelligent’ nanoparticles. These polymeric particles act as ‘nanomissiles’ against determined targets and enable the controlled release in space and time of pharmaceutical drugs, releasing their ‘load’ only when and where required. This release of medication is controlled by applying a local magnetic field.

Chemists at the LCPO are in charge of generating the nanoparticles, which have approximately the size of a virus, while the CIC bioGUNE researchers are responsible for evaluating the efficacy of a model of cell cultures. The research has been published recently in the online version of the Journal of Controlled Release.

The technique developed increases the effectiveness of the treatment, as it deposits the medication directly on the affected organ, thus avoiding side effects. Side effects of all chemotherapy treatment are, in general, a consequence of the toxicity of the drugs on healthy tissue (for example, hair loss), in many cases the dosage used not being the optimum and excessively toxic for the patient.

The system developed by the joint LCPO and CIC bioGUNE team will enable the controlled release to an organ of a pharmaceutical drug. The nanoparticles that transport the medicine are made of polymer and contain iron oxide. On applying a magnetic field, making use of the presence of iron oxide, ‘pores’ are opened at the surface of the polymer and through which the drug is released.

The localised release of the medication will reduce the effect on the healthy tissue and, at the same time, the dosage used on the cancerous tissue can be made greater. The benefits of this method are, thus, the reduction of side effects and the increase in the effectiveness of the treatment. In the words of the CIC bioGUNE researcher, Ms.Edurne Berra, “the local application of the magnetic field facilitates the release of the pharmaceutical drug and increases its cytotoxic effect on the cancer cells”.

Used as a model in this research was doxorubicin, a pharmaceutical drug widely used in chemotherapy against cancer. Moreover, the conclusions of this research could be he launching platform for developing new, intelligent systems for the release of other pharmaceutical drugs.

As Ms. Berra added, “the system studied not only enables encapsulating other types of pharmaceutical drugs other than doxorubicin, but it will also be able to incorporate molecules that recognize particular types of cancer cells. Moreover, it can be used for diagnosing the cancer with magnetic resonance and even in theragnosis, i.e. simultaneous diagnosis and drug therapy”.

Guiding stem cell migration to heal wounds

QDOTS imagesCAKXSY1K 8Healing cells migrate toward injured tissue not unlike how animals carry out their annual migrations – which is to say that it’s all a bit of a mystery. Grantees at UC Davis are working to clear up at least some of the mystery as a first step in learning to how guide stem cells to where they are needed.


There’s some evidence that wounds disrupt normal electric currents, and that cells can navigate toward that disruptions. Min Zhao and his colleagues at UC Davis have been studying how the cells detect this current and migrate accordingly. A press release about their work, published in the April 8 issue of Current Biology, quotes Zhao:

“We know that cells can respond to a weak electrical field, but we don’t know how they sense it. If we can understand the process better, we can make wound healing and tissue regeneration more effective.

They went on to give this inspired description of how cells move:

Think of a cell as a blob of fluid and protein gel wrapped in a membrane. Cells crawl along surfaces by sliding and ratcheting protein fibers inside the cell past each other, advancing the leading edge of the cell while withdrawing the trailing edge.

Essentially, all those ratcheting and sliding fibers seem to respond to the electric signal, drawing the cell toward the negative electrode.
In his Basic Biology award, which funded this work, Zhao says he hopes to optimize the type of current needed to direct the migration of stem cells to sites where they are needed. He recently filmed an Elevator Pitch with us, describing how his work could be used to guide stem cells toward a brain region damaged by stroke.

Watch the video on YouTube Here:

Peripheral Nerve Repair: Use of Nanotechnology and Tissue engineering

Author: Tilda Barliya PhD

QDOTS imagesCAKXSY1K 8Peripheral nerve lacerations are common injuries and often cause long lasting disability (1a) due to pain, paralyzed muscles and loss of adequate sensory feedback from the nerve receptors in the target organs such as skin, joints and muscles (1b).


Nerve injuries are common and typically affect young adults with the majority of injuries occur from trauma or complication of surgery. Traumatic injuries can occur due to stretch, crush, laceration (sharps or bone fragments), and ischemia, and are more frequent in wartime, i.e., blast exposure. Domestic or occupational accidents with glass, knifes of machinery may also occur.

Statistics show that peripheral nervous system (PNS) injuries were 87% from trauma and 12% due to surgery (one-third tumor related, two-thirds non– tumor related). Nerve injuries occurred 81% of the  time in the upper extremities and 11% in the lower extremities, with the balance in other locations (4).

Injury to the PNS can range from severe, leading to major loss of function or intractable neuropathic pain, to mild, with some sensory and/or motor deficits affecting quality of life.

Functional recovery after nerve injury involves a complex series of steps, each of which may delay or impair the regenerative process. In cases involving any degree of nerve injury, it is useful initially to categorize these regenerative steps anatomically on a gross level. The sequence of regeneration may be divided into anatomical zones (4):

  1. the neuronal cell body
  2. the segment between the cell body and the injury site
  3. the injury site itself
  4. the distal segment between the injury site and the end organ
  5. the end organ itself

A delay in regeneration or unsuccessful regeneration may be attributed to pathological changes that impede normal reparative processes at one or more of these zones.


Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability.

In the past few years several techniques have been used to try and repair nerve defects and include:

  • Coaptation
  • Nerve autograph
  • Biological or polymeric nerve conduits (hollow nerve guidance conduits)

For example, When a direct repair of the two nerve ends is not possible, synthetic or biological nerve conduits are typically used for small nerve gaps of 1 cm or less. For extensive nerve damage over a few centimeters in length, the nerve autograft is the “gold standard” technique. The biggest challenges, however, are the limited number and length of available donor nerves, the additional surgery associated with donor site morbidity, and the few effective nerve graft alternatives.

Degeneration of the axonal segment in the distal nerve is an inevitable consequence of disconnection, yet the distal nerve support structure as well as the final target must maintain efficacy to guide and facilitate appropriate axonal regeneration. There is currently no clinical practice targeted at maintaining fidelity of the distal pathway/target, and only a small number of researchers are investigating ways to preserve the distal nerve segment, such as the use of electrical stimulation or localized drug delivery. Thus development of tissue-engineered nerve graft may be a better matched alternative (6,7).

