A Failed Car Company Gave Rise to a Revolutionary New Battery – “Fisker’s Folly” Or “Henrik’s Home-Run”?


Fisker’s solid-state battery powers electric vehicles–and drones and flying taxis.

Since Alessandro Volta created the first true battery in 1800, improvements have been relatively incremental.

When it comes to phones and especially electric vehicles, lithium-ion batteries have resisted a slew of efforts to increase their power and decrease the time it takes to charge them.

Henrik Fisker, known for his high-end sports-car design, says his Los Angeles-based company, Fisker Inc., is on the verge of a breakthrough solid-state battery that will give EVs like his sleek new EMotion an extended range and a relatively short charging period.

Fisker Inc. founder Henrik Fisker and his new EMotion electric vehicle CREDIT: Courtesy Company

“With the size of battery pack we have made room for, we could get as much as a 750-kilometer [466-mile] range,” he says. The same battery could reduce charging time to what it currently takes to fill your car with gas.

Traditional lithium-ion batteries, like all others, use a “wet” chemistry– involving liquid or polymer electrolytes–to generate power.

But they also generate resistance when working hard, such as when they are charging or quickly discharging, which creates heat. When not controlled, that heat can become destructive, which is one reason EVs have to charge slowly.

Solid-state batteries, as the name implies, contain no liquid. Because of this, they have very low resistance, so they don’t overheat, which is one of the keys to fast recharging, says Fisker.

But their limited surface area means they have a low electrode-current density, which limits power. Practically speaking, existing solid-state batteries can’t generate enough juice to push a car. Nor do they work well in low temperatures. And they can’t be manufactured at scale.

CREDIT: Courtesy Company

Fisker’s head battery scientist, Fabio Albano, solved these problems by essentially turning a one-story solid-state battery into a multistory one.

“What our scientists have created is the three-dimensional solid-state battery, which we also call a bolt battery,” says Fisker. “They’re thicker, and have over 25 times the surface that a thin-film battery has.

That has allowed us to create enough power to move a vehicle.” The upside of 3-D is that Fisker’s solid-state battery can produce 2.5 times the energy density that lithium-ion batteries can, at perhaps a third of the cost.

Fisker was originally aiming at 2023 production, but its scientists are making such rapid advances that the company is now targeting 2020.

“We’re actually ahead of where we expected to be,” Fisker says. “We have built batteries with better results quicker than we thought.” The company is setting up a pilot plant near its headquarters.

Solid state, however, isn’t problem free. Lower resistance aids in much faster charging, up to a point. “We can create a one-minute charge up to 80 percent,” Fisker says. “It all depends on what we decide the specific performance and chemistry of the battery should be.”

If a one- or two- or five-minute charge gives a driver 250 miles and handles the daily commute, that can solve the range-anxiety issue that has held back EV sales.

Solid-state-battery technology can go well beyond cars. Think about people having a solid-state battery in their garage that could charge from the grid when demand is low, so they don’t pay for peak energy, and then transfer that energy to their car battery. It could also act as an emergency generator if their power goes down. “This is nonflammable and very light,” says Fisker. “It’s more than twice as light as existing lithium-ion batteries. It goes into drones and electric flying taxis.”

Like many designers, Fisker is a bit of dreamer. But he’s also a guy with a track record of putting dreams into motion.

Joy ride.

Henrik Fisker’s car company crashed in the Great Recession, but one of the industry’s flashiest designers quickly got in gear again. His latest piece of automotive art: the EMotion.

Fisker has never created an automobile that didn’t evoke a response. He’s one of the best-known designers in the industry, with mobile masterpieces such as the Fisker Karma, the Aston Martin DB9, and the BMW Z8. It’s only appropriate his latest vehicle has been christened the EMotion.

The curvy, carbon fiber and aluminum all-wheel-drive EV, with its too-cool butterfly doors and cat’s-eye headlights, debuted at the Consumer Electronics Show in January. It will be the first passenger-vehicle offering of the new Fisker Inc.–the previous Fisker Automotive shuttered in 2013, in the aftermath of the Great Recession. (Reborn as Karma Automotive, that company makes the Revero, based on a Fisker design.)

Fisker ran out of funding but not ideas. He quickly got the new company going and has described the EMotion as having “edgy, dramatic, and emotionally charged design/ proportions–complemented with technological innovation that moves us into the future.” The car will come equipped with a Level 4 autonomous driving system, meaning it’s one step away from being completely autonomous.

You might want to drive this one yourself, though. The EMotion sports a 575-kw/780-hp- equivalent power plant that delivers a 160-mph top speed, and goes from 0 to 60 in three seconds. The sticker price is $129,000; the company is currently taking refundable $2,000 deposits.

Though designed to hold the new solid-state battery, the EMotion that will hit the road in mid-2020 has a proprietary battery module from LG Chem that promises a range of 400 miles — Tesla Model S boasts 335. About his comeback car, Fisker says he felt free to be “radically innovative.” For a niche car maker, it might be the only way to remain competitive.

Advertisements

The Battery Revolution … is it the End of Gasoline? (Youtube Video) + Henry Fisker Patents Car Battery with 500+ Mile Range – Charges in ONE Minute


electric-vehicle-charging-vs-gasoline-e1484590338347

Representing the battery breakthrough that is ready to commercialize and promises much more battery capacity for our smartphones and electric vehicles and extremely fast charging. So, the price of electric vehicles will be very close and even lower than conventional gasoline-powered vehicles very soon to provide a clean and quiet future.

Plus:  Fisker CEO Henrik Fisker on creating a new battery that can allow an electric car to go 500 miles that can be charged in one minute.

 

Are Sustainable Super-capacitors from Wood (yes w-o-o-d) the Answer for the Future of Energy Storage? Researchers at UST China Think ‘Nano-Cellulose’ may Hold the Key


Supercapacitors are touted by many as the wave of the future when it comes to battery storage for everything from cell phones to electric cars.

