Report: Levelized Cost of Energy for Lithium-Ion Batteries Is Plummeting


Bloomberg New Energy Finance finds the long-term costs of multi-hour energy storage can compete with natural gas and coal in an increasing number of markets today.

The long-term cost of supplying grid electricity from today’s lithium-ion batteries is falling even faster than expected, making them an increasingly cost-competitive alternative to natural-gas-fired power plants across a number of key energy markets. 

That’s the key finding from a Tuesday report from Bloomberg New Energy Finance on the levelized cost of energy (LCOE) — the cost of a technology delivering energy over its lifespan — for a number of key clean energy technologies worldwide.

Read More: Four Charts that Show the Future of Battery Storage

According to its analysis of public and proprietary data from more than 7,000 projects worldwide, this benchmark LCOE for lithium-ion batteries has fallen by 35 percent, to $187 per megawatt-hour, since the first half of 2018. This precipitous decline has outpaced the continuing slide in LCOE for solar PV and onshore and offshore wind power. 

Over the past year, offshore wind saw a 24 percent decline in LCOE to fall below $100 per megawatt-hour, compared to about $220 per megawatt-hour only five years ago.

The benchmark LCOE for onshore wind and solar PV fell by 10 percent and 18 percent, respectively, to reach $50 and $57 per megawatt-hour for projects starting construction in early 2019. 

To be sure, these generation technologies are still far cheaper than batteries in terms of their LCOEs — and that’s not mentioning the fact that they actually make electricity, rather than simply storing it for later use. To convert a battery’s storage capacity into a LCOE figure, the report models a utility-scale battery installation running daily cycles, with charging costs assumed to be at 60 percent of the wholesale base power price for the country in question.  

Even so, the pace of the decline in battery LCOE, particularly for multi-hour storage applications that previous generations of lithium-ion technologies have struggled to provide, is startling, BNEF notes. Since 2012, the benchmark LCOE of lithium-ion batteries configured to supply four hours of grid power — a standard requirement for many grid services — has fallen by 74 percent, as extrapolated from historical data.

In comparison, the LCOE per megawatt-hour for onshore wind, solar PV and offshore wind has fallen by 49 percent, 84 percent and 56 percent, respectively, since 2010.

In fact, the LCOE for multi-hour lithium-ion batteries is falling to the point that “batteries co-located with solar or wind projects are starting to compete, in many markets and without subsidy, with coal- and gas-fired generation for the provision of ‘dispatchable power’ that can be delivered whenever the grid needs it (as opposed to only when the wind is blowing, or the sun is shining),” the report notes. 

These findings match those we’ve been covering from our own analysts at Wood Mackenzie Power & Renewables, as well as from the broader industry. In the past year and a half, several large-scale solar-battery requests for proposals have set record-low prices, including Xcel Energy in Colorado with solar-plus-storage bids as low as $36 per megawatt-hour, compared to $25 per megawatt-hour for standalone solar, and NV Energy reporting even lower bids in its solar and solar-plus-storage RFPs.

These price points equate to about a $6 to $7 per megawatt-hour premium for solar projects that are partially “dispatchable” in the manner of a traditional power plant, compared to standalone solar, Ravi Manghani, WoodMac energy storage research director, reported at Greentech Media’s Energy Storage Summit in December. 

Just this week, clean energy advocacy and research organization Energy Innovation and Vibrant Clean Energy released a report finding that the LCOE of new renewables in the U.S. is lower than that of nearly three-quarters of the U.S. coal fleet — a not completely surprising finding, given the coal power industry’s well-documented challenges in competing with cheap natural gas, and increasingly cheap wind and solar power. 

At the same time, it’s worth noting that the current trends in pricing for lithium-ion batteries, what they actually cost today, has been mixed. While continuing technology improvements and increasing scale of manufacturing have continued to push down prices, these have been somewhat counterbalanced in the past year or so by a bottleneck in available supply, driven by a boom in demand from big projects in the U.S. and South Korea. 

WoodMac discovered that battery rack prices fell by only about 6 percent from 2017 to 2018, rather than the 14 percent range previously predicted, based on these supply shortage challenges.

Article from GreenTech Media

Advertisements

U of Maryland: Wang Group Develops Highly Reversible 5.3 V Battery ~ 720Wh/kg for 1k cycles ~ With graphite and Li-metal anodes ~ Game Changer?


news story image

Over the last several years, increasing the energy density of batteries has been a top priority in battery technology development, congruent with increasing demands for faster mobile devices and longer-lasting electrIc vehicles.