The guidance conduit serves several important roles for nerve regeneration such as: a) directing axonal sprouting from the regenerating nerve b) protecting the regenerating nerve by restricting the infiltration of fibrous tissue c) providing a pathway for diffusion of neurotropic and neurotophic factors

Early guidance conduits were primarily made of silicone due to its stability under physiological conditions, biocompatibility, flexibility as well as ease of processing into tubular structures. Although silicone  conduits have proven reasonably successful as conduits for small gap lengths in animal models (<5 mm). The non-biodegradability of silicone conduits has limited its application as a strategy for long-term repair and recovery. Tubes also eventually become encapsulated with fibrous tissue, which leads to nerve compression, requiring additional surgical intervention to remove the tube.Another limiting factor with inert guidance conduits is that they provide little or no nerve regeneration for gap lengths over 10 mm in the PNS unless exogenous growth factors are used (6,7).

In animal studies, biodegradable nerve guidance conduits have provided a feasible alternative, preventing neuroma formation and infiltration of fibrous tissue. Biodegradable conduits have been fabricated from natural or synthetic materials such as collagen, chitosan and poly-L-lactic acid.

Nanostructured Scaffolds for Neural Tissue Engineering: Fabrication and Design

At the micro- and nanoscale, cells of the CNS/PNS reside within functional microenvironments consisting of physical structures including pores, ridges, and fibers that make up the extracellular matrix (ECM) and plasma membrane cell surfaces of closely apposed neighboring cells. Cell-cell and cell-matrix interactions contribute to the formation and function of this architecture, dictating signaling and maintenance roles in the adult tissue, based on a complex synergy between biophysical (e.g. contact-mediated signaling, synapse control), and biochemical factors (e.g. nutrient support and inflammatory protection). Neural tissue engineering scaffolds are aimed toward recapitulating some of the 3D biological signaling that is known to be involved in the maintenance of the PNS and CNS and to facilitate proliferation, migration and potentially differentiation during tissue repair.

Nanotechnology and tissue engineering are based on two main approaches:

  • Electrospinning (top-down) – involves the production of a polymer filament using an electrostatic force. Electrospinning is a versatile technique that enables production of polymer fibers with diameters ranging from a few microns to tens of nanometers.
  • Molecular self-assembly of peptides (bottom-up) – Molecular self-assembly is mediated by weak, non-covalent bonds, such as van der Waals forces, hydrogen bonds, ionic bonds, and hydrophobic interactions. Although these bonds are relatively weak, collectively they play a major role in the conformation of biological molecules found in nature.

Pfister et al (6) very nicely summarized the various polymeric fibers been used to achieve the goal of nerve regeneration, even in humans. These material include a wide array of polymers from silica to PLGA/PEG and Diblock copolypeptides.

Many of these approaches also enlist many trophic factors that have been investigated in nerve conduits

Currently there are three general biomaterial approaches for local factor delivery:

  1. Incorporation of factors into a conduit filler such as a hydrogel
  2. Designing a drug release system from the conduit biomaterial such as microspheres
  3. Immobilizing factors on the scaffold that are sensed in place or liberated upon matrix degradation.

Maeda et al had a  creative approach to bridge larger gaps by using the combination of nerve grafts and open conduits in an alternating “stepping stone” assembly, which may perform better than an empty conduit alone (8).


Peripheral nerve repair is a growing field with substantial progress being made in more effective repairs. Nanotechnology and biomedical engineering have made significant contributions; from surgical instrumentation to the development of tissue engineered grafting substitutes.  However, to date the field of neural tissue engineering has not progressed much past the conduit bridging of small gaps and has not come close to matching the autograf. Much more studies are needed to understand the cell behaviour that can promote cell survival, neurite outgrowth, appropriate re-innervation and consequently the functional recovery post PNS/CNS injuries. This is since understanding of the cellular response to the combination of these external cues within 3D architectures is limited at this stage.



1a. Jaquet JB, Luijsterburg AJ, Kalmijn S, Kuypers PD, Hofman A, Hovius SE.  Median, ulnar, and combined median-ulnar nerve injuries:functional outcome and return to productivity. J Trauma 2001 51: 687-692.

1b. Lundborg G, Rosen B. Hand function after nerve repair. Acta Physiol (Oxf) 2007 189: 207-217.

1. Chang WC., Kliot M and Stretavan DW. Microtechnology and Nanotechnology in Nerve Repair. Neurological Research 2008; vol 30: 1053-1062.

2. Biazar E., Khorasani MT and Zaeifi D. Nanotechnology for peripheral nerve regeneration. Int. J. Nano. Dim. 2010 1(1): 1-23.

3. Albert Aguayo. Nerve regeneration revisited. Nature Reviews Neuroscience 7, 601 (August 2006).

4. Burnett MG and  Zager EL. Pathophysiology of Peripheral Nerve Injury: A Brief Review. Neurosurg Focus. 2004;16(5) .

5. Dag Welin. Neuroprotection and axonal regeneration after peripheral nerve injury. MEDICAL DISSERTATIONS

Welin, D., Novikova, L.N., Wiberg, M., Kellerth, J-O. and Novikov, L.N. Survival and regeneration of cutaneous and muscular afferent neurons after peripheral nerve injury in adult rats. Experimental Brain Research, 186, 315-323, 2008.

6. Pfister BJ., Gordon T., Loverde JR., Kochar AS., Mackinnon SE and Cullen Dk. Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges. Critical Reviews™ in Biomedical Engineering 2011, 39(2):81–124.

7. Zhou K, Nisbet D, Thouas G,  Bernard C and Forsythe J. Bio-nanotechnology Approaches to Neural Tissue Engineering. Intechopen. Com.

8. Maeda T, Mackinnon SE, Best TJ, Evans PJ, Hunter DA, Midha RT. Regeneration across ’stepping-stone’ nerve grafts. Brain Res. 1993;618(2):196–202.

10 Ways Nanomanufacturing Will Alter Industry

By Robert Lamb

QDOTS imagesCAKXSY1K 8Do you remember your childhood building blocks? You probably started out with large, wooden cubes and turned to increasingly smaller blocks as you grew older and the structures you created became more complex. That miniature version of the space shuttle wouldn’t have been nearly as accurate (or cool) with big bricks, right?

The building blocks get even smaller in the real world — so much so that even an optical microscope won’t reveal them. They exist at the nanoscale of things, where a single-walled carbon nanotube is scarcely 1 nanometer thick. To put that in relatable terms, you’d have to line up 100,000 of these nanotubes side by side in order to equal the 100-micrometer diameter of a single strand of hair .


Nanomaterials occur naturally all around us, but it wasn’t until the 1930s that scientists developed the tools to see and manipulate such minuscule building blocks as individual molecules and atoms. By directing matter at the nanoscale, scientists achieve greater control over a material’s properties, ranging from its strength and melting point to its fluorescence and electrical conductivity. We call this field nanotechnology, and it involves such diverse disciplines as chemistry, biology and physics.