Unlike batteries, supercapacitors can charge and discharge much more rapidly — a boon for impatient drivers who want to be able to charge their electric cars quickly.

The key to supercap performance is electrodes with a large surface area and high conductivity that are inexpensive to manufacture, according to Science Daily.

Carbon aerogels satisfy the first two requirements but have significant drawbacks. Some are made from phenolic precursors which are inexpensive but not environmentally friendly. Others are made from  graphene and carbon nanotube precursors but are costly to manufacture.

Researchers at the University of Science and Technology of China have discovered a new process that is low cost and sustainable using nanocellulose, the primary component of wood pulp that gives strength to the cell walls of trees.

Once extracted in the lab, it forms a stable, highly porous network which when oxidized forms a micro-porous hydrogel of highly oriented cellulose nano-fibrils of uniform width and length.

Like most scientific research, there was not a straight line between the initial discovery and the final process.

A lot of tweaking went on in the lab to get things to work just right. Eventually, it was found that heating the hydrogel in the presence of para-toluenesulfonic acid, an organic acid catalyst, lowered the decomposition temperature and yielded a “mechanically stable and porous three dimensional nano-fibrous network” featuring a “large specific surface area and high electrical conductivity,” the researchers say in a report published by the journal Angewandte Chemie International.

The chemists have been able to create a low cost, environmentally friendly wood-based carbon aerogel that works well as a binder-free electrode for supercapacitor applications with electro-chemical properties comparable to commercial electrodes currently in use.

Now the hard work of transitioning this discovery from the laboratory to commercial viability will begin. Contributed by Steve Hanley

Watch Tenka Energy’s YouTube Video

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Predictions for the Evolution of the Battery Markets for EV’s and More … Looking Back … To See What is Ahead


businessman-standing-boat-looking-to-horizon-business-concept-107638369The Following articles, one from the Brookings Institute and the other from Green Technology we take a look back to some of the predictions, to get a better understanding of  how far we have come in seeking better performing (and safe) batteries and more importantly where we might be by 2030 – Team GNT

In This Post:

Five emerging battery technologies for electric vehicles

New Lithium Battery Technology Startups

Mobility Disruption | by Tony Seba, Silicon Valley Entrepreneur and Lecturer at Stanford University

 

Five emerging Battery downloadFive Emerging Battery Technologies for Electric Vehicles

September 15, 2015

As the 2016 suite of new car models makes evident, electric vehicles are finally gaining real traction in the market. At the turn of the 20th century, more than one quarter of all cars in the United States were electric, yet the electric car had all but vanished by the 1920s. This disappearance was largely due to the insufficient range and power of electric car batteries compared to gasoline engines. Furthermore, electric cars were significantly more expensive than their gasoline counterparts. These same complaints are still heard today, even though battery technology has certainly improved over the last century. Much research and development is being done on battery technology to improve performance while ensuring that batteries are lightweight, compact, and affordable.

So, what are the newest innovations in battery technology, and what do such advances mean for the electric vehicle market?

Lithium-ion batteries

Lithium-ion batteries (LIBs) are currently used in the majority of electric vehicles, and it’s likely that they will remain dominant into the next decade. Several manufacturers, including Tesla and Nissan, have invested heavily in this technology. In LIBs, positively charged lithium ions travel between the anode and the cathode in the electrolyte. LIBs have a high cyclability – the number of times the battery can be recharged while still maintaining its efficiency – but a low energy density – the amount of energy that can be stored in a unit volume. LIBs have garnered a bad reputation for overheating and catching on fire (e.g. Boeing jetsTesla carslaptops), so manufacturers have not only worked to make LIBs more stable, but they have also developed many safety mechanisms to prevent harm if a battery were to catch fire.

The LIBs on the market today primarily use graphite or silicon anodes and a liquid electrolyte. A lithium anode has been the holy grail for a long time because it can store a lot of energy in a small space (i.e. it has a high energy density) and is very lightweight. Unfortunately, lithium heats up and expands during charging, causing leaked lithium ions to build up on a battery’s surface. These growths short-circuit the battery and decrease its overall life. Researchers at Stanford recently made headway on these problems by forming a protective nanosphere layer on the lithium anode that moves with the lithium as it expands and contracts.

lithiumion_battery_diagram

Movement of lithium ions and electrons in a lithium-ion battery during charging and use. Source: Argonne National Laboratory. Used under Creative Commons license.   

Solid state batteries

Solid-state batteries have solid components. This construction provides several advantages: no worry of electrolyte leaks or fires (provided a flame-resistant electrolyte is used), extended lifetime, decreased need for bulky and expensive cooling mechanisms, and the ability to operate in an extended temperature range. Solid-state batteries can build off of the improvements made in other types of batteries. For example, Sakti3 is trying to commercialize solid-state, LIBs with funding from General Motors Ventures. Other auto manufacturers, such as Toyotaand Volkswagen, are also looking into solid state batteries to power their electric cars.

Aluminum-ion batteries

Aluminum-ion batteries are similar to LIBs but have an aluminum anode. They promise increased safety at a decreased cost over LIBs, but research is still in its infancy. Scientists at Stanford recently solved one of the aluminum-ion battery’s greatest drawbacks, its cyclability, by using an aluminum metal anode and a graphite cathode. This also offers significantly decreased charging time and the ability to bend. Researchers at Oak Ridge National Laboratory are also working onimproving aluminum-ion battery technology.

Lithium-sulfur batteries

Lithium-sulfur batteries (Li/S) typically have a lithium anode and a sulfur-carbon cathode. They offer a higher theoretical energy density and a lower cost than LIBs. Their low cyclability, caused by expansion and harmful reactions with the electrolyte, is the major drawback. However, the cyclability of Li/S batteries has recently been improved. Li/S batteries, combined with solar panels, powered the famous 3-day flight of the Zephyr-6 unmanned aerial vehicle. NASA has invested in solid-state Li/S batteries to power space exploration, and Oxis Energyis also working to commercialize Li/S batteries.