The energy density of lithium-ion batteries can be enhanced by either increasing the capacity of electrodes, or by enhancing the cell voltage (V).

Extensive research has been devoted to exploring the pairing of various materials in the search for the most efficient cathode/anode mix, but until now, only limited advances have been achieved due to the narrow electrochemical stability window of traditional electrolyte.

Researchers at the University of Maryland (UMD) led by Chunsheng Wang – a professor with joint appointments in the Departments of Chemical & Biomolecular Engineering (ChBE), and Chemistry & Biochemistry – have developed a highly reversible 5.3 V battery offering a Mn3+-free LiCoMnO4 cathode, and graphite and Li-metal anodes.

A specially designed electrolyte was also created, which is stable to 5.5V for both the LiCoMnO4 cathode and (graphite and Li-metal) anodes. This resulted in a 5.3V Li-metal cell, delivering a high energy density of 720Wh/kg for 1k cycles.

What’s more, this battery chemistry boasts a Coulombic efficiency of >99%, offering new development opportunity for high-voltage and energy Li-ion batteries.

Long Chen – a ChBE post-doctoral research associate – and Xiulin Fan– a ChBE assistant research scientist – served as first authors on the corresponding research paper, published in Chem on February 28, 2019.

“We are pleased to announce that we have created a stable 5.3V battery,” said Long Chen.

“The key is the super electrolytes with an especially wide electrochemical windows of 0 – 5.5V – this is due to the formation of robust interfacial layer on the electrodes.”   

Said Wang, “The high voltage electrolytes enable us to use high voltage cathode and high capacity Si- and potential Li-metal anodes, which will significantly increase the cell energy density.

However, the Coulombic efficiency of >99% for 5.3V LiCoMnO4 still needs improvement to achieve a long cycle life.”

For additional information:

Chen, L., Fa, X., Hu, E., Ji, X., Chen, J., HouS., Deng, T., Li, J., Su, D., Yang, X., Wang, C. “Achieving High Energy Density through Increasing the Output Voltage:

A Highly Reversible 5.3 V Battery.” Chem, 28 February 2019. https://doi.org/10.1016/j.chempr.2019.02.003

Published March 6, 2019

Everybody Wants EV Charging Stations ~ Almost Nobody Wants to Build Them – Why?


 

MT Highway 1 images

         A Lonely Stretch of Highway in Wyoming

A driver planning to make the trek from Denver to Salt Lake City can look forward to an eight-hour trip across some of the most beautiful parts of the country, long stretches with nary a town in sight. The fastest route would take her along I-80 through southern Wyoming. For 300 miles between Laramie and Evanston, she would see, according to a rough estimate, no fewer than 40 gas stations where she could fuel up her car. But if she were driving an electric vehicle, she would see just four charging stations where she could recharge her battery.

The same holds true across the country. Gas stations outnumber public charging stations by around seven to one. It’s no wonder people get so nervous about driving an electric car.

EV charge 1 images

Numerous studies have shown that consumers steer clear of EVs because they worry about the lack of charging stations. Studies also show that consumers are more likely to buy an electric car when they see stations around town. While fears about range anxiety are largely unfounded — even the cheapest EVs sport enough range to serve nearly all of a driver’s needs — the paucity of charging stations is a real concern on longer trips, and it is deterring consumers from going all-electric.

To be clear, it’s not just consumers who want to see more chargers. Charging stations are a boon to automakers, who want to sell electric cars, as well as to power utilities, who want to sell more electricity. Some utilities and automakers are investing huge sums into setting up charging stations — including Volkswagen’s commitment to spend $2 billion on EV charging infrastructure as part of their settlement over the diesel emissions scandal. But by and large, automakers and power companies are not putting a lot of money towards charging infrastructure.

“I think the biggest problem with charging stations is there is no one responsible for installing charging stations,” said Nick Sifuentes, executive director at Tri-State Transportation Campaign. “So you see some automakers, like Tesla, installing charging stations. You see charging stations occasionally getting put out as part of a municipal planning process,” he said, “but for the most part, there is no one entity or group that feels responsible for that duty.”

Power utilities have a big interest in EVs. Despite continued economic growth, demand for electricity has stayed flat over the last decade, as businesses slash energy use and consumers switch to more power-thrifty appliances — LED light bulbs, flat-screen TVs, high-efficiency washers and dryers. EVs could drive up the demand for electricity, throwing a lifeline to power utilities. And yet, these companies largely aren’t building charging stations.