Currently, more than 800 commercial products rely on nanomaterials, according to the U.S. National Nanotechnology Initiative. To capitalize on nanotechnology, however, we need to mass-produce at the nanoscale. So we enter the world of nanomanufacturing. Here are 10 ways it will change the landscape of industry forever.

10. Rise of the Super Drugs

Nanotechnology allows us to mess with matter molecularly, which is great news for the pharmaceutical industry. After all, every profitable brand-name medication ultimately breaks down to a particular, and often synthetic, molecular structure. This structure interacts with molecules in the human body, and that’s where the profitable magic happens.

Just consider the botulinum toxin in Botox treatments. The bacteria’s muscle-weakening abilities aid in the treatment of muscle pain, in addition to smoothing wrinkles. Doctors typically inject Botox into the target tissue since it can’t pass through the skin. Researchers at the University of Massachusetts Lowell Nanomanufacturing Center, however, aim to create a topical Botox cream. Their secret? Simply attach the toxin to a nanoparticle, allowing it to hitch a ride through the skin.


Meanwhile, other drugs suffer from poor solubility, resulting in inadequate or delayed absorption into the human body and, consequently, a need for greater dosage levels. Yet if we reduce the size of the drug particles to the nanoscale, then absorption rates increase and dosage levels decrease.

Finally, nanotechnology enables scientists to knit together tiny drug fragments into single “super-molecules” — such as the proposed morphine-cannabis painkiller. Envisioned by the University of Kentucky College of Medicine, this pharmaceutical tag team would consist of a morphine molecule and a THC molecule (THC being the intoxicating part of marijuana) joined by a single linking particle. Once in the body, the linking bit would break free, releasing the morphine and THC in equal, targeted doses.

Mass production at the nanoscale will enable pharmaceutical companies to create increasingly effective medication.

9. Drug Delivery Goes Nano

Nanomanufacturing will change far more than the medications we take; it also will alter the nature of drug delivery. Researchers at Northwestern University are developing drug devices made from nano-diamonds, which prevent medicine from releasing too swiftly into the body. With this technology, doctors will be able to implant months’ worth of medication directly into the affected tissue area.

But nano-manufacturing will provide far more than mere convenience — it will save lives. Just consider today’s anticancer drugs. Chemotherapy treatments often damage healthy cells as well as cancerous ones, leading to the full array of side effects typically associated with cancer treatments. By studying the inner workings of cell-seeking viruses, scientists hope to engineer nanostructures capable of delivering medication directly to targeted tissue.

Both of these nanoscale biomedical technologies enable smarter and minimally invasive treatment. Just imagine a day when chemotherapy doesn’t wipe out the entire body and when implanted nanostructures administer your daily medication for you.

8. Fresh-grown Organs All Around

Modern organ transplant technology continues to save lives, but emerging biomedical nanotechnology aims to streamline the process. In some cases, it even eliminates the need for an organ donor. Why worry about harvesting a new heart from a fresh cadaver when we can grow a new one instead?

By using a patient’s own stem cells, researchers have successfully grown human bladders and even hearts. In 2011, doctors made history by transplanting a bio-artificial trachea into a cancer patient . The key is to have accurate, organ-shaped scaffolding for the cells to grow on — such as a collagen “ghost heart” (a donor heart stripped of its cells) or a glass replica of the patient’s trachea.

Nanotechnology introduces even more exciting possibilities here, such as the use of nano-engineered gel to help nerve cells re-grow around spinal injuries. As for growing new organs wholesale, the future is also bright. Researchers at Rice University and the MD Anderson Cancer Center in Houston, Texas, have developed an organ sculpting technique that employs metal nanoparticles suspended in a magnetic field. This 3-D environment encourages the suspended cells to grow more naturally and may enable the development of complex, 3-D systems such as the heart or lung.

In the future, researchers hope to program detailed magnetic fields tailored to specific organs. So imagine a future where human organs aren’t merely harvested but custom-manufactured to fit the patient.


7. The World’s Smallest Laboratory

State-of-the-art medical diagnostic technology helps physicians save countless lives. There’s one catch: Much of this equipment requires a modern laboratory and a highly trained staff to operate it. Take this sort of diagnostic tool out of an air-conditioned, sterile and electrically stable environment and transport it to a distant outpost in the developing world, and guess what happens?


That’s right: The technology fails to function. Luckily, nanotechnology comes to the rescue with so-called lab-on-a-chip (LOC) technology. Such nanodevices would boast high-tech laboratory functions on a single, tiny chip capable of processing extremely small fluid volumes. Through lasers and electrical fields, scientists hope to manipulate these fluids and tiny particles of bacteria, viruses and DNA for analysis. The possible applications range from swift blood analysis during the initial outbreak of an epidemic to improved food safety screenings.

It all comes down to nano-manufacturing, however, as such technology would only provide a significant advantage if cheap and plentiful. A single application of a disease vaccine, after all, won’t fight off an epidemic. You need doses for multiple patients in several locations. Likewise, an LOC-enabled health scanner would only make a difference if it were standard issue in the field.

6. Honey, the Walls Are Bleeding Again

Even the most devoted horror movie fan would probably shy away from a house that oozes blood whenever you scratch the wall or suffer a mild earthquake. Yet this is exactly the sort of reality nanotechnology can bring into the world. And if nano-manufacturing makes the fruits of this technology available globally, then you may very well spend your retirement years in a bleeding house of your own.

In this case, however, bleeding walls are a good thing. Just as blood from a cut clots into a sealing scab, proposed nano-polymer particles in a house’s walls will liquefy when squeezed by an earthquake or structural collapse. This liquid will then flow into any cracks and transform back to a solid state.

The University of Leeds’ Nano-Manufacturing Institute plans to build a prototype on a Greek mountainside — with an estimated price tag of $15 million . The technology is too costly and too “bleeding-edge” (get it?) to make an impact on the construction industry just yet, but nano-manufacturing techniques could allow buildings around the world to benefit from this amazing self-healing technology.


5. Super-strong Materials

When it comes to nanotechnology, there’s no denying the abundant applications for carbon nanotubes, or carbon sealed up into cylindrical tubes. Materials forged from these tubes are both lightweight and incredibly strong, since the carbon atoms in each tube are so tightly bonded.