Metal-air batteries

Metal-air batteries have a pure-metal anode and an ambient air cathode. As the cathode typically makes up most of the weight in a battery, having one made of air is a major advantage. There are many possibilities for the metal, but lithiumaluminumzincsodium remain the forerunners. Most experimental work uses oxygen as the cathode to prevent the metal from reacting with CO­2in the air, because capturing enough oxygen in the ambient air is a major challenge. Furthermore, most metal-air or metal-oxygen prototypes have problems with cyclability and lifetime.

Batteries are often underappreciated when they work as designed, but harshly criticized when they don’t live up to expectations. The technologies highlighted above are by no means an exhaustive list of the developments that have been made. Electric vehicles will undoubtedly become more commonplace as batteries are improved. Advancements in batteries could not only transform the transportation industry, but they could also significantly affect global energy markets. The combination of batteries with renewable energy sources would drastically diminish the need for oil, gas, and coal, thereby altering the foundation of many economic and political norms we currently take for granted. We certainly don’t have to wait until the “perfect battery” is developed to recognize tangible improvements in performance. Despite the current shortcomings of batteries, the potential global impact that even relatively moderate improvements can have is astonishing.

Elsie Bjarnason contributed to this blog post.

China-Battery-Market (1)New Lithium Battery Technology Startups

March 4, 2017

If you stop and think about it for a second, advances in lithium batteries have powered a fair number of emerging technologies in this decade. Electric cars, drones, smartphones, these are all becoming prolific because of improvements in lithium battery technologies. When it comes to portable batteries, short of some entirely new battery technology being developed, it looks like we’re going to be stuck with lithium batteries for a while. Here’s where all these batteries will be coming from:

 

It’s been a while since we mentioned anything about battery technology or power cells and the companies looking to advance these technologies. Batteries or power cell systems are generally made up of the anode, the cathode, and the electrolyte. The most popular material for the anode and the cathode is lithium, mainly because it is a safer alternative than most materials for manufacturing batteries. When looking to improve upon the lithium battery, there are two primary areas for improvement:

  • Cycles need to be improved – Lithium batteries typically have a charge/discharge life cycle of 300 to 500 before they “die”.
  • Density needs to be increased – The more energy you can store in a battery, the smaller and lighter you can make the appliance that carries the battery.

Since we first started writing about lithium battery technology startups, there have been a few notable acquisitions. Vacuum maker Dyson acquired Sakti3 which was working on solid state batteries. If you recall, solid state batteries eliminate the need for an electrolyte which means they are safer and cheaper to manufacture. Another battery technology startup called Seeo was developing solid state batteries based on a nano-structured polymer electrolyte. Seeo was acquired by Bosch in August of 2015. Both of these acquisitions show promising possible exits for other lithium battery technology startups. We had some of our on-staff PHDs try and put together a list of lithium battery technology startups to watch and here’s what they found.

The biggest lithium battery startup out there is Boston Power, a company we wrote about before that has taken in a whopping $370 million in funding so far to develop a next generation of lithium-ion battery cells that boast a 10-year lifespan. They’ve disappeared across the pond over to China where they are building loads of batteries now for electric vehicles. We couldn’t help but put in this very cool chart from Visual Capitalist on lithium-ion battery production in China and where Boston Power fits into the bigger picture:

China is expected to become a major player in lithium battery production by 2020 with a capacity increase of +521% between 2016 and 2020. Clearly Boston Power sees a future there that avoids having to compete directly with the Tesla Gigafactory.

English startup Nexeon has taken in $108 million in funding so far to develop a unique silicon anode technology which uses nanomaterials that we won’t get into because that’s complicated, innit. Their drop-in approach means that you can just start using their new cathode in your current manufacturing process and cell capacity will increase by 30-40%. They have a fully automated pilot plant in operation at the moment and have recently expanded into Asia via Japan. Their last funding was a $38 million round last year which they plan to use for acquisitions.

We talked about this Israeli company before which has taken in $66 million in funding and is using nanotechnology, specifically quantum dots, to create a battery that charges 100X quicker. The only issue they’re facing is that the technology requires the phone to attach directly to the charger (no wires) with a proprietary 20-pin connector. This means that you would need an entire ecosystem in place before the technology could be adopted. Nonetheless, the CEO and founder Doron Myersdorf believes that this is the year for a mass production launch.

Founded in 2006, Irvine California startup Enevate has taken in around $60 million in funding so far to develop a silicon-dominant anode battery technology referred to as HD-Energy. Phone run tests show 35-50% more use time along with 4X faster charge time than conventional batteries. The Company is currently in negotiations with several original-equipment manufacturers of mobile devices to supply batteries for certain product lines. While initially targeting smartphones, the new battery technology is also expected to be used in drones and electric vehicles as well.

We first wrote about Amprius way back in 2014, a California startup out of Stanford that took in $55 million to develop an anode made out of silicon nanowires. According to the Company, they are “currently designing and selling the highest energy batteries on the market, with 15-30% more energy per unit weight and volume than state-of-the-art batteries“. They also go on to say that “Amprius products are featured in a number of smartphones released in 2013 and 2014“.  It seems like they’re pivoting into electric vehicles with their website stating “Amprius silicon nanowire anodes can improve the energy density of lithium-ion batteries by 1.4x to 10x, making them ideally suited for electric vehicles“.

This Massachusetts startup is working on an ultra-thin metal anode that can double energy density while using existing lithium-ion production infrastructure. They’ve taken in $20.5 million so far to further those aspirations, and their 3 funding rounds so far included participation from General Motors. When Samsung had all those phones catching fire recently, SolidEnergy was quick to point out that they are using electrolytes which are not flammable.