“For power utilities, the question is whether they see it as something that’s actually in their bailiwick or not,” Sifuentes said. Policymakers have not directed utilities to build out EV infrastructure, and with so few electric cars on the road, utilities are unlikely to take it upon themselves to start building charging stations.

         The Tesla Model 3

“The problem is that the charging infrastructure doesn’t have a viable business model yet,” said David Greene, a professor of civil and environmental engineering at the University of Tennessee. “Although, there are some companies who are working on it really hard.”

Private firms like EvBox and ChargePoint are looking to radically expand the number of available charging stations, but these plans depend on exponential growth in the sale of EVs. ChargePoint is looking to add 2.5 million charging stations to its global network of just 50,000, a goal it said is based on a “conservative view” of future EV sales. EvBox, meanwhile, is aiming for 1 million new charging stations. A spokesperson noted this target is “at least partly dependent on the number of electric vehicles on the road,” though he was similarly bullish on the growth of EVs. Analysts expect EV sales to increasedramatically in the coming years, though major roadblocks stand in the way of future adoption.

Even if EV sales take off and charging stations proliferate, barriers will remain. Making EVs more viable means installing not just more chargers, but more fast chargers that allow drivers to take long journeys. The difference between a fast charger and a slow charger is the difference between a family stopping for coffee while they refuel their car and a family stopping overnight.

A Chargepoint electric vehicle charging station.

 

“It’s 180 miles from Knoxville to Nashville. Supposedly there’s a [direct current] fast charger at a Cracker Barrel in Cookville, which is almost exactly halfway, but it almost never works,” Greene said. “The fact that the range is limited and the recharging time can be quite long if one does not have access to fast charging, that’s another problem.”

There is also the fact that the technology isn’t standardized. Different cars use different plugs. Ford and GM use one kind. Tesla uses another. Fast charging requires a different kind altogether. So, while charging stations dot the country, not every station meets every driver’s needs. Until manufacturers arrive at an industry standard — or policymakers mandate that standard —
“charging stations are going to need to have two or three different types of plugs, and people will need to be able to charge at different speeds because their car might not have a supercharger,” Sifuentes said.

Sifuentes believes that policymakers have a key role to play in building out charging stations. “They have to actually put in place laws and incentives that encourage the development of the necessary infrastructure, and I think that takes place in two ways,” he said. “One, encouraging utilities to do that. But also, I think we can’t ignore the role that public transit plays here.”

Different types of EV plugs.

 

New York City, he said, has pledged to switch to all-electric buses by 2040. “That means they’re going to have to put some serious charging infrastructure in place,” Sifuentes said. “If there’s a charging location that has to be put in because buses need to charge there but that’s available for private use as well, great.”

In addition to building public charging infrastructure, governments can also encourage the development of private charging infrastructure. Policymakers in Iowa and Austin, Texas, for example, are working to lower barriers to setting up charging stations, allowing private firms, as opposed to power utilities, to resell electricity. “I think the other role that policymakers have to play here is they have to actually put in place laws and incentives that encourage the development of the necessary infrastructure,” Sifuentes said.

In Norway, where EVs account for around a third of all new car sales, the government has gone a step further. The government is installing a fast charging station every 30 miles on main roads. EV drivers can get free charging at public stations in addition to free parking and free access to toll roads. Sifuentes said these kinds of policies are needed to spur the growth of EVs and support the installation of EV charging stations.

“We’re absolutely on the tipping point,” Sifeuntes said. “The more that we see EVs rolling out, the more and more it’s going to look like the right move to be putting this infrastructure in place.”

EV Charge 2 Fastned-solar-powered-EV-charger-NL

** Article from EcoWatch

Why Did Elon Musk Spend $218 Million (in stock) on an Ultracapacitor Company? The Answer may be in ‘Dry Electrode Technology’


Tesla_ElectricVehicles_XL_721_420_80_s_c1 (1)          Does Tesla want ultracapacitors? Or dry electrode technology?

Earlier this month, Tesla announced plans to acquire Maxwell Technologies, an established, 380-employee ultracapacitor and storage materials firm for $218 million in an all-stock deal. It’s easy for a transaction of this sort to get lost in the Tesla media cycle.

 

Elon Musk was once intent on studying ultracapacitors at Stanford University, long before Tesla was even a gleam in his eye. Apparently, Musk is still charged up on the technology.

Maxwell’s total revenue was $91.6 million in the first nine months of 2018, with losses of $30.2 million. Revenue in 2017 was $130.3 million with losses of $43.1 million.

So why is Tesla paying above book value (but still not enough, according to some investors) for a money-losing firm (here’s Maxwell’s SEC filing)?

