Oak Ridge National Laboratory: A NANOTECH WAFER TURNS CARBON DIOXIDE INTO ETHANOL ~ Potential for Future Renewable Energy Storage


ethanol_485TECHNIQUE TO CREATE ALCOHOL FROM THIN AIR HAS APPLICATIONS IN RENEWABLE ENERGY

Now before you conjure up images of “Animal House and John Belushi” … this is NOT the latest Frat House entry into “home brews!” The Researchers at ORNL have found a way to produce a potential fuel and energy storage for renewable energy sources using Nanotechnology – converting carbon dioxide – Alex Rondinone, the lead researcher says, “it’s like pushing combustion backwards– ….”

Ethanol

 

Ethanol’s popularity stems from the fact that it’s a major component of booze, but it has also seen use in recent years as a bio-fuel. Scientists have found a way to take everyone’s least favorite greenhouse gas, carbon dioxide, and mix it with water to create alcohol.

 

A research team at Oak Ridge National Laboratory in Tennessee developed a way to convert carbon dioxide into ethanol--and they did it by accident. Originally, they were hoping to convert carbon dioxide that had been dissolved in water to methanol, a chemical released naturally by volcanic gases and microbes, which can cause blindness in humans if ingested.

But instead of methanol, they discovered they had ethanol, a primary component of gin and also a potential fuel source. Surprised, the team realized that not only was their new material converting the carbon dioxide to ethanol, it needed very little outside support.

The material is a small chip–about a square centimeter in size–covered in spikes, each just a few atoms across. Each spike is constructed out of nitrogen with a carbon sheath and a small sphere of copper embedded in each tip. The chip is dipped into water and carbon dioxide is bubbled in. The copper acts as a small lightning rod, attracting electricity and driving the first steps of the conversion of the carbon dioxide and water into ethanol, before the molecules move to the carbon sheath to finish the process.

Alex Rondinone, the lead researcher, says it’s like pushing combustion backwards–normally ethanol can burn with oxygen to produce carbon dioxide and water, as well as energy. But they’ve managed to reverse the process, supplying carbon dioxide and water, supplying it with electricity, and ending up with ethanol.

 

ethanol-producing nanomaterial

Oak Ridge National Laboratory Nanospikes used to produce ethanol

 

The new material relies on many, many small sphere of copper only a few atoms wide, held up by carbon sheaths surrounding a core of nitrogen. These immeasurably tiny structures handle the entire business of turning carbon dioxide and water into ethanol.

The new nano-structured material allowed the researchers to use widely available materials like copper instead of more expensive options like platinum. In the past, this has hampered the ability to manufacture a material like this at larger scales.

The team hopes that their material, because it’s made from more easily available components, will be able to scale up successfully.

Even though the process probably won’t help much with carbon dioxide in the atmosphere–Rondinone says it would be too energetically costly–he believes there is another way for this process to help meet energy demands.

Rondinone sees an opportunity to help with intermittent power sources like wind and solar. By capturing excess electricity generated by the process and storing it in the form of ethanol, it could be burned later when the wind turbines aren’t spinning or the sun isn’t shining.

Don’t plan on seeing a new Oak Ridge National Laboratory luxury brand of 130 proof liquor on the shelves anytime soon though. Although Rondinone says the ethanol is just like the ethanol you drink, it also contains trace quantities of formate, which is toxic to humans. He cautions, “I would not advise people to drink it without further purification.”

‘Nano-reactor’ created for the production of hydrogen biofuel


Combining bacterial genes, virus shell creates a highly efficient, renewable material used in generating power from water.

Scientists at Indiana University have created a highly efficient biomaterial that catalyzes the formation of hydrogen — one half of the “holy grail” of splitting H2O to make hydrogen and oxygen for fueling cheap and efficient cars that run on water.

A modified enzyme that gains strength from being protected within the protein shell — or “capsid” — of a bacterial virus, this new material is 150 times more efficient than the unaltered form of the enzyme.

The process of creating the material was recently reported in “Self-assembling biomolecular catalysts for hydrogen production” in the journal Nature Chemistry.

“Essentially, we’ve taken a virus’s ability to self-assemble myriad genetic building blocks and incorporated a very fragile and sensitive enzyme with the remarkable property of taking in protons and spitting out hydrogen gas,” said Trevor Douglas, the Earl Blough Professor of Chemistry in the IU Bloomington College of Arts and Sciences’ Department of Chemistry, who led the study. “The end result is a virus-like particle that behaves the same as a highly sophisticated material that catalyzes the production of hydrogen.”

Other IU scientists who contributed to the research were Megan C. Thielges, an assistant professor of chemistry; Ethan J. Edwards, a Ph.D. student; and Paul C. Jordan, a postdoctoral researcher at Alios BioPharma, who was an IU Ph.D. student at the time of the study.

The genetic material used to create the enzyme, hydrogenase, is produced by two genes from the common bacteria Escherichia coli, inserted inside the protective capsid using methods previously developed by these IU scientists. The genes, hyaA and hyaB, are two genes in E. coli that encode key subunits of the hydrogenase enzyme. The capsid comes from the bacterial virus known as bacteriophage P22.

The resulting biomaterial, called “P22-Hyd,” is not only more efficient than the unaltered enzyme but also is produced through a simple fermentation process at room temperature.

The material is potentially far less expensive and more environmentally friendly to produce than other materials currently used to create fuel cells. The costly and rare metal platinum, for example, is commonly used to catalyze hydrogen as fuel in products such as high-end concept cars.

“This material is comparable to platinum, except it’s truly renewable,” Douglas said. “You don’t need to mine it; you can create it at room temperature on a massive scale using fermentation technology; it’s biodegradable. It’s a very green process to make a very high-end sustainable material.”

In addition, P22-Hyd both breaks the chemical bonds of water to create hydrogen and also works in reverse to recombine hydrogen and oxygen to generate power. “The reaction runs both ways — it can be used either as a hydrogen production catalyst or as a fuel cell catalyst,” Douglas said.

The form of hydrogenase is one of three occurring in nature: di-iron (FeFe)-, iron-only (Fe-only)- and nitrogen-iron (NiFe)-hydrogenase. The third form was selected for the new material due to its ability to easily integrate into biomaterials and tolerate exposure to oxygen.

NiFe-hydrogenase also gains significantly greater resistance upon encapsulation to breakdown from chemicals in the environment, and it retains the ability to catalyze at room temperature. Unaltered NiFe-hydrogenase, by contrast, is highly susceptible to destruction from chemicals in the environment and breaks down at temperatures above room temperature — both of which make the unprotected enzyme a poor choice for use in manufacturing and commercial products such as cars.

These sensitivities are “some of the key reasons enzymes haven’t previously lived up to their promise in technology,” Douglas said. Another is their difficulty to produce.

“No one’s ever had a way to create a large enough amount of this hydrogenase despite its incredible potential for biofuel production. But now we’ve got a method to stabilize and produce high quantities of the material — and enormous increases in efficiency,” he said.

The development is highly significant according to Seung-Wuk Lee, professor of bioengineering at the University of California-Berkeley, who was not a part of the study.

“Douglas’ group has been leading protein- or virus-based nanomaterial development for the last two decades. This is a new pioneering work to produce green and clean fuels to tackle the real-world energy problem that we face today and make an immediate impact in our life in the near future,” said Lee, whose work has been cited in a U.S. Congressional report on the use of viruses in manufacturing.

Beyond the new study, Douglas and his colleagues continue to craft P22-Hyd into an ideal ingredient for hydrogen power by investigating ways to activate a catalytic reaction with sunlight, as opposed to introducing elections using laboratory methods.

“Incorporating this material into a solar-powered system is the next step,” Douglas said.


Story Source:

The above post is reprinted from materials provided by Indiana University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul C. Jordan, Dustin P. Patterson, Kendall N. Saboda, Ethan J. Edwards, Heini M. Miettinen, Gautam Basu, Megan C. Thielges, Trevor Douglas. Self-assembling biomolecular catalysts for hydrogen production. Nature Chemistry, 2015; DOI: 10.1038/nchem.2416