ActaCell, Inc. founded in 2007 is based in Austin, Texas, and was acquired by Contour Energy Systems in September 2012. Since the Contour Website isn’t functioning at the moment, we’re not sure if they’ve gone bankrupt or just have an incompetent hosting provider. ActaCell had raised a total of $9.8 million (of which $3 million was a grant from the Department of Commerce received in 2010) to develop cathodes made from magnesium spinel and anodes made from nanocomposite alloys. Prominent among its investors was none other than Google.

Another startup out of Massachusetts called Cadenza Innovation has taken in $5 million in funding to develop a new way of packaging lithium batteries. The founder, Christina Lampe-Onnerud, was also the founder of Boston Power so she knows a thing or two about batteries. Cadenza has also received funding from the U.S. Department of Energy for a 4-year project that began back in 2014 to expand the range of electric car batteries by increasing energy density. Cadenza’s technology is a multifunctional battery pack design that costs less, has double the density, and can manage impact energy in the event of a collision.

Massachusetts startup Ionic Materials was founded in 2011 by CEO Mike Zimmerman Ph.D., a proven serial entrepreneur who has more than 30 years of polymer expertise. The Company has taken in $4.29 million in funding (according to PitchBook) to develop a novel polymer that eliminates the liquid electrolyte, creating a completely solid battery. They plan to be in production in the next two or three years . They were recently awarded with a $3 million Advanced Research Projects Agency-Energy (ARPA-E) grant from the Department of Energy that will begin this year. Science Friday interviewed the company in this article in which the CEO is hopeful that “we’ll see devices supported by Ionic Materials’ plastic battery in two or three years“.

Colorado startup Prieto battery has taken in $2.5 million in funding from investors that included Intel and Stanley Black & Decker (NYSE:SWK). The Company is working on a 3D lithium-ion battery technology that is price-competitive, charges faster, and lasts longer. Their batteries use no liquid electrolytes, and instead use a highly conductive copper foam that can be shaped to fit spaces that are inaccessible – like the sort of custom shapes you might need when creating an ergonomic power tool. We wouldn’t be surprised to see them get acquired by SWK.

Mysterious San Jose startup QuantumScape has taken in an undisclosed amount of funding from investors that included Volkswagen, with the intent of developing a solid-state fireproof battery that can triple the range of its electric cars. The technology, which is being licensed from Stanford, was developed with a grant from the U.S. Department of Energy. QuantumScape continues to operate in stealth mode so if suddenly VW announces a vehicle that has triple the range of a Tesla, we’ll know who is behind it.

Founded in 2004 with an undisclosed amount of funding, a UK-based startup called Oxis Energy is developing and innovating a Lithium-Sulfur (Li-S) battery chemistry. This chemistry is the reason why Oxis’ patented technology is safer, lighter, maintenance-free, and provides 5 times (1,500 cycles) greater energy compared to conventional Li-ion technology. Oxis batteries can withstand the most extreme abuse like nail or bullet penetration. The Company is in the process of building pilot manufacturing facilities.

OneD Material was co-founded by Invention Capital Partners and a group of private investors who acquired Nanosys’ nanowire technologies and Palo Alto R&D activities for an undisclosed amount. Back in the day when nanotechnology first started to come to the attention of investors, Nanosys was expected to be a forerunner and actually came close to having an IPO. The OneD Material technology is a silicon-graphite anode material which improves the performance of lithium-ion batteries. Covered by more than 300 patents, their scalable SiNANOde™ production processes is available now for technology transfer and licensing.

In researching this article, it was decided to exclude lithium technology startups like Brightvolt that are targeting thin film batteries for smaller applications like IoT or credit cards. That’s because the main interest is in lithium technologies that will increase the range of electric vehicles, help smartphones stay charged longer, and enable drones to fly over longer distances.

Adoption of lithium batteries will only accelerate with a predicted reduction of battery prices in 2017 of at least 15% (after a 70% reduction in the past 5 years). With a few successful exits already, we can be assured that a new lithium battery technology from at least one of these startups will be powering a battery near you in the coming years. Think we missed a lithium battery technology company that’s targeting EVs/drones/phones? Drop us a line or a comment at Genesis Nanotechnology Inc.

electric-car-fleetMobility Disruption | by Tony Seba, Silicon Valley Entrepreneur and Lecturer at Stanford University

January 18, 2018

Tony Seba, Silicon Valley entrepreneur, Author and Thought Leader, Lecturer at Stanford University, Keynote The reinvention and connection between infrastructure and mobility will fundamentally disrupt the clean transport model. It will change the way governments and consumers think about mobility, how power is delivered and consumed and the payment models for usage.

 

GNT US Tenka EnergyWatch Our YouTube Video for Our Current Project – Nano Enabled Energy Storage

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL! – Team GNT

 

Wrapping an electrode material for Li-ion batteries into the inner spacing of carbon nanotube (CNT) – Delivers a theoretical capacity (7) times higher for electrodes


wrapanelectrElectrochemical characterization of a high capacitive electrode for lithium ion batteries using phosphorus-encapsulated carbon nanotubes

Summary:
Researchers have designed a unique lithium ion battery (LIB) electrode, where red phosphorus is stuffed into carbon nanotubes (CNTs). They revealed reversible electrochemical reactions and relatively high structural stability of red phosphorus in the nanotubes even after the fiftieth charge-discharge cycle. The charge-discharge capacities are twice or even higher than that of graphite in commercial LIBs. Therefore, a new electrode material for LIBs with high capacity is proposed.
FULL STORY

Toyohashi U 2586Researchers at the Toyohashi University of Technology have demonstrated the electrochemical performance of lithium ion batteries (LIBs) using phosphorus-encapsulated carbon nanotube electrodes, in which red phosphorus with considerable high capacity is introduced into the inner spacing of carbon nanotubes (CNTs) with a tubular structure. The electrodes indicated an improvement in the electrochemical reactivity of red phosphorus when accessible pathways of lithium ions, i.e., nanopores, were formed onto the sidewalls of the CNTs where the red phosphorus was encapsulated. Furthermore, the charge-discharge profiles and structural analysis revealed reversible electrochemical reactions and the relatively high structural stability of red phosphorus in the nanotubes even after the fiftieth charge-discharge cycle. The charge-discharge capacities show a value two times or higher than that of graphite used in commercial LIBs. Therefore, a new electrode material for LIBs with high capacity is proposed.