Does Tesla want ultracapacitors?

Maxwell’s core business is ultracapacitors, the wide-temperature-range, high-power-density energy storage component that can rapidly charge and discharge. Also known as supercaps or electronic double layer capacitors, ultracapacitors are geared for high-power and high-cycle applications.

Batteries use a chemical process to store energy, while ultracapacitors store a static electric charge — physically separating positive and negative charges.

Maxwell’s ultracaps deliver peak power as well as regenerative braking, voltage stabilization, backup power and hybrid stop/start. Ultracaps are also used to power the pitch control adjustment in wind turbines during sudden wind speed changes, since replacing batteries at 500 feet above the ground is tricky.

In a previous interview, Maxwell’s CEO estimated that there is $5,000 worth of ultracaps in the typical wind turbine and $15,000 per electric bus. Maxwell declined to respond to GTM to update those figures.

Or dry electrode technology?

But Maxwell’s allure might not be its ultracapacitors — it might be the dry electrode technology developed by Maxwell that really intrigues Elon Musk.

The “dry” in “dry electrode technology” refers to an ultracapacitor manufacturing process that Maxwell claims can improve battery costs, performance and lifetime across a variety of lithium-ion battery chemistries. 

Maxwell states, in a release, that its dry electrode manufacturing technology, historically used to make ultracapacitors, is “a breakthrough technology that can be applied to the manufacturing of batteries.”passive-dry-electrode-schematic_Q320

white paper from Maxwell claims that its dry battery electrode (DBE) coating technology can be used with “classical and advanced” lithium-ion battery chemistries, but “unlike conventional slurry cast wet coated electrode, Maxwell’s DBE produces a thick electrode that allows for high energy density cells with better discharge rate capability than those of a wet coated electrode.” (Right: Passive dry electrode schematic)

presentation from the company claims it has “demonstrated” an energy density of greater than 300 watt-hours per kilogram and has “identified” a path to greater than 500 watt-hours per kilogram. Maxwell claims to have used the process with a number of available anode materials.

A battery expert colleague notes that solvent-free electrode manufacturing “might be worth $200 million” if Maxwell “has really eliminated the toxic solvent without compromising on performance.” Maxwell’s patent filings indicate that work is being done to eliminate solvent usage in both dry-processing and melt-processing of binders.

Other ultracap suppliers include TokinSeikoEatonCAP-XXLS UltracapacitorIoxus and Skeleton.

This deal was Tesla’s fifth acquisition since its founding; the others being manufacturing-automation firm PerbixSolarCityRiviera Tool and Grohmann Engineering.

During Maxwell’s third-quarter 2018 conference call, CEO Franz Fink noted that its dry electrode business was looking for a partner to provide “significant financial support” and expertise in EVs or energy storage systems. 

If this deal goes through in the coming quarters, Maxwell’s CEO will have gotten his wish.

Story from GTM (GreenTechMedia) – Eric Wescoff

A NEW Battery Patent Application by Tesla could deliver Faster Charging, Longer Life and Lower Cost


Tesla New Bsattery Screen_Shot_2018-04-02_at_6.51.03_AM_grande_9438dcd7-53a9-4c43-b290-bf7dc788a1af_grande

Tesla’s battery research group, led by renowned battery boffin Jeff Dahn, has applied for a patent on a new battery cell chemistry that the company says could deliver faster charging, longer life and lower cost.
In the application, entitled “Novel battery systems based on two-additive electrolyte systems,” Dahn and his team explain that adding up to five different compounds to an electrolyte can improve battery performance, but they have devised a solution using only two additives, which reduces costs compared to other systems that rely on more additives. Above: Tesla’s Model S (Instagram: brian__self)

Above: A look at why (and how) battery advances could be a game changer for Tesla (Source: Wall Street Journal)

The new two-additive mixtures can be used with lithium nickel manganese cobalt (NMC) battery chemistries. NMC chemistry is used in several EV models, but Tesla uses an NCA chemistry for its vehicle battery cells. However, Tesla does use NMC in its stationary storage batteries. According to the patent application, the new technology would be useful for both EV and grid storage applications.

Above: Jeff Dahn seated in the driver’s seat of a Tesla Model S (Source: Dalhousie University News)

Electrek has published both a copy of the complete patent application and a detailed technical summary. This news coupled with Tesla’s recent acquisition of Maxwell Technologies could point to forthcoming advances in battery tech for the Silicon Valley automaker.

