Rivian – Electric Adventure Vehicles – For Those of You Who Wanted to See a Little More Why Amazon & GM are Considering Investing (MV $1B – $2B) – Video| Fully Charged


Rivian-Inline-R1T-Media-002-(1)

Automotive startups always need to be viewed with a little caution, but as Jonny Smith (Fully Charged) discovers, Rivian have presented a very convincing launch. A large SUV and pick up truck at the LA motor show. Most impressive. (And probably why, Amazon and GM are considering investing in the EV SUV and Truck Start-Up – See Article Below)

Rivian is developing vehicles and technology to inspire people to get out and explore the world. These are their stories about the things they make, the places they go and the people they meet along the way.

 

Amazon, GM eye investment that would value Rivian at $1 billion to $2 billion, Reuters reports

Rivian SUV II 5bfdb9b644466.image

Rivian Automotive, which plans to build the nation’s first electric pickup trucks along with SUVs in Normal, is in talks about an investment from Amazon and General Motors that would value the company at between $1 billion and $2 billion, Reuters reported Tuesday.

The two companies may receive minority stakes in the Plymouth, Mich.-based startup in a deal that could be concluded and announced this month, Reuters reported, citing sources that asked not to be identified because the matter is confidential.

The sources noted the talks may fail to reach a deal, Reuters reported. But the Chicago Tribune is reporting “talks are progressing” and a deal could be announced as soon as Friday, citing an unnamed source. 

Amazon, General Motors and Rivian did not immediately respond to requests for comment from Reuters. Normal (Illinois) Mayor Chris Koos and Mike O’Grady, interim CEO of the Bloomington-Normal Economic Development Council, did not return calls seeking comment Tuesday night. 

 

Rivian, which plans to hire as many as 1,000 employees to manufacture the “electric adventure” vehicles in the Twin Cities, unveiled a five-passenger pickup truck — the R1T — and the R1S SUV in November at the Los Angeles Auto Show. The vehicles are due in showrooms in late 2020.

 

“We’re launching Rivian with two vehicles that re-imagine the pickup and SUV segments,” Rivian founder and CEO R.J. Scaringe said in a statement at the time of the vehicles’ unveiling. “I started Rivian to deliver products that the world didn’t already have — to redefine expectations through the application of technology and innovation. Starting with a clean sheet, we have spent years developing the technology to deliver the ideal vehicle for active customers.”

The pickup, starting at $61,500, is expected to travel between 250 and 400 miles on a single charge, depending on the model, and is expected to tow up to 5,000 kilograms, or more than 11,000 pounds. The SUV, starting at around $70,000, can travel up to 400 miles on a single charge, said the company, and has a towing capacity of 3,500 kilograms.

Rivian, which received performance-based incentives from state and local governments, paid $16 million for the former Mitsubishi Motors North America plant on Normal’s west side in 2017.

Town officials said in November that Rivian had already exceeded its benchmarks for a full property tax abatement at the plant for 2018, investing $10 million and employing 35 people. The plant had 60 workers at the time. Rivian had about 600 workers at the time across not only Normal but also facilities near Detroit, Los Angeles and San Francisco.

 

The company was required to hire 500 locally and invest $40.5 million by the end of 2021 to receive hundreds of thousands in local tax breaks, plus a $1 million Normal grant, and plans to hire 1,000 locally over a decade to receive about $50 million in state income tax credits. Koos said in November the company may employ 500 when it reaches full production in 2020. “It will never be as populated as the Mitsubishi plant, but it’ll certainly be high production,” said Koos.

 

Mitsubishi employed about 3,000 in Normal at its peak. The plant had 1,200 employees when it ceased production in November 2015.

img_1049

 

Learn More About Rivian Here: Video Presentation

 

 

 

Also Watch Tenka Energy’s Short Presentation on Nano-Enabled Batteries and Super Caps: For Ev’s – Drones – Medical Devices – Electronics

Tenka Energy, Inc. Building Ultra-Thin Energy Dense SuperCaps and NexGen Nano-Enabled Pouch & Cylindrical Batteries – Energy Storage Made Small and POWERFUL!

Advertisements

Next-Gen Lithium-Ion Batteries – Combining Graphene + Silicon Could it be the Key?