Red phosphorus has attracted attention as a higher capacitive electrode material for LIBs because it can deliver a theoretical capacity approximately seven times higher than that of graphite used as a commercial electrode material for LIBs. The large difference in the capacity is thought to be due to an acceptable amount of lithium ions in the structures of graphite for LiC6 or phosphorus for Li3P.

However, red phosphorus suffers enormous volumetric changes, pulverization, and peeling off during lithium ion insertion and extraction processes, resulting in rapid capacity fading due to the decrement in the amount of electrochemically reactive red phosphorus. Additionally, while electrons move onto the electrode during lithium ion insertion/extraction, red phosphorus has a disadvantage in terms of energy loss because of its low electronic conductivity.

Tomohiro Tojo and his colleagues at the Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, have synthesized unique structures in which red phosphorus is encapsulated into the inner spacing of CNTs to prevent its peeling off from the electrode and improve its electronic conductivity. For improving the electrochemical reactivity of red phosphorus through accessible pathways of lithium ions, nanopores (<5 nm) were also formed onto the sidewalls of the phosphorus-encapsulated CNTs. After phosphorus encapsulation, the phosphorus atoms were distributed inside the nanotubes, confirming the structural stability of red phosphorus.

Using phosphorus-encapsulated CNT electrodes, a reversible capacity showed approximately 850 mAh/g at the fiftieth charge-discharge cycle. This was a value at least two times higher than that of graphite electrodes. The estimated ratio of charge and discharge capacities (Coulombic efficiencies) of >99% after the tenth cycle and the subsequent cycles, which indicates a high reversibility of charge-discharge reactions on red phosphorus. However, the charge-discharge capacities gradually decreased with increasing cycle number because of the dissociation of some P-P bonds and other side reactions on the surface of phosphorus and the CNTs. Interestingly, the phosphorus-encapsulated CNT with nanopores facilitated the significant improvement in electrochemical performance compared with the phosphorus-encapsulated CNT without nanopores. This is suggested to be due to the high reactivity of red phosphorus with lithium ions through the nanopores on the sidewalls. After the charge-discharge cycles, red phosphorus was observed to be inside the nanotubes.

We have proposed phosphorus-encapsulated CNTs as an electrode material for LIBs with high capacity, even though additional improvements in the structures are required to achieve long-term cycling without capacity fading. Further studies will be performed on the utilization of such electrodes.

Story Source:

Materials provided by Toyohashi University of TechnologyNote: Content may be edited for style and length.


Journal Reference:

  1. Tomohiro Tojo, Shinpei Yamaguchi, Yuki Furukawa, Kengo Aoyanagi, Kotaro Umezaki, Ryoji Inada, Yoji Sakurai. Electrochemical Performance of Lithium Ion Battery Anode Using Phosphorus Encapsulated into Nanoporous Carbon NanotubesJournal of The Electrochemical Society, 2018; 165 (7): A1231 DOI: 10.1149/2.0351807jes

“Just a pinch” of salt can improve battery performance


Battery salt 5af984d302cf4When an MOF is carbonised it transforms into a nano-diatom like the way a dragon egg, when given fire-treatment, turns into a fire-born dragon in Game of Thrones. Credit: Dr Jingwei Hou

 

Researchers at Queen Mary University of London, University of Cambridge and Max Planck Institute for Solid State Research have discovered how a pinch of salt can be used to drastically improve the performance of batteries.

They found that adding salt to the inside of a supermolecular sponge and then baking it at a high temperature transformed the sponge into a  based structure.

Surprisingly, the salt reacted with the sponge in special ways and turned it from a homogeneous mass to an intricate structure with fibres, struts, pillars and webs. This kind of 3-D hierarchically organised carbon structure has proven very difficult to grow in a laboratory but is crucial in providing unimpeded ion transport to active sites in a battery.

In the study, published in JACS (Journal of the American Chemical Society), the researchers demonstrate that the use of these  in Lithium-ion batteries not only enables the batteries to be charged-up rapidly, but also at one of the highest capacities.

Due to their intricate architecture the researchers have termed these structures ‘nano-diatoms’, and believe they could also be used in  and conversion, for example as electrocatalysts for hydrogen production.

Lead author and project leader Dr. Stoyan Smoukov, from Queen Mary’s School of Engineering and Materials Science, said: “This metamorphosis only happens when we heat the compounds to 800 degrees centigrade and was as unexpected as hatching fire-born dragons instead of getting baked eggs in the Game of Thrones. It is very satisfying that after the initial surprise, we have also discovered how to control the transformations with chemical composition.”

Carbon, including graphene and carbon nanotubes, is a family of the most versatile materials in nature, used in catalysis and electronics because of its conductivity and chemical and thermal stability.

3-D carbon-based nanostructures with multiple levels of hierarchy not only can retain useful physical properties like good electronic conductivity but also can have unique properties. These 3-D carbon-based materials can exhibit improved wettability (to facilitate ion infiltration), high strength per unit weight, and directional pathways for fluid transport.

It is, however, very challenging to make carbon-based multilevel hierarchical structures, particularly via simple chemical routes, yet these structures would be useful if such materials are to be made in large quantities for industry.