Written by Charles Morris; this article originally appeared in Charged. Source: Electrek Video – Wall Street Journal

Tesla’s incredible efficiency lead is becoming clear with range test against Audi e-tron and Jaguar I-Pace


With new premium electric SUVs hitting the market, Tesla is seeing some competition, but that competition is also highlighting Tesla’s incredible lead when it comes to efficiency.

Now a third-party range test against Audi e-tron and Jaguar I-Pace is confirming that the rest of the industry is behind when it comes to efficiency.

The range and efficiency test

German electric car rental company nextmove conducted the test between the three premium electric SUVs.

The company used a pre-series Audi e-tron since they haven’t started deliveries officially, a Tesla Model X 90D with a 90 kWh battery pack. and a Jaguar I-Pace, which is also equipped with a 90 kWh pack.

The test was performed with all three vehicles driving in parallel on a 87 km stretch of the Autobahn between the Munich airport and Landshut in Germany at an average speed of 120 km/h (75 mph):

The results for the Tesla Model X, Audi e-tron, and Jaguar I-Pace

According to nextmove’s test, the Model X came out on top with an impressive lead over the two competitors:

“In direct comparison, the Tesla Model X (drag coefficient: 0.25) performed best. The consumption was 24.8 kWh per 100 km ((39.9 kWh/100mi). The Audi e-tron (drag coefficient: 0.27) showed a 23% higher consumption of 30.5 kWh/100 km (49.1 kWh/100mi). The Jaguar I-Pace (drag coefficient: 0.29) had the highest consumption of 31.3 kWh/100 km (50,37 kWh/100mi). and required 26% more than the Model X. The significantly higher consumption of the I-Pace compared to the Model X confirms previous nextmove tests on the motorway.”

The numbers clearly show that Tesla needs a lot less energy to power its SUV:

They used a Model X 90D to have a more comparable battery size with the I-Pace and e-tron, but the vehicle is no longer available for sale.

For context, nextmove also used the Model X 100D in the range comparison for what is available today:

Electrek’s Take

We already noted the disappointing efficiency in our reviews of the Audi e-tronand Jaguar I-Pace, but it’s interesting to have a direct comparison on the same road at the same time.

Also, it’s especially impressive when we consider that the Model X is bigger than both of those vehicles and therefore, it shouldn’t be more efficient.

We even noted in our review of the I-Pace that we wouldn’t even compare it to the Model X because it is more of a sedan than a SUV.

As for Audi, I think that they are intentionally giving up their efficiency in order to protect the battery pack and get a higher charge rate.

They clearly have a large buffer for their battery pack, which has a capacity of 95 kWh, but I don’t think you get access to more than 85 kWh out of it.

That’s how they manage to achieve an impressive charge rate of over 150 kWand maintain it for so long since the battery is not actually as full as you’d think and it also enables a lower average state-of-charge, which could be good for the longevity of the pack.

The disadvantage of it is that you are carrying around 15% more battery than you are ever going to use and that’s what kills the e-tron’s efficiency in our opinion.

Article by Fred Lambert of elektrek

Rivian – Electric Adventure Vehicles – For Those of You Who Wanted to See a Little More Why Amazon & GM are Considering Investing (MV $1B – $2B) – Video| Fully Charged


Rivian-Inline-R1T-Media-002-(1)

Automotive startups always need to be viewed with a little caution, but as Jonny Smith (Fully Charged) discovers, Rivian have presented a very convincing launch. A large SUV and pick up truck at the LA motor show. Most impressive. (And probably why, Amazon and GM are considering investing in the EV SUV and Truck Start-Up – See Article Below)

Rivian is developing vehicles and technology to inspire people to get out and explore the world. These are their stories about the things they make, the places they go and the people they meet along the way.

 

Amazon, GM eye investment that would value Rivian at $1 billion to $2 billion, Reuters reports

Rivian SUV II 5bfdb9b644466.image

Rivian Automotive, which plans to build the nation’s first electric pickup trucks along with SUVs in Normal, is in talks about an investment from Amazon and General Motors that would value the company at between $1 billion and $2 billion, Reuters reported Tuesday.

The two companies may receive minority stakes in the Plymouth, Mich.-based startup in a deal that could be concluded and announced this month, Reuters reported, citing sources that asked not to be identified because the matter is confidential.

The sources noted the talks may fail to reach a deal, Reuters reported. But the Chicago Tribune is reporting “talks are progressing” and a deal could be announced as soon as Friday, citing an unnamed source. 

Amazon, General Motors and Rivian did not immediately respond to requests for comment from Reuters. Normal (Illinois) Mayor Chris Koos and Mike O’Grady, interim CEO of the Bloomington-Normal Economic Development Council, did not return calls seeking comment Tuesday night. 