The applications are endless. Virtually any synthetic structure could be made lighter and more durable. In addition to improving existing structures, carbon nanotubes could make impossible structures a reality. Just consider the premise of a space elevator: a direct, physical connection between the surface of the Earth and a satellite tethered in geosynchronous orbit. Such a structure would enable humans to transport large payloads into space without explosive rocketry and costly heavy-lift vehicles.

Operating space elevators would be a game changer for not only the space exploration industry but also the energy industry. Imagine an orbital solar collector that wires energy right back down to the planet’s surface. Although the necessary carbon nanotube technology is already within grasp, the ability to cheaply mass-produce the material would move such a massive project even closer to reality .

4. Will Nano-bots Clean Up the Mess?

Nanomanufacturing will revolutionize the oil industry, enabling stronger pipelines and more effective pollution detectors as well. Plus, in the event of an oil spill or leak, tiny nanobots might just come to the rescue, “feeding” on oil as part of the cleanup effort.

Researchers at the Massachusetts Institute of Technology are currently working on a pack of autonomous, solar-powered robots called the Seaswarm. While this 16-foot (5-meter) long technology is hardly nano in scale, it does implement nanotechnology. Each Seaswarm, which already exists in prototype form, will use a conveyor belt lined with oil-absorbing nanowire fabric. The unique, hydrophobic, meshed structure of the fabric grabs the oil molecules but not the water molecules. These properties allow the fabric to absorb a reported 20 times its weight in oil, which can then be released when the fabric is heated .

How much difference will the mass-production of such nanotechnology make in the event of an oil spill? A swarm of oil-absorbing robots potentially could clean up a disaster involving millions of barrels worth of fossil fuels within a single month .


3. Tiny Oil Hunters

Speaking of oil, if you want to send a robot into an oil reservoir, you’re going to have to think small — nanorobotics small. After all, fossil fuel deposits don’t occur in large, spacious underground caverns but in the pores of solid rock. The oil travels through tiny pore throats that are tinier than the average germ . So, if you want to build a robot petite enough to explore an oil reservoir, you’ll need to design it at the nanoscale.

Scientists and oil companies envision a day when trillions of minuscule, water-soluble carbon clusters can be injected deep underground and then pulled back to the surface. Geologists would then be able to note changes in the chemical makeup of the carbon clusters to decipher such details as temperature and pressure in the oil reserve. Other, more advanced plans even call for nano-robots capable of transmitting their findings back to the surface.

2. Nano-empowered Batteries and Solar Panels

Whether facing the battery death of a beloved smartphone or the limitations of solar technology, nano-manufacturing will eventually solve your problem. Not only will nanotechnology enable the production of longer-lasting batteries and more efficient solar sails, it will also do it cheaply.

The limitations of both batteries and solar panels tend to boil down to the materials used in the electrode portion of a battery. This material is the conductor through which an electric current enters or leaves a solution in a battery. Typical electrode materials can only transmit a limited electrical charge. Nanotechnology, however, gives scientists the ability to enlarge the surface area of the electrode material at the nanoscale without increasing the material size. The trick is to boost the complexity of the material at the nanoscale.


For example, imagine two blocks of cheese of equal size: one solid cheddar and the other Swiss cheese riddled with pores and holes. Due to the interior walls of the holes, the Swiss cheese benefits from greater surface area than the solid cheddar.

Scientists have drawn inspiration for such technology from marine sponges, which assemble their complex, crystalline structures at the molecular level. And it’s that sort of assembly that factors into the last item on our list.

1. Some Self-assembly Required

All of these nano-manufacturing and nanotechnology advancements will undoubtedly change the face of industry forever, but the biggest game changer of them all will come in the form of self-assembly. The smaller the building blocks become, the closer we get to the molecular-scale building techniques of nature itself.

Earlier applications of nanotechnology implemented a top-down approach, in which scientists use instruments such as the atomic force microscope to manipulate matter at the nanoscale. The bottom-up approach, however, actually builds at the molecular level. The difference between the two approaches is not unlike that between Victor Frankenstein’s stitching together body parts to make a new human and nature simply growing one up from genetic material.

In the future, nano-manufacturing will take place entirely at a scale invisible to the naked eye, as nano-bots construct everything from delicate fabrics and super-strong steel to computing components.


The future of industry all comes down to the size and complexity of the building blocks.


How would you like to invest in immortality?





Russian Internet mogul Dmitry Itskov is looking for backers for the world’s first immortality research center.


By Clay Dillow, contributor

FORTUNE — Startups devise some fairly clever tactics to sell investors on their business models, but Russian tech entrepreneur Dmitry Itskov‘s newest venture sells itself: Invest in his new research and development interest and the payoff could be immortality. A new corporate entity that the Russian multi-millionaire will formally announce at an event in June will allow investors to bankroll research into neuroscience and human consciousness with the ultimate goal of transferring human minds into robots, extending human life indefinitely. Early investors will be first in line for the technology when it matures, something Itskov believes will happen in the 2040s.

Over lunch with reporters last week, 32-year-old Itskov outlined a rough roadmap for the future of his 2045 Initiative, a multi-decade research and development push to understand human consciousness and ultimately how to transfer it from human bodies into robotic avatars. When Itskov first became serious about selling off his Russian Internet concerns to pursue what he calls “the next evolutionary step for humanity” a few years ago, he had hoped to do so in a non-profit manner. But now, he says, he realizes that a business case is the best case for moving the project forward.

“In the beginning I thought once we raised this question it would be obvious to people that this is possible and everyone would be interested,” Itskov says. “It was naive thinking, I have to be honest. I understand now that I shouldn’t neglect those business aspects that I tried to avoid when I started thinking about this idea. We have to create business opportunities in this process or nobody will be interested over the next ten or twenty years, especially the entrepreneurs that could potentially afford to do this.”

The 2045 Initiative is a complex and expensive research project, but its goals are fairly straightforward. First, by 2020 scientists will figure out how to control robots via brain-machine interfaces (read: mind control). By 2025 the goal is to place a human brain into a working robot and have that person’s consciousness (memories, personality, and everything else that makes up the “self”) transfer along with it. After that things tip very seriously over into the realm of science fiction, as the later stages of the project aim to create robots with artificial brains to which human consciousness can be uploaded (by 2035) and, finally, completely disembodied consciousness that is something like a hologram version of a person’s mind.

If this all sounds a little crazy, Itskov says, that’s because it is. But it’s certainly not impossible. He likens the initiative to the U.S. space program, whose ultimate achievements seemed impossible in 1939, three decades prior to the moon landing. And, as with the space program, Itskov sees the 2045 Initiative as an engine for technological and economic development, one that will drive discovery in neuroscience, robotics, artificial intelligence—even spirituality. When Itskov begins leafing through slides on his laptop highlighting very real, very sophisticated brain-machine interface technologies that already exist in research labs today, the first phase of his project suddenly feels more realistic. The later phases of the 2045 Initiative still seem to border on the impossible, but Itskov is completely confident that technology will evolve to conquer these seemingly insurmountable challenges.