The supermolecular sponge used in the study is also known as a metal organic framework (MOF) material.

These MOFs are attractive, molecularly designed porous materials with many promising applications such as gas storage and separation. The retention of high surface area after carbonisation – or baking at a high temperature—makes them interesting as electrode materials for batteries.

However, so far carbonising MOFs has preserved the  of the initial particles like that of a dense carbon foam. By adding salts to these MOF sponges and carbonising them, the researchers discovered a series of carbon-based materials with multiple levels of hierarchy.

Dr. R. Vasant Kumar, a collaborator on the study from University of Cambridge, commented: “This work pushes the use of the MOFs to a new level. The strategy for structuring carbon materials could be important not only in energy storage but also in energy conversion, and sensing.”

Lead author, Tiesheng Wang (王铁胜), from University of Cambridge, said: “Potentially, we could design nano-diatoms with desired structures and active sites incorporated in the carbon as there are thousands of MOFs and salts for us to select.”

 Explore further: Full of hot air and proud of it: Improving gas storage with MOFs

More information: Tiesheng Wang et al. Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra, Journal of the American Chemical Society (2018). DOI: 10.1021/jacs.8b02411

Read more at: https://phys.org/news/2018-05-scientists-salt-battery.html#jCp

Clean Disruption of Energy and Transportation – Conference on World Affairs – Boulder, Colorado: Conference Video


Tony Seba 1 images

 

Published on Apr 25, 2018

tony-seba 2 -ev-cost-curve‘Rethinking the Future – Clean Disruption of Energy and Transportation’ is Tony Seba’s opening keynote at the 70th annual Conference on World Affairs in Boulder, Colorado, April 9th, 2018. The Clean Disruption will be the fastest, deepest, most consequential disruption of energy and transportation in history. Based on Seba’s #1 Amazon bestselling book “Clean Disruption” and Rethinking Transportation 2020-2030, this presentation lays out what the key technologies and business model innovations are (batteries, electric vehicles, autonomous vehicles, ride-hailing and solar PV), how this technology disruption will unfold over the next decade as well as key implications for society, finance, industry, cities, geopolitics, and infrastructure. The 2020s will be the most technologically disruptive decade in history. By analyzing and anticipating these disruptions we can learn that the benefits to humanity will be immense but to seize the upside we will need to mitigate the negative consequences. As the opening keynote speaker at the prestigious Conference on World Affairs, Seba follows on the footsteps of luminaries such as Eleanor Roosevelt and Buckminster Fuller.

Watch the Video 
 

Supporting the EV Revolution: New battery technologies are getting a “charge” from venture investors


Battery Investors 5 ev-salesVenture capital investors once again are getting charged up over new battery technologies.

The quest to build a better battery has occupied venture investors for nearly a decade, since the initial clean technology investment bubble of the mid-2000s.

Read More: Mobility Disruption by Tony Seba – Silicon Valley Entrepreneur and Lecturer at Stanford University – The Coming EV Revolution by 2030?

Battery Investors 6 Announcements

Now, some of those same investors are returning to invest in battery businesses, drawn by the promise of novel chemistries and new materials that aim to make more powerful, smaller and safer batteries.

One of the latest to raise new money is Gridtential, a battery technology developer pitching a new take on a classic battery chemistry… the centuries old lead acid battery. Gridtential’s innovation, for which it’s filed several patents, is to use silicon plating instead of non-reactive lead plating in the battery.

The company’s novel approach has won it the backing of four big battery manufacturers, in an earlier $6 million round of funding in January, and now the company has raised another $5 million to continue to build out the business from new investor 1955 Capital.

Gridtential’s funding is the latest in a series of new investments into battery companies coming from venture firms this year.

Battery companies raised $480 million in the first half of the year according to data from cleantech investment and advisory services firm Mercom Capital.

Much of that capital was actually committed to one big battery company, Microvast. The Texas-based battery manufacturer raised $400 million in funding led by CITIC Securities and CDH Investment — two of China’s biggest and best investment firms.

Battery Investors 7 china-leads-push-for-new-energy-technologies-lg-11272017

The presence of big Chinese investors in a Stafford, Texas-based company shouldn’t come as a surprise. Batteries are big business (just ask Tesla).

As more vehicles become electrified, the demand for new energy storage solutions will just continue to climb. Add a movement to put more renewable energy on the electricity grid, and that more than doubles the demand for good, big, high performance storage solutions. Go Ultra Low Electric Vehicle on charge on a London street

Indeed, major tech companies are swarming all over the battery business. In addition to Tesla’s push into power, Alphabet is also looking at developing new grid-scale storage technologies, according to a recent report from Bloomberg.

Go Ultra Low Nissan LEAF (L) and Kia Soul EV (R) on charge on a London street. Ultra-low emission vehicles such as this can cost as little as 2p per mile to run and some electric cars and vans have a range of up to 700 miles.

Battery industry players aren’t sitting on their hands, and that’s why companies like East Penn Manufacturing, the largest single-site, lead-acid battery plant; Crown Battery Manufacturing, a developer of deep-cycle applications; Leoch International, one of the biggest lead acid battery exporters in China, and Power-Sonic Inc., a specialty battery distributor all committed capital.

“What’s unique about the battery is two things. One is the use of silicon. It’s built as a stack of cells in series rather than a group of cells in parallel. The silicon plates are used as current collectors — they are really very thin pieces of wire that connect one cell to the next,” explains chief executive Chris Beekhuis. “It creates a density of current and uniform temperature across the plate, both of which prevent sulfation.”

As the energy storage world focuses its attention on building better batteries based on lithium-ion technology (the batteries that are in cell phones and electric vehicles), traditional battery manufacturers could potentially be nervous about seeing their market share erode.

 

With its new design for lead acid batteries, Gridtential is making a smaller, more energy dense, lead acid battery that is perfect for use in hybrid vehicles, storing energy from the power grid and creating backup power supplies.