 

Rivian, which plans to hire as many as 1,000 employees to manufacture the “electric adventure” vehicles in the Twin Cities, unveiled a five-passenger pickup truck — the R1T — and the R1S SUV in November at the Los Angeles Auto Show. The vehicles are due in showrooms in late 2020.

 

“We’re launching Rivian with two vehicles that re-imagine the pickup and SUV segments,” Rivian founder and CEO R.J. Scaringe said in a statement at the time of the vehicles’ unveiling. “I started Rivian to deliver products that the world didn’t already have — to redefine expectations through the application of technology and innovation. Starting with a clean sheet, we have spent years developing the technology to deliver the ideal vehicle for active customers.”

The pickup, starting at $61,500, is expected to travel between 250 and 400 miles on a single charge, depending on the model, and is expected to tow up to 5,000 kilograms, or more than 11,000 pounds. The SUV, starting at around $70,000, can travel up to 400 miles on a single charge, said the company, and has a towing capacity of 3,500 kilograms.

Rivian, which received performance-based incentives from state and local governments, paid $16 million for the former Mitsubishi Motors North America plant on Normal’s west side in 2017.

Town officials said in November that Rivian had already exceeded its benchmarks for a full property tax abatement at the plant for 2018, investing $10 million and employing 35 people. The plant had 60 workers at the time. Rivian had about 600 workers at the time across not only Normal but also facilities near Detroit, Los Angeles and San Francisco.

 

The company was required to hire 500 locally and invest $40.5 million by the end of 2021 to receive hundreds of thousands in local tax breaks, plus a $1 million Normal grant, and plans to hire 1,000 locally over a decade to receive about $50 million in state income tax credits. Koos said in November the company may employ 500 when it reaches full production in 2020. “It will never be as populated as the Mitsubishi plant, but it’ll certainly be high production,” said Koos.

 

Mitsubishi employed about 3,000 in Normal at its peak. The plant had 1,200 employees when it ceased production in November 2015.

img_1049

 

Learn More About Rivian Here: Video Presentation

 

 

 

Also Watch Tenka Energy’s Short Presentation on Nano-Enabled Batteries and Super Caps: For Ev’s – Drones – Medical Devices – Electronics

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Next-Gen Lithium-Ion Batteries – Combining Graphene + Silicon Could it be the Key?


Battery

Researchers have long been investigating the use of silicon in lithium-ion batteries, as it has the potential to greatly increase storage capacity compared to graphite, the material used in most conventional lithium-ion batteries. By some estimates, silicon could boast a lithium storage capacity of 4,200 mAh/g—11 times that of graphite.

However, despite its benefits, silicon comes with its own challenges.

“When you store a lot of lithium ion into your silicon you actually physically extend the volume of silicon to about 3 to 3.8 times its original volume—so that is a lot of expansion,” explained Bor Jang, PhD, in an exclusive interview with R&D Magazine. “That by itself is not a big problem, but when you discharge your battery—like when you open your smart phone—the silicon shrinks. Then when you recharge your battery the silicon expands again. This repeated expansion and shrinkage leads to the breakdown of the particles inside of your battery so it loses its capacity.”

Jang offers one solution—graphene, a single layer sheet of carbon atoms tightly bound in a hexagonal honeycomb lattice.

“We have found that graphene plays a critical role in protecting the silicon,” said Jang, the CEO and Chief Scientist of Global Graphene Group. The Ohio-based advanced materials organization has created GCA-II-N, a graphene and silicon composite anode for use in lithium-ion batteries.

The innovation—which was a 2018 R&D 100 Award winner—has the potential to make a significant impact in the energy storage space. Jang shared more about graphene, GCA-II-N and its potential applications in his …

Interview with R&D Magazine:

 

           Photo Credit: Global Graphene Group

 

R&D Magazine: Why is graphene such a good material for energy storage?

Jang: From the early beginning when we invited graphene back in 2002 we realized that graphene has certain very unique properties. For example, it has very high electrical conductivity, very high thermal conductivity, it has very high strength—in fact it is probably the strongest material known to mankind naturally. We thought we would be able to make use of graphene to product the anode material than we can significantly improve not only the strength of the electrode itself, but we are also able to dissipate the heat faster, while also reducing the changes for the battery to catch fire or explode.

Also graphene is extremely thin—a single layer graphene is 0.34 nanometer (nm). You can imagine that if you had a fabric that was as thin as 0.34 nanometers in thickness, than you could use this material to wrap around just about anything. So it is a very good protection material in that sense. That is another reason for the flexibility of this graphene material.