Battery

Researchers have long been investigating the use of silicon in lithium-ion batteries, as it has the potential to greatly increase storage capacity compared to graphite, the material used in most conventional lithium-ion batteries. By some estimates, silicon could boast a lithium storage capacity of 4,200 mAh/g—11 times that of graphite.

However, despite its benefits, silicon comes with its own challenges.

“When you store a lot of lithium ion into your silicon you actually physically extend the volume of silicon to about 3 to 3.8 times its original volume—so that is a lot of expansion,” explained Bor Jang, PhD, in an exclusive interview with R&D Magazine. “That by itself is not a big problem, but when you discharge your battery—like when you open your smart phone—the silicon shrinks. Then when you recharge your battery the silicon expands again. This repeated expansion and shrinkage leads to the breakdown of the particles inside of your battery so it loses its capacity.”

Jang offers one solution—graphene, a single layer sheet of carbon atoms tightly bound in a hexagonal honeycomb lattice.

“We have found that graphene plays a critical role in protecting the silicon,” said Jang, the CEO and Chief Scientist of Global Graphene Group. The Ohio-based advanced materials organization has created GCA-II-N, a graphene and silicon composite anode for use in lithium-ion batteries.

The innovation—which was a 2018 R&D 100 Award winner—has the potential to make a significant impact in the energy storage space. Jang shared more about graphene, GCA-II-N and its potential applications in his …

Interview with R&D Magazine:

 

           Photo Credit: Global Graphene Group

 

R&D Magazine: Why is graphene such a good material for energy storage?

Jang: From the early beginning when we invited graphene back in 2002 we realized that graphene has certain very unique properties. For example, it has very high electrical conductivity, very high thermal conductivity, it has very high strength—in fact it is probably the strongest material known to mankind naturally. We thought we would be able to make use of graphene to product the anode material than we can significantly improve not only the strength of the electrode itself, but we are also able to dissipate the heat faster, while also reducing the changes for the battery to catch fire or explode.

Also graphene is extremely thin—a single layer graphene is 0.34 nanometer (nm). You can imagine that if you had a fabric that was as thin as 0.34 nanometers in thickness, than you could use this material to wrap around just about anything. So it is a very good protection material in that sense. That is another reason for the flexibility of this graphene material.

 

 

BatteryRead More: Talga’s graphene silicon product extends capacity of Li-ion battery anode

Another interesting feature of graphene is that is a very high specific surface area. For instance if I give you 1.5 grams of single layer graphene it will be enough to cover an entire football stadium. There is a huge amount of surface area per unit weight with this material.

That translates into another interesting property in the storage area. In that field that is a device called supercapacitors or ultracapacitors. The operation of supercapacitors depends upon conducting surface areas, like graphene or activated carbon. These graphene sheets have, to be exact, 2630 meters squared per gram. That would give you, in principle, a very high capacity per unit gram of this material when you use it as an electron material for supercapacitors. There is are so many properties associated with graphene for energy applications, those are just examples, I could talk about this all day!

 

 

R&D Magazine: Where is the team currently with the GCA-II-N and what are the next steps for this project?

Jang: Last year we began to sell the product. In Dayton, OH, where we are situated at the moment we have a small-scale manufacturing facility. It is now about a 50-metric-ton capacity facility and we can easily scale it up. We have been producing mass qualities of this and then delivering them to some of the potential customers for validation. We are basically in the customer validation stage for this business right now.

We will continue to do research and development for this project. We will eventually manufacture the batteries here in the U.S., but at the moment we are doing the anode materials only.

R&D Magazine: What types of customers are showing interest in this technology?

Jang: Electrical vehicles are a big area that is growing rapidly, particularly in areas in Asia such as China. The electrical vehicle industry is taking the driver’s seat and is driving the growth of this business worldwide right now. E-bikes and electronic scooters are another rapidly growing business where this could be used.

Another example is your smart phone. Right now, if you continue to use your phone you may be able to last for half a day or maybe a whole day if you push it. This technology has the ability to double the amount of energy that could be stored in your battery. Electronic devices is another big area for application of this technology. 

A third area is in the energy storage business, it could be utilized to store solar energy or wind energy after it has been captured. Lithium-ion batteries are gaining a lot of ground in this market right now.

Right now, another rapidly growing area is the drone. Drones are used, not only for fun, but for agricultural purposes or for surveillance purposes, such as during natural disasters.  Drones are seeing a lot of applications right now and batteries are very important part of that.

R&D Magazine: Are there any challenges to working with graphene?