The other benefit of silicon (in addition to being less toxic), is that a massive supply chain already exists for the stuff. Solar panels and chip manufacturers have created a huge amount of manufacturing supply for the raw materials (something that’s becoming a problem for the lithium-ion business), and the material is relatively cheap, Beekhuis said.

It’s also 40% lighter than a traditional lead battery and will be cost competitive with existing battery costs at roughly $300 per kilowatt-hour of storage in automotive applications.

Unlike other battery companies that intend to manufacture and sell their own batteries, Gridtential intends to license its process (like a more traditional software business would). Indeed, the company has brought in a former Dolby executive to run its licensing operations.

That means, Gridtential’s trademarked “silicon joule” technology could become the Intel inside for lead acid battery makers.

“You’re combining the best of lithium-ion and lead acid in a product that is attractive to the market,” says Andrew Chung, the founder of 1955 Capital .

Chung, a longtime investor in sustainability technologies, sees Gridtential as a response to the capitally intensive missteps that investors have made in the past when backing battery companies.

“Can you commercialize it capital efficiently?” Chung asked. That’s the big question companies face and in the case of Gridtential, the reliance on silicon is critical. “You’re able to move away from that huge upfront cost to invent manufacturing,” Chung told me.

While Gridtential is tackling the lead acid battery market, Romeo Power, which raised a $30 million seed round in late August, is looking at novel technologies for lithium ion battery packs. Not focusing on battery chemistry itself, Romeo is wooing investors with its pitch for power management.

As Romeo co-founder Mike Patterson:

“The [battery] cells are a commodity, it’s true. But of the hundreds of cells [available to buy], you have to know which is the best for a particular application. Then you have to get as many cells as you can into the smallest space possible, to create volumetric density. Then,” he says, “to keep the cells from getting too hot, you need to put them in the right container and connect them using the right materials and methods.”

Some projects are even farther afield. Bill Joy, for instance, has doubled down on his investment in an entirely new material science that could radically remake the battery industry.

One of the solutions to Joy’s “grand challenge” breakthroughs, Ionic Materials has created a low-cost new material that completely reimagines what makes a battery. “We had decided in the case of batteries that the thing that would make the difference would be to have them not have liquids in them,” Joy said of the initial challenge.

The solution was found in a material invented in 2011 by a Tufts professor and former Bell Labs researcher named Mike Zimmerman. The new technology is called a solid polymer lithium metal battery.

“Mike invented a specialty polymer that he can tweak and conduct ions at room temperature,” Joy told me. “It’s a new conduction mechanism.”

Ionic’s energy storage tech uses a solid, almost plastic-like, polymer to allow lithium ions to flow from anode to cathode. The company claims that its new electrolytes can work the same as a cathode; are conductive at room temperature, can be more stable, less flammable, and can be produced in high volumes.

Wired called it the Jesus Battery.

Indeed, if the company’s material can allow for greater flexibility, more power, and better safety standards than a traditional lithium-ion battery, it would be a miracle.

It’ll take something of a miracle to advance battery technologies. There haven’t been significant innovations in energy storage for a few decades, with most of the real improvements coming in how batteries are packed together to create more storage capacity. The inherent technology has remained fairly constant.

While Romeo is tackling the packing problem, both Gridtential and Ioinic are proposing material science solutions to some of the battery industry’s problems — and as the financing indicates they’re not the only ones.

Battery Investors 3 190078748_d8e3d76813_oEnergy storage is a potential trillion-dollar business, and with a potential market of that size, it’s no wonder that investors are (albeit cautiously) coming back in to a market that had jolted them in the past.

 

 

MIT Technolgy Review: This battery advance could make electric vehicles far cheaper


Sila Nanotechnologies has pulled off double-digit performance gains for lithium-ion batteries, promising to lower costs or add capabilities for cars and phones.

For the last seven years, a startup based in Alameda, California, has quietly worked on a novel anode material that promises to significantly boost the performance of lithium-ion batteries.

Sila Nanotechnologies emerged from stealth mode last month, partnering with BMW to put the company’s silicon-based anode materials in at least some of the German automaker’s electric vehicles by 2023.

A BMW spokesman told the Wall Street Journal the company expects that the deal will lead to a 10 to 15 percent increase in the amount of energy you can pack into a battery cell of a given volume. Sila’s CEO Gene Berdichevsky says the materials could eventually produce as much as a 40 percent improvement (see “35 Innovators Under 35: Gene Berdichevsky”).

For EVs, an increase in so-called energy density either significantly extends the mileage range possible on a single charge or decreases the cost of the batteries needed to reach standard ranges. For consumer gadgets, it could alleviate the frustration of cell phones that can’t make it through the day, or it might enable power-hungry next-generation features like bigger cameras or ultrafast 5G networks.

Researchers have spent decades working to advance the capabilities of lithium-ion batteries, but those gains usually only come a few percentage points at a time. So how did Sila Nanotechnologies make such a big leap?

Berdichevsky, who was employee number seven at Tesla, and CTO Gleb Yushin, a professor of materials science at the Georgia Institute of Technology, recently provided a deeper explanation of the battery technology in an interview with MIT Technology Review.

Sila co-founders (from left to right), Gleb Yushin, Gene Berdichevsky and Alex Jacobs.

An anode is the battery’s negative electrode, which in this case stores lithium ions when a battery is charged. Engineers have long believed that silicon holds great potential as an anode material for a simple reason: it can bond with 25 times more lithium ions than graphite, the main material used in lithium-ion batteries today.

But this comes with a big catch. When silicon accommodates that many lithium ions, its volume expands, stressing the material in a way that tends to make it crumble during charging. That swelling also triggers electrochemical side reactions that reduce battery performance.

In 2010, Yushin coauthored a scientific paper that identified a method for producing rigid silicon-based nanoparticles that are internally porous enough to accommodate significant volume changes. He teamed up with Berdichevsky and another former Tesla battery engineer, Alex Jacobs, to form Sila the following year.

The company has been working to commercialize that basic concept ever since, developing, producing, and testing tens of thousands of different varieties of increasingly sophisticated anode nanoparticles. It figured out ways to alter the internal structure to prevent the battery electrolyte from seeping into the particles, and it achieved dozens of incremental gains in energy density that ultimately added up to an improvement of about 20 percent over the best existing technology.

Ultimately, Sila created a robust, micrometer-size spherical particle with a porous core, which directs much of the swelling within the internal structure. The outside of the particle doesn’t change shape or size during charging, ensuring otherwise normal performance and cycle life.

The resulting composite anode powders work as a drop-in material for existing manufacturers of lithium-ion cells.

With any new battery technology, it takes at least five years to work through the automotive industry’s quality and safety assurance processes—hence the 2023 timeline with BMW. But Sila is on a faster track with consumer electronics, where it expects to see products carrying its battery materials on shelves early next year.

Venkat Viswanathan, a mechanical engineer at Carnegie Mellon, says Sila is “making great progress.” But he cautions that gains in one battery metric often come at the expense of others—like safety, charging time, or cycle life—and that what works in the lab doesn’t always translate perfectly into end products.

Companies including Enovix and Enevate are also developing silicon-dominant anode materials. Meanwhile, other businesses are pursuing entirely different routes to higher-capacity storage, notably including solid-state batteries. These use materials such as glass, ceramics, or polymers to replace liquid electrolytes, which help carry lithium ions between the cathode and anode.

BMW has also partnered with Solid Power, a spinout from the University of Colorado Boulder, which claims that its solid-state technology relying on lithium-metal anodes can store two to three times more energy than traditional lithium-ion batteries. Meanwhile, Ionic Materials, which recently raised $65 million from Dyson and others, has developed a solid polymer electrolyte that it claims will enable safer, cheaper batteries that can operate at room temperature and will also work with lithium metal.

Some battery experts believe that solid-state technology ultimately promises bigger gains in energy density, if researchers can surmount some large remaining technical obstacles.

But Berdichevsky stresses that Sila’s materials are ready for products now and, unlike solid-state lithium-metal batteries, don’t require any expensive equipment upgrades on the part of battery manufacturers.

As the company develops additional ways to limit volume change in the silicon-based particles, Berdichevsky and Yushin believe they’ll be able to extend energy density further, while also improving charging times and total cycle life.

This story was updated to clarify that Samsung didn’t invest in Ionic Material’s most recent funding round.

Read and Watch More:

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL! YouTube Video:

NREL’s collaboration with Purdue University’s School of Mechanical Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level, which can lead to improvements in electric vehicle (EV) battery performance and lifespan.


NREL LI Batt 1 2018018-thsc-micromodelElectrochemical simulation within a 3D nickel manganese cobalt electrode microstructure during a 20-minute fast charge. Streamlines represent Li-ion current in the electrolyte phase as ions travel through pores between the solid active material particles. Colors represent current magnitude. Illustration by Francois Usseglio-Viretta and Nicholas Brunhart-Lupo, NREL.

NREL’s collaboration with Purdue University’s School of Mechanical Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level, which can lead to improvements in electric vehicle (EV) battery performance and lifespan. A stochastic algorithm developed by Purdue University, as part of NREL’s Advanced Computer-Aided Battery Engineering Consortium, is prominently displayed on the cover of the 10th anniversary issue of American Chemical Society’s Applied Materials and Interfaces. The NREL/Purdue team’s corresponding article, “Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes” detailing the research and resulting discoveries, is showcased inside.

This work builds on earlier phases of the U.S. Department of Energy’s Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) program. NREL’s energy storage team has led key research projects since CAEBAT’s inception in 2010, resulting in the creation of software tools for cell and battery design, as well as advancements in crash simulations used by many automakers.

This next phase of CAEBAT focuses on Li-ion electrode microstructure applications (accurately simulating the physics and geometric complexity of a battery) to better understand the impact materials and manufacturing controls have on cell performance. Li-ion batteries represent a complex non-linear system and considering EVs use larger batteries with more complex configurations, it is imperative to understand the interplay between electrochemical, thermal, and mechanical physics.

Says Kandler Smith, NREL co-author on the article, “Batteries are an exceedingly complex system—both in terms of their physics and geometry. In a real battery, it’s difficult to get a clear view of what’s going on inside, because so few measurements are possible. Models are a place where all physics can come together and the advantage of the model is that everything can be measured and probed. As we build an increasingly accurate physical understanding of batteries, we can expect that technological advances will follow.”

The secondary phase in Li-ion electrodes, comprised of inert binder and electrical conductive additives, has been found to critically influence various forms of microstructural resistances. This phase has benefits for improved electronic conductivity and mechanical integrity but may block access to electrochemical active sites and introduce additional transport resistances in the pore (electrolyte) phase, thus, canceling out its original advantages.

Because the secondary phase is important for electrode mechanical integrity and electronic conductivity, its recipe and morphology will have a strong impact on battery kinetics and transport. The algorithm created and explained in the journal article explores morphologies for this phase. Stochastics comes into play as each microstructure variant is numerically generated multiple times using random seeds to ensure statistically relevant conclusions. By simulating battery electrochemistry on the various microstructure geometries, researchers can calculate the pore size of an electrode’s microstructure geometry as well as the lithium displacement within an electrode to evaluate the difficulty of movement. Finding ways to overcome resistances via electrode microstructural modifications can greatly improve overall Li-ion battery performance.

The value of this work is that improvements to Li-ion batteries—the most expensive and complex component in EVs—is helping to overcome the concerns consumers have that limit EV adoption, including restricted driving range and high costs.