 

 

BatteryRead More: Talga’s graphene silicon product extends capacity of Li-ion battery anode

Another interesting feature of graphene is that is a very high specific surface area. For instance if I give you 1.5 grams of single layer graphene it will be enough to cover an entire football stadium. There is a huge amount of surface area per unit weight with this material.

That translates into another interesting property in the storage area. In that field that is a device called supercapacitors or ultracapacitors. The operation of supercapacitors depends upon conducting surface areas, like graphene or activated carbon. These graphene sheets have, to be exact, 2630 meters squared per gram. That would give you, in principle, a very high capacity per unit gram of this material when you use it as an electron material for supercapacitors. There is are so many properties associated with graphene for energy applications, those are just examples, I could talk about this all day!

 

 

R&D Magazine: Where is the team currently with the GCA-II-N and what are the next steps for this project?

Jang: Last year we began to sell the product. In Dayton, OH, where we are situated at the moment we have a small-scale manufacturing facility. It is now about a 50-metric-ton capacity facility and we can easily scale it up. We have been producing mass qualities of this and then delivering them to some of the potential customers for validation. We are basically in the customer validation stage for this business right now.

We will continue to do research and development for this project. We will eventually manufacture the batteries here in the U.S., but at the moment we are doing the anode materials only.

R&D Magazine: What types of customers are showing interest in this technology?

Jang: Electrical vehicles are a big area that is growing rapidly, particularly in areas in Asia such as China. The electrical vehicle industry is taking the driver’s seat and is driving the growth of this business worldwide right now. E-bikes and electronic scooters are another rapidly growing business where this could be used.

Another example is your smart phone. Right now, if you continue to use your phone you may be able to last for half a day or maybe a whole day if you push it. This technology has the ability to double the amount of energy that could be stored in your battery. Electronic devices is another big area for application of this technology. 

A third area is in the energy storage business, it could be utilized to store solar energy or wind energy after it has been captured. Lithium-ion batteries are gaining a lot of ground in this market right now.

Right now, another rapidly growing area is the drone. Drones are used, not only for fun, but for agricultural purposes or for surveillance purposes, such as during natural disasters.  Drones are seeing a lot of applications right now and batteries are very important part of that.

R&D Magazine: Are there any challenges to working with graphene?

Jang: One of the major challenges is that graphene by itself is still a relatively high cost. We are doing second-generation processes right now, and I think in a couple of years we should be able to significantly reduce the cost of graphene. We are also working on a third generation of processes that would allow us to reduce the cost even further. That is a major obstacle to large-scale commercialization of all graphene applications.

The second challenge is the notion of graphene as a so-called ‘nanomaterial’ in thickness that a lot customers find it difficult to disperse in water or disperse in organic solvent or plastic in order to combine graphene with other types of materials, make a composite out of it. Therefor people are resistant to use it. We have found a way to overcome this either real challenge, or perceived challenge. We can do that for a customer and then ship that directly to the customer.

There is also an education challenge. It is sometimes difficult to convince engineers, they want to stick with the materials they are more familiar with, even though the performance is better with graphene. That is a barrier as well. However, I do think it is becoming more well known.

Laura Panjwani
Editor-in-chief R & D Magazine

Super-stable antinomy carbon composite anodes to boost potassium-ion battery storage performance


id51930_1

Potassium-ion batteries (PIBs) have been considered as promising alternatives to lithium-ion batteries due to the rich natural abundance of potassium (K) and similar redox potential with Li+/Li.

However, due to the large K ion radius and slow reaction dynamics, the previously reported PIB anode materials (carbon-based materials, alloy-based anodes such as tin and antimony, metal oxides, etc.) suffer from a low capacity and fast capacity decay.
In order to achieve a high capacity and excellent cycle stability for K storage process, rational design of the electrode materials and proper selection of the electrolytes should be considered simultaneously.
Recently, two research teams led by Prof. Chunsheng Wang and Prof. Michael R. Zachariah from the University of Maryland, College Park, have designed and fabricated a novel antimony (Sb) carbon composite PIB anode via a facile and scalable electrospray-assisted strategy and found that this anode delivered super high specific capacities as well as cycling stability in a highly concentrated electrolyte (4M KTFSI/EC+DEC).
This work has been published in Energy and Environmental Science (“Super Stable Antimony-carbon composite anodes for potassium-ion batteries”).