He’s not the only one. Speakers at this year’s Global Future 2045 Congress in New York City—the second annual event put on by the 2045 Initiative—include legendary futurist and investor Ray Kurzweil, former X PRIZE Foundation chairman and entrepreneur Dr. Peter H. Diamandis, and Dr. George Church, the molecular biologist who helped initiate the Human Genome Project, as well as a long list of influential thought leaders in business, robotics, neuroscience, and spirituality. (Itskov has even met with the Dalai Lama, who was intrigued by the project.. Several of these backers, including Kurzweil and Diamandis, recently signed a letter sent to UN Secretary General Ban Ki-moon inviting him to join the 2045 Congress when it convenes in June to talk about the future of both humanity and the 2045 Initiative.

It’s at this Congress that Itskov will likely announce the launch of his immortality business, which will quite literally allow investors to purchase a place at the front of the line once the initiative’s immortality technology matures in the 2040s. “I think if we approach some high net worth individuals with an interest in neuroscience, they would seize the opportunity to both extend their own lives and to bring this technology to humanity,” Itskov says. “And if they are responsible for bringing this technology to everybody, why don’t they get their artificial bodies first?”

There is a catch: Though Itskov is looking for initial investors to get in on the ground floor, he envisions this corporate entity—which will enter the world as a research center but expand into a technology incubator as the consciousness/brain-machine-interface/immortality space grows—operating like a non-profit for the first ten years, investing all profits back into the research. After a decade it would shift to a for-profit model and begin paying off for investors.

Of course, the real payoff here isn’t the opportunity to dump shares after some future IPO, but the chance to keep one’s consciousness alive indefinitely, long after the biological body has given out. Call it a long-term investment, and one with incalculable ROI.

International partnership between New York State and the State of Israel to grow nanotechnology industry

QDOTS imagesCAKXSY1K 8(Nanowerk News) Governor Andrew M. Cuomo today  announced the signing of a Memorandum of Understanding (MOU) to establish an  international partnership between New York State and the State of Israel,  through a collaboration involving the College of Nanoscale Science and  Engineering (CNSE) and the Israeli Industry Center for Research &  Development (MATIMOP), that will significantly expand business, technology, and  economic relations in the burgeoning field of nanotechnology, while enabling  billions of dollars in new investments and the creation of thousands of  high-tech jobs in New York and Israel.
“I am so proud of the partnership between the State of Israel  and College of Nanoscale Science and Engineering, which continues to be the  leader in the global nanotechnology industry,” said Governor Cuomo. “This  partnership will strengthen our state’s relationship with the State of Israel,  while also investing in a thriving industry that will create jobs and expand the  economy right here in New York.”
Lieutenant Governor Robert Duffy said, “This partnership is yet  another example of how Governor Cuomo has strengthened New York State’s global  reputation as an attractive place to do business and create jobs. I thank the  State of Israel for partnering with New York State to ensure the continued  growth of the global nanotechnology industry. New York State is at the forefront  of this industry, and I commend Dr. Alain Kaloyeros for his leadership and hard  work on this agreement. Through this partnership, the College of Nanoscale  Science and Engineering can continue to drive this emerging and rapidly growing  field.”
Nili Shalev, Israel’s Economic Minister to North America, said, “This agreement is the first significant step to stimulate scientific and  industrial collaboration in areas where both states excel. The partnership will  enable Israeli companies access to CNSE’s renowned facilities and collaborate  with leading American and multinational companies on campus. It introduces many  other opportunities, including industrial R&D and commercialization joint  ventures, natural synergy between the two G450 Consortia of both states, and the  enhancement of academic research in Nano scaling. I would like to congratulate  Governor Cuomo, Lt. Governor Duffy and Dr. Alain Kaloyeros, the CEO of CNSE, for  supporting this initiative.”
Dan Vilenski, Former Chairman of Applied Materials’ Israeli  subsidiary and Board member of the Israeli National Nanotechnology Initiative,  said, “Nanotechnology is one of the major areas in which both Israel and New  York have a great deal to offer. Israel is the leader in metrology and  inspection in the semiconductor market, and the State of New York has built one  of the leading facilities in the world for Nano scaling research and will play a  significant role in shaping the future of this industry.”
State University of New York Chancellor Nancy Zimpher said, “The  governor has fostered an innovation environment in New York that is drawing top  scientists from around the world, and through SUNY’s globally renowned  NanoCollege, the potential for advancement and discovery is limitless. Only a  world-class university system like SUNY can generate an international  collaboration and investment of this magnitude. I want to welcome our new  Israeli partners to New York and to the SUNY system. I am sure our combined  expertise and passion for academic excellence and high tech innovation will  yield tremendous results.”
CNSE Senior Vice President and CEO Dr. Alain Kaloyeros said, “As  further testament to the pioneering leadership, strategic vision, and critical  investments of Governor Andrew Cuomo, which have truly established New York as  the epicenter for the global nanotechnology industry, the NanoCollege is  delighted to enter into this partnership with the most prestigious Israeli  Industry Center. In harnessing the power of nanotechnology innovation to bring  together corporate and university partners from the U.S. and Israel, this  collaboration sets the stage for leading-edge advances in nanoscale  technologies, and opens the door for high-tech growth that will provide exciting  career and economic opportunities for individuals and companies across the New  New York.”
The partnership announced today between CNSE and MATIMOP, acting  on behalf of the Office of the Chief Scientist (OCS) in the ministry of Industry  Trade and Labor, builds on and leverages the multi-billion dollar investments in  New York’s nanotechnology industry under the leadership of Governor Cuomo. This  partnership will facilitate and promote bilateral and multilateral research,  development, and commercialization programs in innovative nanoscale technologies  between corporations and academic institutions in the U.S. and Israel.
Through the agreement, the Israeli government has allocated up  to $300 million a year to fund access for Israeli companies and universities to  CNSE’s state-of-the-art 300mm wafer and 450mm wafer infrastructure, facilities,  resources, and know-how, which are unparalleled worldwide. In addition, a  publicity and marketing campaign is being prepared to generate interest and  participation from Israel’s corporate and academic entities.
The centerpiece of the collaboration is the NanoCollege, the  most advanced nanotechnology education, research, development, and deployment  enterprise in the world. With more than $14 billion in high-tech investments,  over 300 global corporate partners, and a footprint that spans upstate New York,  CNSE is uniquely positioned to support this first-of-its-kind partnership.
The agreement is designed to enable a host of nanotechnology  research and development (R&D), prototyping, demonstration and  commercialization activities, including the facilitation of partnerships to spur  collaborative projects targeting industrial R&D and commercialization;  exchange of technical information and expertise to promote global development of  next-generation nanoscale technologies; and the organization of joint seminars  and workshops to enhance cooperation between corporate and academic entities in  New York and Israel.
Specific technology areas targeted for initial collaboration  include sub-systems, sensors and accessories for deployment in the nanoscale  cleanroom environment; simulation and modeling for next-generation tools and  technologies; and tools, processes, and testing technologies essential to  accelerate critical innovations in the multiple fields enabled by  nanotechnology, including nanoelectronics, energy, and health care, among  others.
Congressman Paul Tonko said, “This partnership between New York  State and Israel is yet further proof that the Capital Region is not only  renowned on a national stage, but indeed on the world stage. Clean energy  innovation jobs and long-term economic growth require investments, and Tech  Valley laid that foundation years ago. As a fast-growing region for high tech  jobs and all the ancillary benefits that follow, these sorts of partnerships led  by Governor Cuomo will ensure we remain a bright spot for continued education,  research, development and deployment by some of the most cutting edge  innovators, entrepreneurs, small businesses and large companies in the world.”
Senator Neil D. Breslin said, “This is a fantastic partnership  between New York State and the State of Israel that will create jobs, further  leverage a proven investment, and continue to let the Capital Region shine as  the forefront of the nanotechnology industry. I commend Governor Cuomo for  championing the growth in nanotechnology in New York, and the State of Israel  for choosing to enter into this great partnership.”
Assemblywoman Patricia Fahy said, “I am pleased that this  partnership between New York State and the State of Israel will not only create  jobs, but add immensely to a much-needed boost of economic development in the  Capital Region. I congratulate the Governor for bringing global attention to New  York State in the field of nanotechnology, and the State of Israel for choosing  to do business in New York.”
Mayor Jerry D. Jennings said, “I applaud Governor Cuomo for his  leadership in developing Albany’s nanotechnology sector, and thank the State of  Israel and the College of Nanoscale Science and Engineering for their hard work  in making this partnership a reality. This is great news for the Capital Region,  which has already seen immense growth in this industry, and I look forward to  ensuring that this progress continues.”
Albany County Executive Daniel McCoy said, “Governor Cuomo has  done a great job leading the way toward greater economic development, and this  partnership between New York State and the State of Israel is just another  example. I applaud the Governor, the State of Israel, and the College of  Nanoscale Science and Engineering for their hard work in developing this  partnership that will spur job creation, economic development, and greater  international attention for our state.”
Source: College of Nanoscale Science and  Engineering

Read more:

9 Incredible Uses for Graphene

QDOTS imagesCAKXSY1K 8Graphene is amazing. Or at least, it could be. Made from a layer of carbon one-atom thick, it’s the strongest material in the world, it’s completely flexible, and it’s more conductive than copper. Discovered just under a decade ago, the supermaterial potentially has some unbelievable applications for us in the not so distant future. All of these are just hypothetical at this point, but could be real before we know it.

And they’re all flippin incredible!

Water, water everywhere and EVERY drop drinkable. MIT minds have a plan for a graphene filter covered in tiny holes just big enough to let water through and small enough to keep salt out, making salt water safe for consumption.

Potable Water

Mega-fast uploads. We’re talking a whole terabit in just one second.

Mega Uploads

Plug your phone in for five seconds and it would be all charged up. The downside here is that you won’t be able to use a dead phone as an excuse anymore.


What if we actually had a clear solution for cleaning up the tainted water near Fukushima? Scientists at Rice say graphene could potentially clump together radioactive waste, making disposal is a breeze.


Graphene could pave the way for bionic devices in living tissues that could be connected directly to your neurons. So people with spinal injuries, for example, could re-learn how to use their limbs.

Human Body

It could improve your tennis game, thanks to special racquets from HEAD that aim to put the weight where it’s more useful: in the head and the grip.

Tennis Racket

Touchscreens that use graphene as their conductor could be slapped onto plastic rather than glass. That would mean super thin, unbreakable touchscreens and never worrying about shattering your phone ever again.

Phone Glass

High-power graphene supercapacitors would make batteries obselete.


Just a single sheet of graphene could produce headphones that have a frequency response comparable to a pair of Sennheisers, as some scientists at UC Berkeley recently showed us.

Berkley Frequency

Nanotechnology Facilitates More Targeted Treatments


Nanotechnology in Implantable

Medical Devices

 Topics Covered:

Introduction: What is Nanomedicine? Implantable Biosensors      Implantable Glucose Sensors Integration with Monitoring Systems      Chronic Disease Monitoring      Implantable Cardioverter-Defibrillators Implantable Drug Delivery Systems Regulatory Challenges Conclusions Sources

Introduction: What is Nanomedicine?

The term nanomedicine encompasses a broad range of technologies and materials. Types of nanomaterials that have been investigated for use as drugs, drug carriers or other nanomedicinal agents include:

  • Dendrimers
  • Polymers
  • Liposomes
  • Micelles
  • Nanocapsules
  • Nanoparticles
  • Nanoemulsions

Around 250 nanomedicine products are being tested or used in humans, according to a new report that analyzed evolving trends in this sector. According to experts, the long-term impact of nanomedicinal products on human health and the environment is still not certain.

During the last 10 years, there has been steep growth in development of devices that integrate nanomaterials or other nanotechnology. Enhancement of in vivo imaging and testing has been a highly popular area of research, followed by bone substitutes and coatings for implanted devices.

Active and passive cell targeting will continue to be an important focus in nanomedicine. Targeted nano-enhanced solutions have been shown to often enhance existing treatments, and some nanomedicinal techniques are being developed which work as diagnosis and treatment stages simultaneously.

The unknown factor as far as nanotechnology is concerned is whether the increased production, exposure and handling of products and nanomaterials will result in serious impact on the environment and humans. It is possible that toxicity will be the restricting factor for the public acceptance and commercial success of nanotechnology-based products.


Advances in modern medicine are increasingly relying on electronic devices implanted inside the patient’s body. Nanotechnology allows us to create materials and coatings to construct these devices that are fully biocompatible. Image credit: NASA

Implantable Biosensors

Micro-electromechanical systems (MEMS) and silicon chips that are capable of implantation within the human body may permit interfacing semiconductor devices with living tissues.

Implantable Glucose Sensors

A molecular nanotechnology company Zyvex, specializing in MEMS, chose Diabetech LP as its medical device commercialization and development partner for their wireless sensor implant targeting real-time blood glucose levels in the body. Their novel portable device for patients does not only display the glucose levels from the implant to the patient but also conveys automatically in real time the information to GlucoDynamix, the clinical management system of Diabetech.

Likewise Digital Angel received a patent in October 2006 for their embedded biosensor system. A glucose-sensing RFID microchip is implanted in the patient. The chip can measure glucose levels precisely and can convey the same back to a digital scanner.

This will pave the way for implantable biosensors that can evaluate disease indicators or symptoms and regulate drug release to help in disease treatment.

For example, an implanted glucose sensor can be coupled with an insulin release system and help sufferers of diabetes control their sugar levels without the need for insulin injection or pin-prick tests.

While biocompatibility and long-term stability are being addressed, a number of prototypes have begun to emerge for the management of patients having acute diabetes or to treat epilepsy and other debilitating neurological disorders, and to monitor patients suffering from heart disease.

Integration with Monitoring Systems

Virtual Medical World published an article in November 2005 that stated that a research project financed by the Academy of Finland was underway to develop of minute subcutaneous sensors that can be used for active monitoring of the heart or prosthetic joint function even over long time periods.

For instance, a subcutaneous EKG monitor can detect cardiac arrhythmia, and this data can be wirelessly transmitted to the PC or mobile phone of the physician.

Chronic Disease Monitoring

Guidant is a specialist in treating vascular and cardiac disease and has invested in CardioMEMS based on an article published in Virtual Medical Worlds in November, 2005. CardioMEMS develops novel devices based on MEMS technology to help physicians monitor remotely the progress of chronic diseases like heart failure.

The University of Texas received a grant in 2006 to fund the research and development of an implantable intravascular biosensor that will monitor disease and health progression.

The nano pressure sensor can monitor pressure within the cardiovascular system while the data is transmitted to a wristwatch-like data collection device. The data is transmitted by this external device to a central remote monitoring station where it can be seen by health care providers in real time.

Implantable Cardioverter-Defibrillators

The implantable cardioverter-defibrillator (ICD) has transformed treatment of patients at risk for sudden cardiac death because of ventricular tachyarrhythmias.

The Medtronic CareLink Monitor is a small, convenient device that allows patients to gather information by holding an antenna over the implanted cardiac device. The data is automatically downloaded by the monitor and sent through an internet connection directly to the secure Medtronic CareLink Network. The patient’s data is accessed by clinicians by logging onto a website from any internet-connected computer in their home or office or through the laptop while travelling.

The ICD systems also include portable computer systems that program the implantable cardioverter defibrillators or pacemakers. This interactive system has an LCD touch screen with a user-friendly interface that helps clinicians retrieve and study patient information during routine follow-up visits and easily makes programming changes to the implanted devices.

This video demonstrates how an Implantable Cardioverter Defibrillator or ICD is used to treat dangerously fast or irregular heart beats. Run time: 0:58s.


Implantable Drug Delivery Systems

More and more advances in modern medicine are relying on electronic devices implanted inside the patient’s body, to minimize the need for regular examinations, surgery, or in-patient time. Nanotechnology allows us to create materials and coatings to construct these devices that are fully biocompatible, so that they integrate seamlessly with the body’s systems.

Implantable drug delivery systems can deliver small amounts of drugs on a regular basis, so that the patient does not need to be injected. Implantable drug delivery systems give a more consistent drug level in the blood compared to injections, which often makes the treatment more effective and reduces side effects.

By using active monitoring capabilities built into the device, the dosage can be adjusted to suit changes in physical activity, temperature changes and other variables.

In treatments such as chemotherapy, which are usually aimed at a specific area of the body, the device can be implanted near the target area, keeping drug concentration much lower in the rest of the body.

Smart implantable insulin pumps are designed so as to offer relief for people with Type I diabetes. These are implantable, active drug delivery devices that build on and go beyond the capabilities offered by passive glucose biosensors.

Regulatory Challenges

Nanomaterials and nanotechnology offer significant promise in the medical device community, as well as many other industry sectors. They also pose a number of regulatory challenges, which as time goes by will become more pressing than the technical challenges. Some of the difficulaties in regulating nanomedical devices are as follows:

  • It is important to determine the intended use of the product, but it can be difficult to define uses among several stakeholders.
  • The indicated patient population must be understood, and there should be clarity about the claimed benefits of a product.
  • Throughout the submission process of products for market approval, it is important to communicate with the FDA or other relevant authority. Manufacturing processes are highly critical for a successful submission. Marketing, sales, labeling and international issues, training and education are all part of this effort.


Nanomedicine will transform healthcare in the coming years, changing the day-to-day business practices of health care organizations and improving how patient care is provided.

Health care organizations must monitor innovations continually, perform clinical trials and developments related to this area and also other evolving health IT solutions.

There is a lot of research going on in this area; however not many products have reached the commercialization stage. There is still a long way to go before all these promising devices become a part of our daily lives.


Nanotechnology in Chemical Warfare

QDOTS imagesCAKXSY1K 8Introduction By Will Soutter

Chemical and biological warfare has been banned by the international community. The unfortunate events of September 11, 2009, however, caused a major awakening in the US military – they realized that they may have to fight an enemy that does not always play by the rules.

The USA, and many other countries around the world, have since begun funding the development of highly advanced military technologies to tackle potential chemical threats in the future.

The Defense Science Board recently compiled a study that marked nanotechnology as one among six technology areas with high potential. The Department of Defense (DoD) is one of the largest supporters of nanotechnology research – second only to the National Science Foundation. The DoD has allocated a significant budget towards funding research in magnetics, nanoelectronics, and nanomaterials for detection and protection against biological, chemical, explosive and radiological threats.



Nanotechnology could be used to create cheap, potent chemical agents which work even in very small volumes. However, nanosensors and nanocoatings could also help to defend soliders and the public from chemical and biological attacks. Image credit:

Nanotechnology-Based Chemical Weapons

It has been noted that many aspects of nanotechnology lend themselves to creating more powerful chemical weapons. Many of the supposed risks of nanotechnology are from far-future potential developments like “grey goo” nanobots, but there is also some risk from the technology we have access to today.

The main use of current nanotechnology in chemical weapons would be derived from the research into nano-enhanced drug delivery systems – by nanoformulating chemical agents to be absorbed by the body more readily, less potent chemicals could be used effectively. Lower volumes of toxic chemicals could also be used, removing the need for industrial-scale chemical production and opening up the possibility of attacks from parties with fewer resources, like terrorist cells.

At the current time, this sort of technology is still advanced, and largely in research or very early market stages, so free access to it is not available. Nanotechnology research and regulation should take these possiblities into account, however, to make sure that access to potentially harmful technology is safely restricted.

Using Nanotechnology to Combat Chemical Weapons

Types of chemical warfare agents include the following:

Nerve agents are especially dangerous as they attack the central nervous system; even minimal exposure will result in a quick and painful death. Present methods for detecting nerve agents are often ineffective in practice – for example, spectrophotometric techniques need non-aqueous solutions.

However, Jong Seung Kim, Jong Hwa Jung and coworkers in Korea have achieved a major breakthrough in using nanoparticles to make an effective system for the detection of nerve agents in water. A nerve agent receptor based on azo-pyridine was immobilized onto silica nanoparticles. The particles turn from yellow to red in a color change recognizable to the human eye on binding to the nerve agent mimic diethylchlorophosphate.

The nanoparticles do not just detect nerve agents but also destroy them. When they are treated with NaOH, the trapped toxins decompose to less harmful molecules and the nanoparticles are recycled and can be used again.

Nanosensors for Detection of Chemical Agents

Since the Gulf War, a trend that has become quite prevalent is to attempt to reduce the need for troop presence. To this end, tiny, lightweight, highly accurate nanosensors are being considered for deployment in combat. Small, mobile and economical sensors that can enable detection of enemy troop movements will enable commanders to have a comprehensive picture of the battlefield.

Nanosensors could detect tiny quantities of chemical agents in the environment, creating an effective early warning system. Some of these materials could even simultaneously destroy the harmful chemicals. Image credit: Stanford University News.

Nanosensors have the ability to sense the presence of single molecules of specific substances. Companies like Ibis Therapeutics and Cepheid are conducting research at the nano-scale to detect biological and chemical threats. Cepheid received a major grant from the army in 2003 to detect biothreats and other pathogens.

Chad Mirkin‘s Northwestern spinoff Nanosphere contracted with the U.S. Government Technical Support Working Group to use the proprietary biomolecular detection system of Nanosphere to detect biological warfare agents such as anthrax.

Charles Lieber‘s Harvard spinout Nanosys is looking to develop a nano-enabled sensor product within the next three years.

Researchers are also working on integrating nanosensors into lightweight and ultra-strong nanomaterials for future military uniforms at MIT’s Institute of Solider Nanotechnologies.

The ISN received funding to develop a lethal, lightweight, completely integrated individual combat system. MIT is aiming at developing bullet-proof battle armor that cannot just filter out or reject toxins or chemical agents, it also weighs less than the usual 120 lbs of equipment.


Nanotechnology has a lot of advantages in terms of preventing biological and chemical attacks with effective sensors, and could give us the ability to effectively contain biological or chemical releases.

However, knowledge of nanotechnology developed by the chemical pharmaceutical industry to make more effective products could be used to make nanotechnology-based weapons which are easier to create, more deadly, and more insidious than conventional chemicla agents.

In the future, industry and political groups must consider initiating special training programs that are directed at helping future weapon inspectors becoming capable of identifying evolving and existing nanotechnologies that may be dangerous.


Quantum Materials Corporation Announces Non-Heavy Metal (Cadmium-Free) Tetrapod Quantum Dots

QDOTS imagesCAKXSY1K 8Quantum Materials Corporation Announces Non-Heavy Metal (Cadmium-Free) Tetrapod Quantum Dots

6:00 AM ET 2/12/13 | PR Newswire


quantum material corp logoQuantum Materials Corporation (QMC) (OTCQB:QTMM) announces a new class of cadmium-free, non-REE, non-heavy metal tetrapod quantum dots (NHM-TPQD) developed to meet worldwide concerns regarding nanoparticle biocompatibility and sustainability.

QMC can produce industrial scale quantities of NHM-TPQD using proprietary continuous flow chemistry processes with over 90% tetrapod shape and size uniformity, unmatched in the industry. The new availability of a reliable supply of high quantities of uniform and low cost non-heavy metal tetrapod quantum dots will spur development of products and applications in next-generation displays, sensors, biomedical research, diagnostics and drug delivery, security and conductive inks, solid-state lighting (SSL) and photovoltaic solar cells, currently under development by QMC subsidiary Solterra Renewable Technologies.

Quantum dots in biomedical imaging are unique fluorescent probes with advantages over dyes and other fluorophores. QMC has made improvements in quantum dot brightness (high quantum yield), photostability for longer sample lifetime, high uniformity, narrow band, wide spectrum, and tunable emission spectrum. According to a 2012 market research report by Global Industry Analyst, Inc., the total market for Global BioImaging Technologies in 2017 is forecast to reach $34.7 billion.

In 2011, Quantum Materials and NanoAxis LLC pioneered a Joint Alliance to develop Tetrapod Quantum Dot based Cancer diagnostic kits and theranostic applications including Alzheimer’s, Type 1 and Type 2 Diabetes, Breast Cancer and Major Depression.

Quantum Materials CEO and Founder, Mr. Stephen Squires commented, “While our cadmium-based high-brightness tetrapod quantum dots are unparalleled in photovoltaic solar cell applications and especially for commercializing high value, small quantity in vitro research and lab applications, our non-heavy metal tetrapod quantum dot answers the world’s ecological and in vivo human toxicological concerns for mass-produced QD in the biotech and other fields of science.”

Quantum Materials Corporation is poised to become the world’s largest manufacturer of quantum dots by scaling production to multiple kilograms per day in 2013. QMC’s production is not subject to any other manufacturer’s patents and QMC is free to joint venture and to license its technology.

Mr. Squires is speaking at the CHI Emerging Diagnostics Partnering Forum in San Francisco this week on quantum dot applications in the next generation of diagnostic assays, multiplexed drug delivery platforms and handheld POC devices. Quantum Materials Corporation is then exhibiting at the CHI Molecular Med Tri-Conference on February 13-14, Booth 622.

About Quantum Materials Corporation and its subsidiary, Solterra Renewable Technologies

QUANTUM MATERIALS CORPORATION, INC. has a steadfast vision that advanced technology is the solution to the most challenging of global issues. Quantum Materials Corporation is devoted to the deployment of technologies to invigorate the development of disruptive solutions through cost reduction and moving laboratory discovery to commercialization with volume manufacturing methods to establish a growing line of innovative high performance products.