Jang: One of the major challenges is that graphene by itself is still a relatively high cost. We are doing second-generation processes right now, and I think in a couple of years we should be able to significantly reduce the cost of graphene. We are also working on a third generation of processes that would allow us to reduce the cost even further. That is a major obstacle to large-scale commercialization of all graphene applications.

The second challenge is the notion of graphene as a so-called ‘nanomaterial’ in thickness that a lot customers find it difficult to disperse in water or disperse in organic solvent or plastic in order to combine graphene with other types of materials, make a composite out of it. Therefor people are resistant to use it. We have found a way to overcome this either real challenge, or perceived challenge. We can do that for a customer and then ship that directly to the customer.

There is also an education challenge. It is sometimes difficult to convince engineers, they want to stick with the materials they are more familiar with, even though the performance is better with graphene. That is a barrier as well. However, I do think it is becoming more well known.

Laura Panjwani
Editor-in-chief R & D Magazine

Super-stable antinomy carbon composite anodes to boost potassium-ion battery storage performance


id51930_1

Potassium-ion batteries (PIBs) have been considered as promising alternatives to lithium-ion batteries due to the rich natural abundance of potassium (K) and similar redox potential with Li+/Li.

However, due to the large K ion radius and slow reaction dynamics, the previously reported PIB anode materials (carbon-based materials, alloy-based anodes such as tin and antimony, metal oxides, etc.) suffer from a low capacity and fast capacity decay.
In order to achieve a high capacity and excellent cycle stability for K storage process, rational design of the electrode materials and proper selection of the electrolytes should be considered simultaneously.
Recently, two research teams led by Prof. Chunsheng Wang and Prof. Michael R. Zachariah from the University of Maryland, College Park, have designed and fabricated a novel antimony (Sb) carbon composite PIB anode via a facile and scalable electrospray-assisted strategy and found that this anode delivered super high specific capacities as well as cycling stability in a highly concentrated electrolyte (4M KTFSI/EC+DEC).
This work has been published in Energy and Environmental Science (“Super Stable Antimony-carbon composite anodes for potassium-ion batteries”).

 

id51930_1
Figure 1. Schematic illustration of electrospray-assisted strategy for fabricating antimony @carbon sphere network electrode materials. (© Royal Society of Chemistry)
We have successfully fabricated a novel antimony carbon composite with small Sb nanoparticles uniformly confined in the carbon sphere network (Sb@CSN) via a facile and scalable electrospray-assisted strategy.
Such a unique nanostructure can effectively mitigate the deleteriously mechanical damage from large volume changes and provide a highly conductive framework for fast electron transport during alloy/de-alloy cycling process.
Alongside the novel structural design of the anode material, formation of a robust solid-electrolyte-interphase (SEI) on the anode is crucially important to achieve its long-term cycling stability.
The formation of a robust SEI on the anode material is determined by both the surface chemistries of active electrode materials as well as electrolyte compositions such as salt anion types and concentrations.
Therefore, designing a proper electrolyte is extremely important for the anode to achieve a high cycling stability.
In our study, we have for the first time developed a stable and safe electrolyte of highly concentrated 4M KTFSI/EC+DEC for PIBs to promote the formation of a stable and robust KF-rich SEI layer on an Sb@CSN anode, which guarantees stable electrochemical alloy/de-alloy reaction dynamics during long-time cycling process.
Cycling performance of antimony carbon sphere network electrode materials
Figure 2. Cycling performance of antimony carbon sphere network electrode materials at 200mA/g current density in the highly concentrated electrolyte (4M KTFSI/EC+DEC). (© Royal Society of Chemistry)
In the optimized 4M KTFSI/EC+DEC electrolyte, the Sb@CSN composite delivers excellent reversible capacity of 551 mAh/g at 100 mA/g over 100 cycles with a capacity decay of 0.06% per cycle from the 10st to 100th cycling and 504 mAh/g even at 200 mA/g after 220 cycling. This demonstrates the best electrochemical performances with the highest capacity and longest cycle life when compared with all K-ion batteries anodes reported to date.
The electrochemical reaction mechanism was further revealed by density functional theory (DTF) calculation to support such excellent Potassium-storage properties.
Capacity comparison of Sb@CSN anode with previous reported anodes in potassium ion batteries
Figure 3. Capacity comparison of Sb@CSN anode with previous reported anodes in potassium ion batteries. (© Royal Society of Chemistry)
In conclusion, these outstanding performances should be attributed to the novel nanostructure of Sb nanoparticles uniformly encapsulated into conductive carbon network and the formation of a more stable and robust KF-rich SEI layer on Sb@CSN in the optimized 4M KTFSI electrolyte.
These encouraging results will significantly promote the deep understanding of the fundamental electrochemistry in Potassium-ion batteries as well as rational development of efficient electrolyte systems for next generation high-performance Potassium-ion batteries.
Yong Yang, Research Associate, Prof. Zachariah Research Group, Department of Chemical and Environmental Engineering, University of California, Riverside

Tesla is reportedly in talks with China’s Lishen over Shanghai battery contract


tesla-model-3-red

  • Tesla has signed a preliminary agreement with China’s Tianjin Lishen to supply batteries for its new Shanghai car factory, as it aims to cut its reliance on Japan’s Panasonic, two sources with direct knowledge of the matter said.
  • The companies had yet to reach a decision on how large an order the U.S. electric car company would place, and Lishen was still working out what battery cell size Tesla would require, one of the sources said.

 

musk at giga factory in china 105663613-1546876410008rts29mq3.530x298
Tesla CEO Elon Musk attends the Tesla Shanghai Gigafactory groundbreaking ceremony in Shanghai, China, January 7, 2019.

Tesla has signed a preliminary agreement with China’s Tianjin Lishen to supply batteries for its new Shanghai car factory, as it aims to cut its reliance on Japan’s Panasonic, two sources with direct knowledge of the matter said.

The companies had yet to reach a decision on how large an order the U.S. electric car company would place, and Lishen was still working out what battery cell size Tesla would require, one of the sources said.

While Panasonic is currently Tesla’s exclusive battery cell supplier, Tesla Chief Executive Elon Musk said in November the U.S. company would manufacture all its battery modules and packs at the Shanghai factory and planned to diversify its sources.

“Cell production will be sourced locally, most likely from several companies (incl Pana), in order to meet demand in a timely manner,” Musk said in a tweet in November.

Other battery makers in the running for contracts could include Contemporary Amperex Technology and LG Chem.

Tesla broke ground on the $2 billion so-called Gigafactory, its first in China, earlier this month and plans to begin making Model 3 electric vehicles (EV) there by the end of the year.

Story from Reuters News Service

University of Michigan: Synthetic Nano-Cartilage could be key to safe ‘structural batteries’ – Extending Battery Capability


battery stuctural 190110141653_1_540x360
Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a ‘structural battery’ prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape. Credit: Evan Doughtry

Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a “structural battery” prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape.

The idea behind structural batteries is to store energy in structural components — the wing of a drone or the bumper of an electric vehicle, for example. They’ve been a long-term goal for researchers and industry because they could reduce weight and extend range. But structural batteries have so far been heavy, short-lived or unsafe.

In a study published in ACS Nano, the researchers describe how they made a damage-resistant rechargeable zinc battery with a cartilage-like solid electrolyte. They showed that the batteries can replace the top casings of several commercial drones. The prototype cells can run for more than 100 cycles at 90 percent capacity, and withstand hard impacts and even stabbing without losing voltage or starting a fire.Military drone images

“A battery that is also a structural component has to be light, strong, safe and have high capacity. Unfortunately, these requirements are often mutually exclusive,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, who led the research.

Harnessing the properties of cartilage

To sidestep these trade-offs, the researchers used zinc — a legitimate structural material — and branched nanofibers that resemble the collagen fibers of cartilage.

“Nature does not have zinc batteries, but it had to solve a similar problem,” Kotov said. “Cartilage turned out to be a perfect prototype for an ion-transporting material in batteries. It has amazing mechanics, and it serves us for a very long time compared to how thin it is. The same qualities are needed from solid electrolytes separating cathodes and anodes in batteries.”

In our bodies, cartilage combines mechanical strength and durability with the ability to let water, nutrients and other materials move through it. These qualities are nearly identical to those of a good solid electrolyte, which has to resist damage from dendrites while also letting ions flow from one electrode to the other.

batteries of any shape 5beececb7a979

Read More: A Way to Make Batteries in Almost Any Shape (Form)

Dendrites are tendrils of metal that pierce the separator between the electrodes and create a fast lane for electrons, shorting the circuit and potentially causing a fire. Zinc has previously been overlooked for rechargeable batteries because it tends to short out after just a few charge/discharge cycles.

Not only can the membranes made by Kotov’s team ferry zinc ions between the electrodes, they can also stop zinc’s piercing dendrites. Like cartilage, the membranes are composed of ultrastrong nanofibers interwoven with a softer ion-friendly material.

In the batteries, aramid nanofibers — the stuff in bulletproof vests — stand in for collagen, with polyethylene oxide (a chain-like, carbon-based molecule) and a zinc salt replacing soft components of cartilage.

Demonstrating safety and utility

To make working cells, the team paired the zinc electrodes with manganese oxide — the combination found in standard alkaline batteries. But in the rechargeable batteries, the cartilage-like membrane replaces the standard separator and alkaline electrolyte. As secondary batteries on drones, the zinc cells can extend the flight time by 5 to 25 percent — depending on the battery size, mass of the drone and flight conditions.

Safety is critical to structural batteries, so the team deliberately damaged their cells by stabbing them with a knife. In spite of multiple “wounds,” the battery continued to discharge close to its design voltage. This is possible because there is no liquid to leak out.

For now, the zinc batteries are best as secondary power sources because they can’t charge and discharge as quickly as their lithium ion brethren. But Kotov’s team intends to explore whether there is a better partner electrode that could improve the speed and longevity of zinc rechargeable batteries.

The research was supported by the Air Force Office of Scientific Research and National Science Foundation. Kotov teaches in the Department of Chemical Engineering. He is also a professor of materials science and engineering, and macromolecular science and engineering.

Story Source:

Materials provided by University of MichiganNote: Content may be edited for style and length.


Journal Reference:

  1. Mingqiang Wang, Ahmet Emre, Siu On Tung, Alycia Gerber, Dandan Wang, Yudong Huang, Volkan Cecen, Nicholas A. Kotov. Biomimetic Solid-State Zn2 Electrolyte for Corrugated Structural BatteriesACS Nano, 2019; DOI: 10.1021/acsnano.8b05068

Chinese Company Unveils ‘World’s Cheapest Electric Car’ for Under $9,000


china cheap ev 9k ddd-1024x555

 

Elon Musk’s Tesla Inc. arguably has one of the most affordable lines of electric vehicle, but that all could change as a Chinese company just unveiled what is now dubbed as the “World’s Cheapest Electric Car.”

Great Wall Motors, an automotive company based in Baoding, China, pulled the veil on its cheapest electric vehicle called the ORA R1, which is being marketed with a price of $8,680 according to the company, Express reported.

As a new market entrant, ORA R1 delivers an unprecedented experience to drivers,” general manager of the Ora line and vice president of Great Wall Motors, Ning Shuyong, said in a statement.

“ORA replaces the traditional sales, service, spare parts and surveys (4S) dealership-centered model that is common in China with a network consisting of ORA Home, experience centers and smart outlets in the central business districts of Chinese cities.”

“In addition, the big data cloud that is created as the result of the information collected from the ORA app, the ORA shopping site and the Tmall e-shop opens the way to the development of multiple scenarios for offline sales and services as well as new transportation services for both drivers and passengers.”

Waking up the vehicle is as easy as a simple greeting of “Hello, ORA” thanks to its artificial intelligence system, Mashable said. Its body is also said to be made out of 60% high-strength steel.

The car will come with a three-year or 120,000 kilometer (74,564 mile) guarantee for the entire vehicle while its components have an eight-year (93,205 miles) guarantee. So far Great Wall Motor is only selling the ORA R1 in China, but they’ve shown interest in bringing the cheapest electric car to other countries as well, Electrek reported.

Images screenshot via YouTube / MOTOTREND

The ‘Electrified Revolution’ takes to the Skies – Rolls Royce Hired Formula E Engineers To Build A Really Fast Electric Plane


Rolls Royce leads a group of UK Government funded projects under the name ACCEL, which is an abbreviation of “Accelerating the Electrification of Flight” somehow. With the group’s newest flight project, the Spirit of Innovation, they aim to exceed 300 miles per hour, and sustain speed for at least forty minutes, enough to cross over from London to Paris. It’s an ambitious project, and one that Rolls hopes will kick off a “third wave of aviation.”

Rolls Royce was at the absolute forefront of airplane propeller driven technology in 1931 with the Supermarine S.6B, which won the Schneider Trophy for top speed that year with a max speed of 343 miles per hour. That plane kicked off a series of innovations for Rolls Royce and gave the company the notoriety it needed to become the leader in British flight.

The current electric plane record is held by Siemens, which put up a plane to 210 miles per hour in 2017. ACCEL team manager Matheu Parr wants to blow that speed out of the water, and is using the Supermarine’s speed record as the benchmark for the new Spirit of Innovation.

“We’re monitoring more than 20,000 data points per second, measuring battery voltage, temperature, and overall health of the powertrain, which is responsible for powering the propellers and generating thrust. We’ve already drawn a series of insights from the unique design and integration challenges,” says Parr. “And we’re gaining the know-how to not only pioneer the field of electric-powered, zero-emissions aviation – but to lead it. At this point, our confidence is sky high.” 

This all-electric plane is set to fly sometime in 2020, and the specifications look absolutely wild. For maximum frontal area efficiency, the battery pack has to be small and compact, merging 6000 lithium cells with an advanced cooling system to help keep the batteries stable. With three stacked YASA 750R electric motors, the plane will have around 500 horsepower available to spin the modern design propeller. 

Watch a YouTube Video: The Top 10 Electric Planes that are Already Here and … Flying on Batteries!

Humanity has dreamt about reaching the skies throughout its existence, and even though today we can easily take a plane and travel across the world, airflight still remains rather expensive and harmful to our environment. But what if we told you that all electric aircraft are already here and they will drastically change the way we experience air travel and cut down the costs in half. Enjoy this list of these emission free planes that are pioneering their way into the future.

In order to make this project a reality, the highest tier aerodynamics engineers from all over the UK were hired, primarily from within Rolls Royce’s aerospace engineering division, as well as some from within the motorsport community. This is truly an all-in mission for the British industrial complex.

To get a look at the plane in more detail, here is a rudimentary infographic, as provided by Rolls in PDF format.

Read more

 

Volkswagen is Rolling Out Mobile EV Charging Stations – Charge Your EV in as Little as 17 Minutes


“Charge Up in as little as 17 minutes.”

 

To say Volkswagen has ambitious plans for electric vehicles may be an understatement.

The automaker projects it will produce 15 million vehicles on its new MEB platform in the first wave of its EV assault, and it plans to invest 9 billion euros in the new VW I.D. familythrough 2023.

The marque will have 20 electric models in its lineup by 2025, up from just two entries now. To support this barrage of new EVs, Volkswagen is getting ready to introduce mobile quick-charging stations.

The charging columns are based on the battery pack used with the automaker’s MEB platform.

These stations can be set up in public parking lots, at a company building, or at large events, then removed when no longer needed. VW says the charging process takes an average of 17 minutes.

With a battery storage capacity of 360 kilowatt-hours, each station can charge up to 15 electric vehicles before themselves needed to be recharged.

Volkswagen Nails Down $25 Billion in Batteries for EV’s

As many as four vehicles can be charged at the same time, two with DC quick-charging connections and two with AC connections.

Charging stations that have depleted their energy storage would be exchanged for full ones.

When linked up to a power supply, however, the mobile station can be recharged constantly. The charging stations can be juiced up via solar or wind energy, providing C02 neutrality.

Furthermore, VW suggests reusing batteries from electric vehicles to power the stations.

Watch a Short YouTube Video on NextGen Nano-Enabled Batteries and Super Capacitors

 

Promising New Battery Technology – Disordered Magnesium Crystals – Could make Batteries that are Smaller and that store More Energy – Longer Lasting Phones and EV Batteries


Magneseum Battery Nano 5c1966937fa4cTiny, disordered particles of magnesium chromium oxide may hold the key to new magnesium battery energy storage technology. Credit: UCL

 

Tiny, disordered particles of magnesium chromium oxide may hold the key to new magnesium battery energy storage technology, which could possess increased capacity compared to conventional lithium-ion batteries, find UCL and University of Illinois at Chicago researchers.

The study, published today in Nanoscale, reports a new, scalable method for making a material that can reversibly store  at high-voltage, the defining feature of a cathode.

While it is at an , the researchers say it is a significant development in moving towards -based batteries. To date, very few inorganic materials have shown reversible magnesium removal and insertion, which is key for the magnesium battery to function.

“Lithium-ion technology is reaching the boundary of its capability, so it’s important to look for other chemistries that will allow us to build batteries with a bigger storage capacity and a slimmer design,” said co-lead author, Dr. Ian Johnson (UCL Chemistry).

“Magnesium battery technology has been championed as a possible solution to provide longer-lasting phone and electric car batteries, but getting a practical material to use as a cathode has been a challenge.”

One factor limiting  is the anode. Low-capacity carbon anodes have to be used in lithium-ion batteries for safety reasons, as the use of pure lithium metal anodes can cause dangerous short circuits and fires.

In contrast, magnesium metal anodes are much safer, so partnering magnesium metal with a functioning cathode material would make a battery smaller and store more energy.

Previous research using computational models predicted that magnesium chromium oxide (MgCr2O4) could be a promising candidate for Mg battery cathodes.

Inspired by this work, UCL researchers produced a ~5 nm, disordered magnesium chromium oxide material in a very rapid and relatively low temperature reaction.

Collaborators at the University of Illinois at Chicago then compared its magnesium activity with a conventional, ordered magnesium chromium oxide material ~7 nm wide.

They used a range of different techniques including X-ray diffraction, X-ray absorption spectroscopy and cutting-edge electrochemical methods to see the structural and chemical changes when the two materials were tested for magnesium activity in a cell.

The two types of crystals behaved very differently, with the disordered particles displaying reversible magnesium extraction and insertion, compared to the absence of such activity in larger, ordered crystals.

“This suggests the future of batteries might lie in disordered and unconventional structures, which is an exciting prospect and one we’ve not explored before as usually disorder gives rise to issues in battery materials. It highlights the importance of seeing if other structurally defective materials might give further opportunities for reversible battery chemistry” explained Professor Jawwad Darr (UCL Chemistry).

“We see increasing the surface area and including disorder in the crystal structure offers novel avenues for important chemistry to take place compared to ordered crystals.

Conventionally, order is desired to provide clear diffusion pathways, allowing cells to be charged and discharged easily—but what we’ve seen suggests that a disordered structure introduces new, accessible diffusion pathways that need to be further investigated,” said Professor Jordi Cabana (University of Illinois at Chicago).

These results are the product of an exciting new collaboration between UK and US researchers. UCL and the University of Illinois at Chicago intend to expand their studies to other disordered, high  , to enable further gains in magnesium storage capability and develop a practical magnesium .

 Explore further: Research overcomes major technical obstacles in magnesium-metal batteries

More information: Linhua Hu et al, Tailoring the Electrochemical Activity of Magnesium Chromium Oxide Towards Mg Batteries Through Control of Size and Crystal Structure, Nanoscale (2018). DOI: 10.1039/C8NR08347A

 

BIG … News from the LA Auto Show and MIT: “Rivian” unveils electric vehicles for the future – Startup founded by MIT alumnus


MIT-Rivian_0

One of the two models unveiled at the Los Angeles Auto Show this week, Rivian’s R1S, will sell for $65,000, according to the company. Courtesy of Rivian

Courtesy of MIT News

Rivian Automotive is showing off its first products at the Los Angeles Auto Show this week.

 

Electric vehicle startup Rivian Automotive has spent the first nine years of its existence in stealth mode working to design vehicles around what it believes are future trends in mobility, such as electrification, subscription-based ownership, and autonomy. This week the company is finally revealing what it’s been up to, dropping the curtains on its first two products, an all-electric pickup truck and SUV, at the Los Angeles Auto Show.

Rivian has garnered interest over the years for quietly securing some of the building blocks of mass production, including raising nearly $500 million in capital and purchasing a 2.6-million-square-foot manufacturing facility in Illinois that once produced 200,000 cars a year for Mitsubishi. Now Rivian says it will begin shipping its vehicles to customers in 2020.

The abrupt transition from stealth mode to large vehicle supplier is all part of the plan for Rivian founder and CEO R.J. Scaringe SM ’07 PhD ’09. Scaringe didn’t want to hype up the company until he could show something off that customers could actually drive in a reasonable amount of time.

“It would’ve been easy to make statements early on and show sketches,” Scaringe says. “But we wanted to get all the pieces aligned: To build out a robust team with robust processes, get capital in place, line up key suppliers, acquire a large-scale production facility, and align it with our products. All that is done now. It’s been blood, sweat, and tears for a period of years to get in a position where we’re very comfortable showing our products.”

Designing a vehicle from the ground up has taken time, but the process has allowed Rivian to create some novel vehicles with intriguing performance specifications. The company describes its first two products, named the R1T and R1S, as high-end adventure vehicles that can be driven on- or off-road. MIT-Rivian 2

“They’re designed to be comfortable to use and invite you to get dirty,” Scaringe says. “When I say truck or SUV, you’re thinking inefficient and not particularly sophisticated. But we’ve used technology to make the traditional weaknesses of these vehicles strengths.”

Users purchasing trucks or SUVs have traditionally had to make compromises in areas like acceleration, control, and gas mileage in return for more space and towing capacity. Rivian uses an innovative design and powertrain to change that.

A high-tech transportation solution

Both the R1T and R1S will come with a hardware suite including cameras and sensors, which gives them self-driving capabilities on highways. The vehicles have a unique quad-motor setup that allows the electronic control unit to send 147 kilowatts of power to each wheel.

The fastest versions of the vehicles go from 0 to 60 miles per hour in three seconds and 0 to 100 miles per hour in less than seven seconds. Scaringe says the products’ ride and handling feel more like a sports sedan than a truck or SUV. He also says the vehicles can “go off-road better than any vehicle on the planet today” thanks to high ground clearance and wheel articulation that’s helped by a suspension system that adjusts to the environment, stiffening on the road and immediately loosening off the road.

Rivian’s battery configuration has been referred to as “skateboard architecture” because the battery pack stretches across the floor of the vehicle. The packs come in different sizes, the largest of which gives the vehicles over 400 miles in range. Rivian assembles its own battery packs, using proprietary cooling systems to achieve energy efficiency that Scaringe claims is better than anything on the EV market today.

Rivian-autonotive-governor-rauner-illinois-620x350“We’re doing all of the electronics, control systems, and battery packaging in-house,” Scaringe says. “And the digital architecture of the vehicle is a complete clean-sheet approach. So we’ve done the hardware design, the software design, the full stack development. It gives us complete control over how we move data around the vehicle and synchronize it with our cloud platform. We have a real-time sense of the health of all of our assets in the field.”

The high-tech platform comes inside two spacious vehicles that are designed to be stylish and functional. Both models include a 330-liter front trunk and a long compartment under the rear seats that Scaringe says is perfect for objects like surfboards, skis, and golf bags.

Rivian is listing the R1S at $65,000 and the R1T at $61,500 after federal tax rebates. The company is planning to release lower-priced cars in the future.

MIT past helps change the future

Scaringe studied mechanical engineering  for his master’s and PhD in the Sloan Automotive Laboratory, where he was a member of the automotive research team. He worked with some of the biggest car companies in the world in that role, and realized how difficult it would be for them to reorient around the big changes in transportation that he believed were coming.

Immediately after earning his PhD in 2009, in a year when General Motors and Chrysler would declare for bankruptcy, Scaringe founded Rivian. At a time when many people were wondering if America’s biggest car companies would make it another day, Scaringe set out to start a company that would lead the market decades into the future.

“In 2020, we’d love to have you use one of our vehicles. But in 2035, when you’re thinking about those trips to the beach or hiking, we want you to immediately think about using a Rivian,” Scaringe says. “The brand position we set up in 2020 lays the foundation for us.”

Scaringe knew fulfilling his vision would be difficult, but he believes his time at MIT helped him persevere in the face of the major challenges that come with starting something as complex and capital-intensive as a automotive company.

“MIT draws together some of the smartest minds in the world to study and work on deeply challenging problems,” Scaringe says. “That environment helps demonstrate that even the most challenging problems can be solved through the application of time and effort. … The foundation around solving complex and difficult problems is precisely what has enabled Rivian to this point.”

Now that Rivian’s first vehicles have been revealed, Scaringe hopes the company can move beyond thinking about these trends and start accelerating their arrival.

“It comes back to these big fundamental shifts in how we think of mobility,” Scaringe says. “The change in how we power our vehicles; how the vehicles are controlled and operated, going from human operation to machine operation; and because of those changes, the significant changes to how we think about the business model. Like how consumers purchase vehicles and how manufacturers make money, shifting away from the traditional asset sale model. We think it’s really important to line up the megatrends with our business strategy, and now it’s about making sure the strategy helps drive those megatrends.”