 

id51930_1
Figure 1. Schematic illustration of electrospray-assisted strategy for fabricating antimony @carbon sphere network electrode materials. (© Royal Society of Chemistry)
We have successfully fabricated a novel antimony carbon composite with small Sb nanoparticles uniformly confined in the carbon sphere network (Sb@CSN) via a facile and scalable electrospray-assisted strategy.
Such a unique nanostructure can effectively mitigate the deleteriously mechanical damage from large volume changes and provide a highly conductive framework for fast electron transport during alloy/de-alloy cycling process.
Alongside the novel structural design of the anode material, formation of a robust solid-electrolyte-interphase (SEI) on the anode is crucially important to achieve its long-term cycling stability.
The formation of a robust SEI on the anode material is determined by both the surface chemistries of active electrode materials as well as electrolyte compositions such as salt anion types and concentrations.
Therefore, designing a proper electrolyte is extremely important for the anode to achieve a high cycling stability.
In our study, we have for the first time developed a stable and safe electrolyte of highly concentrated 4M KTFSI/EC+DEC for PIBs to promote the formation of a stable and robust KF-rich SEI layer on an Sb@CSN anode, which guarantees stable electrochemical alloy/de-alloy reaction dynamics during long-time cycling process.
Cycling performance of antimony carbon sphere network electrode materials
Figure 2. Cycling performance of antimony carbon sphere network electrode materials at 200mA/g current density in the highly concentrated electrolyte (4M KTFSI/EC+DEC). (© Royal Society of Chemistry)
In the optimized 4M KTFSI/EC+DEC electrolyte, the Sb@CSN composite delivers excellent reversible capacity of 551 mAh/g at 100 mA/g over 100 cycles with a capacity decay of 0.06% per cycle from the 10st to 100th cycling and 504 mAh/g even at 200 mA/g after 220 cycling. This demonstrates the best electrochemical performances with the highest capacity and longest cycle life when compared with all K-ion batteries anodes reported to date.
The electrochemical reaction mechanism was further revealed by density functional theory (DTF) calculation to support such excellent Potassium-storage properties.
Capacity comparison of Sb@CSN anode with previous reported anodes in potassium ion batteries
Figure 3. Capacity comparison of Sb@CSN anode with previous reported anodes in potassium ion batteries. (© Royal Society of Chemistry)
In conclusion, these outstanding performances should be attributed to the novel nanostructure of Sb nanoparticles uniformly encapsulated into conductive carbon network and the formation of a more stable and robust KF-rich SEI layer on Sb@CSN in the optimized 4M KTFSI electrolyte.
These encouraging results will significantly promote the deep understanding of the fundamental electrochemistry in Potassium-ion batteries as well as rational development of efficient electrolyte systems for next generation high-performance Potassium-ion batteries.
Yong Yang, Research Associate, Prof. Zachariah Research Group, Department of Chemical and Environmental Engineering, University of California, Riverside

Tesla is reportedly in talks with China’s Lishen over Shanghai battery contract


tesla-model-3-red

  • Tesla has signed a preliminary agreement with China’s Tianjin Lishen to supply batteries for its new Shanghai car factory, as it aims to cut its reliance on Japan’s Panasonic, two sources with direct knowledge of the matter said.
  • The companies had yet to reach a decision on how large an order the U.S. electric car company would place, and Lishen was still working out what battery cell size Tesla would require, one of the sources said.

 

musk at giga factory in china 105663613-1546876410008rts29mq3.530x298
Tesla CEO Elon Musk attends the Tesla Shanghai Gigafactory groundbreaking ceremony in Shanghai, China, January 7, 2019.

Tesla has signed a preliminary agreement with China’s Tianjin Lishen to supply batteries for its new Shanghai car factory, as it aims to cut its reliance on Japan’s Panasonic, two sources with direct knowledge of the matter said.

The companies had yet to reach a decision on how large an order the U.S. electric car company would place, and Lishen was still working out what battery cell size Tesla would require, one of the sources said.

While Panasonic is currently Tesla’s exclusive battery cell supplier, Tesla Chief Executive Elon Musk said in November the U.S. company would manufacture all its battery modules and packs at the Shanghai factory and planned to diversify its sources.

“Cell production will be sourced locally, most likely from several companies (incl Pana), in order to meet demand in a timely manner,” Musk said in a tweet in November.

Other battery makers in the running for contracts could include Contemporary Amperex Technology and LG Chem.

Tesla broke ground on the $2 billion so-called Gigafactory, its first in China, earlier this month and plans to begin making Model 3 electric vehicles (EV) there by the end of the year.

Story from Reuters News Service

%d bloggers like this: