From Electric Vehicles – Micro Mobility and the NextGen ‘Green Revolution’ – Panasonic far from being ONLY a battery supplier: CES 2018 with (5) Videos


Panasonic is far from being satisfied with only a battery supplier role. The Japanese company has greater ambitions and intends to offer its scalable “ePowertrain” platform for small EVs.

The main target for the ePowertrain are EV bikes and micro EVs. These should now be easier to develop and produce using Panasonic’s power unit (with an on-board charger, junction box, inverter and DC-to-DC converter) and a motor unit. Of course, batteries are available too.

“Panasonic Corporation announced today that it has developed a scalable “ePowertrain” platform, a solution for the effective development of small electric vehicles (EVs). The platform is a systematized application of devices used in the EVs of major global carmakers, and is intended to contribute to the advancement of the coming mobility society.

Global demand for EVs is expected to expand rapidly, along with a wide variety of new mobility. These include not only conventional passenger vehicles but also new types of EVs, such as EV bikes and micro EVs, which suit various lifestyles and uses in each region.

The platform Panasonic has developed for EV bikes and micro EVs is an energy-efficient, safe powertrain that features integrated compactness, high efficiency, and flexible scalability. It consists of basic units, including a power unit (with an on-board charger, junction box, inverter and DC-to-DC converter) and a motor unit. The platform will help reduce costs and lead time for vehicle development by scaling up or down the combination of basic units in accordance with vehicle specifications such as size, speed and torque.

Panasonic has developed and delivered a wide range of components – including batteries, on-board chargers, film capacitors, DC-to-DC converters and relays – specifically for EVs, plug-in hybrids, and hybrid EVs. Panasonic will continue to contribute to the global growth in EVs through system development that makes use of the strengths of our devices.”

In the case of full-size cars, Panasonic is most known for its battery cells supplied to Tesla. The partnership was recently expanded to include solar cells.

Panasonic feels pretty independent from Tesla, stressing that it has its own battery factory “inside” the Tesla Gigafactory, however the cells were “jointly designed and engineered”.

Annual production of 35 GWh is expected in 2019.

Production of New Battery Cells for Tesla’s “Model 3”

Panasonic’s lithium-ion battery factory within Tesla’s Gigafactory handles production of 2170-size*1 cylindrical battery cells for Tesla’s energy storage system and its new “Model 3” sedan, which began production in July 2017. The high performance cylindrical “2170 cell” was jointly designed and engineered by Tesla and Panasonic to offer the best performance at the lowest production cost in an optimal form factor for both electric vehicles (EVs) and energy products. Panasonic and Tesla are conducting phased investment in the Gigafactory, which will have 35 GWh*/year production capacity of lithium-ion battery cells, more than was produced worldwide in 2013. Panasonic is estimating that global production volume for electric vehicles in fiscal 2026 will see an approximately six-fold increase from fiscal 2017 to over 3 million units. The Company will contribute to the realization of a sustainable energy society through the provision of electric vehicle batteries.

 

 

 

 

 

In regards to solar cells, Panasonic expects 1 GW output at the Tesla Gigafactory 2 in Buffalo, New York in 2019.

The solar cells are used both in conventional modules, as well as in Tesla Solar Roof tiles.

Strengthening Collaboration with Tesla

In addition to the collaboration with Tesla in the lithium-ion battery business (for details, refer to pages 5-6), Panasonic also collaborates with the company in the solar cell business and will begin production of solar cells this summer at its Buffalo, New York, factory. Solar cells produced at this factory are supplied to Tesla. In addition, the solar cells are used in roof tiles sold by Tesla, a product that integrates solar cells with roofing materials.Panasonic will continue its investment in the factory going forward and plans to raise solar cell production capacity to 1 GW by 2019.

Advertisements

“Crumpled” Graphene Balls Could Improve Batteries’ Performance by Preventing Lithium Dendrite Growth: Northwestern University


 

Crumpled Graphene NewsImage_36035Jiaxing Huang discovered crumpled graphene balls six years ago. (Image credit: Jiaxing Huang)

Lithium metal-based batteries have the potential to revolutionize the battery sector. With the theoretically ultra-high capacity of lithium metal used by itself, this new type of battery can be employed to power everything from personal gadgets to cars.

“In current batteries, lithium is usually atomically distributed in another material such as graphite or silicon in the anode,” explains Northwestern Engineering’s Jiaxing Huang. “But using an additional material ‘dilutes’ the battery’s performance. Lithium is already a metal, so why not use lithium by itself?”

The answer is a research challenge that scientists have spent years attempting to overcome. As lithium gets charged and discharged in a battery, it begins to grow dendrites and filaments, “which causes a number of problems,” Huang said. “At best, it leads to rapid degradation of the battery’s performance. At worst, it causes the battery to short or even catch fire.”Northwestern-Hero

One existing solution to avoid lithium’s destructive dendrites is to employ a porous scaffold, such as those made from carbon materials, on which lithium preferentially deposits. Then during battery charging, lithium can deposit along the surface of the scaffold, bypassing dendrite growth. This, however, introduces a new issue. As lithium deposits onto and then dissolves from the porous support as the battery cycles, its volume wavers significantly. This volume fluctuation causes stress that could break the porous support.

Huang and his collaborators have deciphered this problem by choosing a different approach — one that even makes batteries lighter weight and able to contain more lithium.

The answer lies in a scaffold composed of crumpled graphene balls, which can stack with ease to form a porous scaffold, because of their paper ball-like shape. They not only prevent dendrite growth but can also survive the stress from the wavering volume of lithium. The research was featured on the cover of the January edition of the journal Joule.

“One general philosophy for making something that can maintain high stress is to make it so strong that it’s unbreakable,” said Huang, professor of materials science and engineering in Northwestern’s McCormick School of Engineering. “Our strategy is based on an opposite idea. Instead of trying to make it unbreakable, our scaffold is made of loosely stacked particles that can readily restack.”

Huang discovered crumpled graphene balls six years ago.  Crumpled graphene balls are novel ultrafine particles that look like crumpled paper balls. He formed the particles by atomizing a dispersion of graphene-based sheets into minute water droplets. When the water droplets evaporated, they produced a capillary force that crumpled the sheets into miniaturized paper balls.

crumpling-graphene-electronics-Illinois-img_assist-350x197In Huang’s team’s battery, the crumpled graphene scaffold houses the fluctuation of lithium as it cycles between the cathode and anode. The crumpled balls can travel apart when lithium deposits and then freely assemble back together when the lithium is depleted. Since minute paper balls are conductive and allow lithium ions to flow quickly along their surface, the scaffold forms a continuously conductive, porous, dynamic network for lithium.

“Closely packed, the crumpled graphene balls operate like a highly uniform, continuous solid,” said Jiayan Luo, the paper’s co-corresponding author and professor of chemical engineering at Tianjin University in China. “We also found that the crumpled graphene balls do not form clusters but instead are quite evenly distributed.”

Formerly advised by Huang, Luo received his PhD in materials science and engineering in 2013. Currently as a professor and researcher at Tianjin University, Luo continues to partner with Huang.

In contrast to batteries that use graphite as the host material in the anode, Huang’s solution is a lot lighter in weight and can stabilize a higher load of lithium during cycling. While typical batteries encapsulate lithium that measures only tens of microns in thickness, Huang’s battery holds lithium stacked 150 µm high.

Huang and his collaborators have filed a provisional patent via Northwestern’s Innovation and New Ventures Office (INVO).

The National Natural Science Foundation of China, the Natural Science Foundation of Tianjin, China, the State Key Laboratory of Chemical Engineering, and the Office of Naval Research supported the research.

 

Nikola Motors – Daimler – Toyota Challenge Tesla’s Metrics for the ‘Long-Haul’ – Will the Best Zero-Emissions Semi (Trucks) Run on Fuel Cells? Next-Gen Batteries? Both?


Toyota’s Project Portal and … a possibly “game-changing” semi from upstart Nikola Motors might prove FCEVs are the winning tech for the long-haul industry.

Last month, Tesla CEO Elon Musk rode onto the dais at Tesla’s design studio in Hawthorne, California aboard a futuristic semi truck.

Tesla Elec Semi I 4w2a6750

He exited the vehicle, collar popped, to introduce what looked to be a sleeker version of the colossal, decidedly unsexy commercial vehicles that rumble endlessly across America—and received the type of hysterical fanfare usually reserved for the Beyonces and Biebers of the world.

This marked one of the most anticipated, and curious, new-vehicle reveals of 2017: the Tesla Semi, a battery-electric-powered long-haul truck.

Tesla-Semi-truck-nikola-one

In his signature #humblebrag tone, Musk ticked off the Class 8 truck’s impressive capabilities: It can tow 80,000 pounds, the most allowed on US highways, for a range of 500 miles.

It has aerodynamics better than a Bugatti Chiron, a unique central seating position, and comes standard with enhanced AutoPilot, meaning it should never jackknife.

Also: it’s guaranteed not to break down for one million miles; it has a shatterproof windshield; and it implements a kinetic-energy-recovery system (KERS) in such a way that it will never need brake pads – in short WOW!

Plus, with a motor on each of the four rear wheels, it can rocket from 0-60 mph in five seconds flat—one-third the time of the average diesel semi.

Even fully loaded, that number increases to a scant 20 seconds, or a full minute faster than its smog-belching contemporaries. When towing up a five-percent grade, the Tesla can reach speeds of 65 mph, which is 20 mph faster than a diesel.

Taken in aggregate, these features and numbers would greatly benefit a trucker’s route in both speed and cost savings. They are eye-popping metrics; almost unbelievable. Which is perhaps why some are having a hard time believing them.

More important than what Musk said during his November announcement was what he didn’t say. For instance, there was no mention at all about the battery pack that will power the Tesla Semi to these magical thresholds. There was no mention of total weight or cost, which are arguably the two most important variables for long-haul shippers.

In terms of charging these unknown batteries, Musk promised a 400-mile recharge in the course of about 30 minutes. Based on recent estimates in Bloomberg New Energy Finance, hitting those numbers would require a charging system ten times more powerful than Tesla’s own Superchargers—currently the fastest consumer charging network in the world.

The cost building stations that could hit those figures would be profound, as would be the potential stress on the electrical system from multiple trucks charging simultaneously.

Bloomberg estimated that in order to fulfill Musk’s promises the truck would require a battery capacity between 600 and 1,000 kilowatt-hours.

Assuming a down-the-middle number of 800 kWh, that would necessitate a battery of more than 10,000 pounds, with a likely price tag north of $100,000. Musk also claims the Semi will be 20 percent less expensive than a diesel truck per mile—but that is with customers only paying $0.07/kWh.

Experts estimate that Tesla will have to pay, on average, a minimum of $0.40/kWh* for “green” electricity—meaning the company would have to heavily subsidize charging costs for fleets of trucks sucking down terawatts of electricity.

So, in order to hit Musk’s stated targets, Tesla will require batteries that don’t, as far as anyone knows, exist; charging capability faster than anything on the planet; and rates far below current market value.

 

“I don’t understand how that works,” electric vehicle analyst Salim Morsy told Bloomberg. “I really don’t.” Investor’s Business Daily dubbed Musk’s claims “monuments of envelope pushing.”

“The biggest concern that I have is that this is a typical Elon Musk ‘shiny object’ announcement to prop up Tesla’s stock price and distract from all of the issues he is having with Model 3 production,” an engineer associated with the hydrogen industry, who asked to remain anonymous, told us, referencing recent production delays and Tesla’s loss of over $1.3 billion year-to-date.

“I don’t mean to be negative; I do believe in battery technology and its merits, and I also believe that we will continue to see significant improvements in battery cost and performance during the coming decades.

But as a scientist and engineer I have always found Elon Musk’s lack of scientific accuracy and ability to overstate and exaggerate truth, and get away with it, very annoying and disingenuous.”

Tesla did not respond to requests to clarify these apparent discrepancies for this article.

The Truth About EV Trucks

Musk is not alone in the world of heavy-duty battery-electric trucks. VW recently announced a $1.7 billion investment towards developing electric powertrains for trucks and buses. Daimler, the world’s largest truck maker, unveiled an all-electric heavy-duty concept dubbed the E-FUSO Vision ONE at the Tokyo Motor Show, in late October. Daimler’s Class 8 truck promises a significantly more modest 220-mile range, with a payload 1.8 tons less than its diesel counterpart, and utilizing a 300 kWh battery pack. On paper, these figures make the E-FUSO Vision ONE more plausible than the Tesla Semi.

Project Portal Toyota maxresdefault

Of course Musk, a man who has promised to colonize Mars and builds spaceships to commute to the International Space Station, has never been known for making anything less than bold announcements.

But shorter-range BEV trucks do have a place in the transportation ecosystem. This is known as “last mile” and “short haul,” where deliveries are made inter-city, or within 100 miles. In such a capacity, the Tesla Semi could be greatly successful.

The semi truck business is a $30-billion-per-year industry in the United States alone, so there’s plenty of money to go around. But the Semi’s utility in true long-haul applications remains questionable.

Toyota’s Project Portal

 

Project Portal, a Real-World Zero-Emission Semi

Toyota has logged more than 4,000 development miles in a zero-emission Class 8 truck pulling drayage-rated cargo. This proof-of-concept semi, dubbed Project Portal, boasts 670 horsepower, 1,325 lb-ft of torque, and a 200-mile range. Rather than being powered strictly by battery pack—in this case, a comparatively small, 12kWh unit—Project Portal also utilizes twin fuel cell stacks plumbed from the Toyota Mirai consumer vehicle.

Project Portal II maxresdefault (2)

Project Portal has been moving goods around the Port of Los Angeles since April, and on October 23 expanded its routes to distribution warehouses and nearby rail yards. The idea is to collect data while the truck performs real-world drayage duties, its itineraries increasing as the study progresses.

Like the Tesla Semi, Project Portal also boasts impressive acceleration versus a traditional diesel truck: 8.9 seconds to travel 1/8th of a mile versus 14.6 seconds. Unlike the Tesla Semi, however, it’s already at work in the real world, even moving supplies and auto parts for Toyota throughout Southern California. Its numbers are verifiable.

In order to supply the Project Portal truck, as well as a growing fleet of FCEV semis as the project scales in size, Toyota announced last week that it would build the world’s first megawatt-scale hydrogen power station at the Port of Long Beach.

The power plant will generate 2.35 megawatts of electricity and 1.2 tons of hydrogen each day, enough to supply power and fuel to 2,350 homes and 1,500 FCEVs, respectively. Moreover, the Tri-Gen plant will generate so-called “green hydrogen” because it will be powered by 100-percent renewable sources, like local farm bio-waste. (Currently, most hydrogen is created via “cracking” natural gas, meaning splitting the CH4 into two H2 molecules and a free carbon atom.) Toyota could then claim the Project Portal trucks to be zero-emission from well-to-wheel.

Nikola Motors Arrives on the Scene With Bold Claims

 

A recent surprise player in the FCEV semi game is Utah-based Nikola Motors, makers of an announced Class 8 truck dubbed the Nikola One, a 320 kWh-powered tractor-trailer that will reportedly generate over 1,000-hp and 2,000 lb-ft of torque. Nikola Motors has also set the formidable goal of building a proprietary refueling station network across America, with over 700 planned H2 stations to be constructed in the next 10 years. As ambitious as that sounds, Nikola has an innovative business plan to scale up its stations. 

Nikola I Trevor-Milton-Nikola-Motor-CEO-on-truck

Nikola Motors CEO Trevor Milton

“We’re selling to fleets that run the same route every day,” says Nikola Motors CEO Trevor Milton. “So they’ll put an order in for 500 trucks, and we’ll build the stations before they come online.” A medium-size station will be constructed on each end of the route, allowing Nikola to establish flagship stations in each of those two terminal cities. With a range between 500 and 1,200 miles, depending on terrain, for their Nikola One, these stations can be quite far apart. Nikola plans to start with 16 stations located in the Midwest and East Coast, to be completed by 2019, at a cost of about $10 million apiece. Initially, there will be four test trucks running in 2018, with a planned 250 by 2019, and a total of 750 by 2020. Nikola plans to hit full production in 2021.

Rather than through a traditional lease, Nikola’s business model will be to charge customers solely on a per-mile basis. Nikola estimates the cost of a diesel semi runs between $1 to $1.25 per mile—this includes fuel, lease, tires, warranty, service, maintenance, etc.—though Milton says that with the Nikola One a driver is paying “anywhere between 20 to 40 percent less than that.”

“You don’t have to wait for 3 years to get your money back—you get your money back starting from day one,” Milton says.

While customers pay per mile (from $0.85 per mile for cheaper models up to $1.00/mile for the most expensive) all other costs of running the truck save insurance—from wipers and tires to all maintenance and fuel—are covered by Nikola Motors.

“That’s the golden egg,” Milton says. “How do you provide something that has no emission, that has better performance at less cost? And that’s what we’ve been able to do,” he says. “You won’t even be able to buy a diesel in 10 years because you’re going to be losing over a zero-emission vehicle.”

With over 8,000 trucks reserved in their first month of unveiling, Milton has no doubt they will have the necessary customers to fill out the initial 750 truck order, and more. “We’re on track, probably, to being more than 10-15 years booked out once we hit the assembly line,” he says. “We have more customers than we know what to do with.”

As far as Tesla’s news, Milton believes the Semi will be successful for short-haul work, estimating the truck’s real-world range will probably be around 350 miles—not nearly long enough for long-haul purposes.

“Their battery alone will weigh more than our entire truck,” he says, estimating the Semi’s lithium-ion pack will weigh about 15,000 pounds.

“We don’t really see them as a competitor on our end, just because our truck can outperform their truck in every category, every time, in every situation,” Milton says. “And [Nikola One can do] it two to three times further than they can, at a 10,000-pound weight difference. But it’s good that they’re coming in teaching people that electric can work, because we need all the help we can get in the industry to prove electric trucks work.”

Competitors or colleagues, Musk and Milton share a capacity for eyebrow-raising claims. When we first spoke with Milton in the spring for a longer feature on this site about the current state of the global hydrogen industry, he claimed he would require every Nikola station to produce 100 percent of its hydrogen via renewables like solar energy—a stipulation that would make the Nikola One, like Project Portal trucks fueled by the Tri-Gen bio-waste-powered plant, truly zero-emission from wheel to well.

“We will produce all the H2 on every one of our stations onsite via electrolysis,” Milton said at the time.

The math didn’t appear to add up. Using National Renewable Energy Laboratory (NREL) algorithms of energy production via solar cells, we deduced the lowest-capacity stations, at 12,500 kgs, would require a 540-acre solar farm to produce the necessary H2. We followed up with Nikola for clarification, and the company responded that, according to their calculations, they would each require “just over 218 acres.” Even with this considerable reduction, the idea that 700-plus stations across America would each be connected to a 218-acre solar fields seemed highly unlikely.

When we spoke more recently, Milton had softened his stance.

“I’ve definitely lessened on that, but it’s more of a philosophy, not as an actual message,” he said. “We have to take energy from the grid, but the way we get that energy is guaranteed that it’s zero-emission. We just don’t want a gigantic diesel plant powering our hydrogen.”

Instead, Milton now says, one-third of Nikola’s energy will be produced on-site, while the remainder will be bought from other green sources, whether that means from renewables, from power plants at excess capacity, or the grid via guaranteed zero-emission sources.

“There are multiple ways we’ll be buying and getting energy into our hydrogen production, but it’s not one-size-fits-all, that’s for sure. And if we made it sound like that, we apologize; we were mainly just trying to educate people that we are going to mandate that almost all of our energy is zero-emission from production to consumption.

“We’re evolving every month, as we get all these orders going in. We’re learning. There’s little things we’re tweaking, but ultimately our overall philosophy is it’s our duty and our goal to get rid of all the diesels and all the emissions on the road. And we’ll get there soon, it’ll just take some time.”

Regardless of the historical challenges inherent to starting any automotive brand, some people are hopeful about Nikola’s future.

“Building up a hydrogen eco-system entails many—and very different—elements,” says Yorgo Chatzimarkakis, Secretary General of the hydrogen-advocacy group Hydrogen Europe. After invoking the myriad doubts that Elon Musk faced when launching Tesla, he continues. “Some areas of a hydrogen-based economy need visionaries who have ambitions that do not seem plausible at the moment but are doable, and absolutely make sense in the long run.”

The Realities of a Zero-Emission Future

The point here isn’t to denigrate Tesla specifically, or BEVs in general. In order to achieve a zero emission transportation future—the goal of an increasing number of nations worldwide—many think that we should not have to choose between BEVs and FCEVs. Each has its clear advantages. 

As we’ve outlined in detail before, a zero-emission future will likely require the right solution for specific applications. Battery-electric power excels in smaller vehicles and for shorter ranges, while FCEVs are better suited for heavy-duty jobs that demand intense energy consumption and longer ranges. It need not be a zero-sum game.

Musk has accomplished enough already to warrant the benefit of the doubt for his bold Semi claims. Just this summer, he made a bet on Twitter that he could install a 100-megawatt battery storage facility in the South Australian outback within 100 days—or it would be free. Many doubted the billionaire futurist’s wager, but sure enough, by December 1 the facility was online and functional. During his comet-streak career he has made a habit of unflinching claims doubted by the masses, and has often enough enjoyed the last laugh.

However, Musk also has a history of disparaging hydrogen and FCEVs as legitimate transportation alternatives, calling them “incredibly dumb” and “bullshit.” This position is not only erroneous and misleading, but also dangerous and counterproductive to the same zero-emission future that he repeatedly touts. As the founder and CEO of the most valuable BEV company in the world by far—in fact, Wall Street considers Tesla the most valuable American automaker, having surpassed General Motors in April—it benefits him tremendously if that future is strictly BEV-powered.

The potential problem with Musk’s Semi assertions wouldn’t be that they’re possible embellishments about the capabilities of a BEV truck—he certainly wouldn’t be the first CEO to promise the impossible to prop up stock value—as much as their potential to salt the earth for FCEV semi truck growth. Claiming that BEV semis are a better solution than FCEVs would be fine on a barstool or in a vacuum, but the incredible power of Musk’s voice in the tech and transportation markets could devalue the viability of Class 8 vehicles powered by fuel cells.

Case in point: Bloomberg reported that immediately after Musk’s Tesla Semi announcement, share prices of truck and truck component makers dropped. They recovered when analysts had time to sift through the available information, but Musk potentially hobbling a critical cog of a zero-emission future runs contrary to his stated goals of saving the planet.

In the end, if Tesla, Daimler, Toyota and Nikola can get their respective FCEV and BEV semis off the ground, the impact would be tectonic. Using average estimates, every single alternative-powertrain truck replacing a similar ICE-powered vehicle would remove about 173 tons of CO2 emissions each year. Scale that to a fleet of 1,000, or 100,000, or a million trucks, and the impact on the climate and air quality would be profound. Musk should be free to do what he needs to in order to ensure his company succeeds, except when it values Tesla’s bottom line over that of the planet.

*Note: This article was updated to reflect that the stated price of $0.40/kWh is specifically for so-called “green” electricity harnessed from renewable or zero-emission sources.

Tesla Semi and Roadster could be relying on a “battery breakthrough”


img_0381

Elon Musk and Tesla have made some bold claims for the new Tesla Semi and Roadster. Those who understand batteries have been scratching their heads trying to figure out how the company can deliver the specs it’s promising – and concluding that the only possible way is some as-yet-unannounced advancement in battery technology.

Musk says the Tesla Semi will be able to haul 80,000 pounds for 500 miles, and recharge to 400 miles in 30 minutes, which would revolutionize the trucking industry. As for the Roadster, its promised 0-60 acceleration of 1.9 seconds effectively shuts down every one of the world’s baddest supercars, and its touted 620-mile range would be double that of any EV produced to date.

However, industry experts are questioning Tesla CEO Elon Musk’s touted range and charging capabilities, saying the specifications defy current physics and battery economics.

According to Bloomberg, analysts at Bloomberg New Energy Finance point out that Tesla Semi’s announced specs would require a battery capacity of between 600 and 1,000 kilowatt hours (6-10 times the size of the largest Model S battery).

Using current technology, an 800 kWh battery pack would weigh over 10,000 pounds and cost more than $100,000. That’s just for the battery – Tesla has said its entire truck will start at $150,000. It seems plain that Tesla is counting on falling battery prices to square the circle. “The first Tesla Semis won’t hit the road until late 2019,” Bloomberg points out.

“Even then, production would probably start slowly. Most fleet operators will want to test the trucks before considering going all-in. By the time Tesla gets large orders, batteries should cost considerably less.”

It isn’t just the capacity of the battery that’s causing analysts to wear out their calculators – Musk’s claim that the Tesla Semi will be able to add 400 miles of charge in 30 minutes would require a charging system 10 times more powerful than Tesla’s current Supercharger – which is already by far the most powerful in the industry.

image-4

Tesla Semi Megacharger port could support 1 MW of power.

“I don’t understand how that works,” said Bloomberg New Energy Finance EV Analyst Salim Morsy. “I really don’t.” Tesla’s current generation of Superchargers have a power output of 120 kilowatts and can add about 180 miles of range to a Model S battery in 30 minutes. To meet Tesla’s charging claim for the Semi would require the promised Megacharger to deliver an output of at least 1,200 kW.

Perhaps Tesla’s biggest bombshell is the promise that it will guarantee truckers electricity rates of 7 cents per kilowatt hour, which Bloomberg estimates could translate to fuel savings of up to $30,000 a year.

Musk says that adding solar panels and battery packs at the charging stations will account for at least part of the cost reduction. However, BNEF’s Salim Morsy insists that Tesla will have to heavily subsidize those electricity rates – he estimates that Tesla will pay a minimum of 40 cents per kWh. “There’s no way you can reconcile 7 cents a kilowatt hour with anything on the grid that puts a megawatt hour of energy into a battery,” Morsy said. “That simply does not exist.”

Of course, that’s no different from what Tesla does for its current Supercharger network, offering free electricity to many customers, while paying almost $1 per kWh to produce it, according to Morsy’s estimate.

And how about that Roadster? To deliver its promised range of 620 miles, it will need a 200 kWh battery pack, twice the size of Tesla’s largest currently available pack. Mr. Morsy predicts that Tesla will stack two battery packs, one on top of the other, beneath the Roadster’s floor.

Roadster

 

 

Even with a double-decker pack however, it’s hard to escape the conclusion that Tesla is counting on improving battery tech to make the Roadster, like the Semi, feasible. Battery density has been improving at a rate of about 7.5 percent a year, and that’s without any major breakthrough in battery chemistry.

“The trend in battery density is, I think, central to any claim Tesla made about both the Roadster and the Semi,” Morsy said. “That’s totally fair. The assumptions on a pack in 2020 shouldn’t be the same ones you use today.”

A massive battery pack not only enables greater range – it’s also a key element in the Roadster’s world-beating 0-60 acceleration. Jalopnik’s David Tracy spoke with battery expert Venkat Viswanathan, a Mechanical Engineering Assistant Professor at Carnegie Mellon, who says that the 1.9-second figure actually seems reasonable.

Viswanathan explains that the power output of a motor is limited by the power draw from each battery cell. Because the Roadster’s pack is double the size, the power draw may not be that much more than that of a Ludicrous Model S.

Viswanathan told Jalopnik that the most modern battery cells offer specific energy of about 240 watt-hours per kilogram. Using that assumption, the Roadster’s 200 kWh battery pack should weigh roughly 1,800 pounds, a huge advance over the previous-generation Roadster. With clever use of lightweight materials, the Roadster could still come out under the nearly two-ton curb weight of the Nissan GT-R, an acceleration benchmark among sports cars.

Viswanathan concludes that a 0-60 time of 1.9 seconds and a range of 620 miles are quite feasible, although there are several other factors that will come into play – much depends on the vehicle’s tires and aerodynamics.

Meanwhile, at least one analyst thinks Tesla’s latest revelations (or claims, or fantasies, depending on your point of view) have implications that go far beyond the Semi and the Roadster. Michael Kramer, a Fund Manager with Mott Capital Management, told Marketwatch that he suspects improved battery capacities and charging times could make their way into all future Tesla vehicles.

“I’d have to imagine that Tesla has figured out how to put this technology on all of their cars, which means every car could get a full charge in under 30 minutes,” Kramer wrote. Once the Model S “is equipped with the 200 kWh battery pack in the new Roadster, which I can’t imagine is too far down the road, the range issue for the Tesla is officially dead.” (Elon Musk has said that Models S and X will not get physically larger packs, but improved energy density could increase capacity while keeping the size of the pack the same.) Someday soon, Kramer says, “The Model S would likely be able to drive further on one charge than a car on a full tank of gasoline.”

===

Note: Article originally published on evannex.com, by Charles Morris

Promising New Research for High Performance Lithium Batteries – Engineering 2D Nanofluidic Channels


Nanofluidic id48859_1

Abstract: In article number 1703909, Gang Chen, Guihua Yu, and co-workers present a novel concept of 2D nanofluidic lithium-ion transport channels based on stacked Co3O4nanosheets for high-performance lithium batteries. This unique nanoarchitecture exhibits exceptional capacity and outstanding long-term cycling stability for lithium-ion storage at high-rates in both half- and full-cells.

 

Despite being a promising electrode material, bulk cobalt oxide (Co3O4) exhibits poor lithium ion storage properties. Nanostructuring, e.g. making Co3O4 into ultrathin nanosheets, shows improved performance, however, Co3O4-based nanomaterials still lack long-term stability and high rate capability due to sluggish ion transport and structure degradation.

Nanofluidic channels possess desired properties to address above issues. However, while these unique structures have been studied in hollow nanotubes and recently in restacked layered materials such as graphene, it remains challenging to construct nanofluidic channels in intrinsically non-layered materials.
Motived by the large number of non-layered materials, e.g. transition metal oxides, which hold great promise in battery applications, scientists aim to extend the concept of nanofluidic channels into these materials and improve their electrochemical properties.
Nanofluidic channels feature a unique unipolar ionic transport when properly designed and constructed. By controlling surface charge and channel spacing, enhanced and selective ion transport can be achieved in these channels by constructing them with dimensions comparable to the double Debye length and opposite surface charge with respect to the transporting ion.
In a new study published in Advanced Materials (“Engineering 2D Nanofluidic Li-Ion Transport Channels for Superior Electrochemical Energy Storage”), researchers have developed a Co3O4-based two-dimensional (2D) nano-architecture possessing nanofluidic channels with specially designed interlayer characteristics for fast lithium ion transport, leading to exceptional performance in lithium ion batteries ever reported for this material.
“Such constructed 2D nanofluidic channels in non-layered materials manifest a general structural engineering strategy for improving electrochemical properties in a vast number of different electrode materials,” Guihua Yu, a professor in Materials Science and Engineering, Mechanical Engineering, at the Texas Materials Institute, University of Texas at Austin. “The enhanced and selective ion transport demonstrated in our study is of broad interest to many applications where fast kinetics of ion transport is essential.”
Illustration of lithium ion transport in the 2D nanofluidic channels
Illustration of lithium ion transport in 2D nanofluidic channels. (Reprinted with permission by Wiley-VCH)
On the one hand, an intercalated molecule acts as interlayer pillar in the stacked oxide, constituting transport channels with proper spacing. On the other hand, negatively charged functional groups anchored on the nanosheets surface facilitate transport of positively charged lithium ions inside the channels.
“Satisfying aforementioned conditions for unipolar ionic transport, combined with other advantageous features – extra storage capacity contributed by the surface functional groups, buffered structural stress from the interlayer spacing, and shortened lithium ion diffusion distance due to the ultrathin nanosheet morphology – the resulting nanoarchitecture exhibit exceptional electrochemical performance as tested in lithium-ion batteries,” notes Yu.
In a next step, the researchers are going to extend the concept of 2D nanofluidic channels to other electrode materials with or without layering structures. With ability to further tune interlayer spacing, they expect some promising energy storage applications in beyond-lithium-ion batteries.
It might also be interesting to examine this structural engineering strategy in other applications, for example, catalysis.
Design and LIBs application of Co3O4 nanosheets with 2D nanofluidic channels
Design and LIBs application of Co3O4 nanosheets with 2D nanofluidic channels. (a) The synthetic route from Co-based layered hydroxide precursor to Co3O4 nanosheets with 2D nanofluidic channels. (b) Cycling performance of a full cell (anode: Co3O4 nanosheets /cathode: commercial LiCoO2). (Reprinted with permission by Wiley-VCH)
Constructing 2D nanofluidic channels for energy storage application is still in its infancy and the success of using non-layered materials demonstrated in this study promises a bright future in this direction with a broader material coverage.
“We are also taking this research direction even further by looking into the transport and storage properties for energy storage systems based on larger charge-carrying ions, such as Na+ and Mg2+, ” concludes Yu. “In order to realize that, an important challenge is to tune the channel spacing in a controlled manner. It is also imperative to investigate structural stability and scalability of this specially designed nanoarchitecture for its utilization in practical applications.”
@Michael Berger © Nanowerk

Berkeley Lab – DOE – Argonne – “Holy Grail” for Batteries: Solid-State Magnesium Battery a Big Step Closer


 

Berkeley Lab leads discovery of the fastest magnesium-ion solid-state conductor to date.

 

A team of Department of Energy (DOE) scientists at the Joint Center for Energy Storage Research (JCESR) has discovered the fastest magnesium-ion solid-state conductor, a major step towards making solid-state magnesium-ion batteries that are both energy dense and safe.

Argonne scientist Baris Key, shown on left at work in his nuclear magnetic resonance lab, worked with researchers at Berkeley Lab on the discovery of the fastest ever magnesium-ion solid-state conductor. (Credit: Argonne National Laboratory)

The electrolyte, which carries charge back and forth between the battery’s cathode and anode, is a liquid in all commercial batteries, which makes them potentially flammable, especially in lithium-ion batteries. A solid-state conductor, which has the potential to become an electrolyte, would be far more fire-resistant.

Researchers at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory were working on a magnesium battery, which offers higher energy density than lithium, but were stymied by the dearth of good options for a liquid electrolyte, most of which tend to be corrosive against other parts of the battery. “Magnesium is such a new technology, it doesn’t have any good liquid electrolytes,” said Gerbrand Ceder, a Berkeley Lab Senior Faculty Scientist. “We thought, why not leapfrog and make a solid-state electrolyte?”

The material they came up with, magnesium scandium selenide spinel, has magnesium mobility comparable to solid-state electrolytes for lithium batteries. Their findings were reported in Nature Communications in a paper titled, “High magnesium mobility in ternary spinel chalcogenides.”JCESR, a DOE Innovation Hub, sponsored the study, and the lead authors are Pieremanuele Canepa and Shou-Hang Bo, postdoctoral fellows at Berkeley Lab.

“With the help of a concerted effort bringing together computational materials science methodologies, synthesis, and a variety of characterization techniques, we have identified a new class of solid conductors that can transport magnesium ions at unprecedented speed,” Canepa said.

Collaboration with MIT and Argonne

The research team also included scientists at MIT, who provided computational resources, and Argonne, who provided key experimental confirmation of the magnesium scandium selenide spinel material to document its structure and function.

Co-author Baris Key, a research chemist at Argonne, conducted nuclear magnetic resonance (NMR) spectroscopy experiments. These tests were among the first steps to experimentally prove that magnesium ions could move through the material as rapidly as the theoretical studies had predicted.

“It was crucial to confirm the fast magnesium hopping experimentally. It is not often that the theory and the experiment agree closely with each other,” Key said. “The solid state NMR experiments for this chemistry were very challenging and would not be possible without dedicated resources and a funding source such as JCESR.

As we’ve shown in this study, an in-depth understanding of short- and long-range structure and ion dynamics will be the key for magnesium ion battery research.”

NMR is akin to magnetic resonance imaging (MRI), which is routinely used in medical settings, where it shows hydrogen atoms of water in human muscles, nerves, fatty tissue, and other biological substances. But researchers can also tune NMR frequency to detect other elements, including the lithium or magnesium ions that are found in battery materials.

The NMR data from the magnesium scandium selenide material, however, involved material of unknown structure with complex properties, making them challenging to interpret.

Canepa noted the challenges of testing materials that are so new. “Protocols are basically non-existent,” he said. “These findings were only possible by combining a multi-technique approach (solid-state NMR and synchrotron measurements at Argonne) in addition to conventional electrochemical characterization.”

Doing the impossible

The team plans to do further work to use the conductor in a battery. “This probably has a long way to go before you can make a battery out of it, but it’s the first demonstration you can make solid-state materials with really good magnesium mobility through it,” Ceder said. “Magnesium is thought to move slowly in most solids, so nobody thought this would be possible.”

Additionally, the research identified two related fundamental phenomena that could significantly affect the development of magnesium solid electrolytes in the near future, namely, the role of anti-site defects and the interplay of electronic and magnesium conductivity, both published recently in Chemistry of Materials.

Bo, now an assistant professor at Shanghai Jiao Tong University, said the discovery could have a dramatic effect on the energy landscape. “This work brought together a great team of scientists from various scientific disciplines, and took the first stab at the formidable challenge of building a solid-state magnesium battery,” he said. “Although currently in its infancy, this emerging technology may have a transformative impact on energy storage in the near future.”

Gopalakrishnan Sai Gautam, another co-author who was an affiliate at Berkeley Lab and is now at Princeton, said the team approach made possible by a DOE hub such as JCESR was critical. “The work shows the importance of using a variety of theoretical and experimental techniques in a highly collaborative environment to make important fundamental discoveries,” he said.

Ceder was excited at the prospects for the finding but cautioned that work remains to be done. “There are enormous efforts in industry to make a solid-state battery. It’s the holy grail because you would have the ultimate safe battery. But we still have work to do. This material shows a small amount of electron leakage, which has to be removed before it can be used in a battery.”

Funding for the project was provided by the DOE Office of Science through the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub. The Advanced Photon Source, a DOE Office of Science User Facility at Argonne, added vital data to the study regarding the structure of the solid conductor.

The National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Berkeley Lab, provided computing resources. Other co-authors on the paper are Juchaun Li of Berkeley Lab, William Richards and Yan Wang of MIT, and Tan Shi and Yaosen Tian of UC Berkeley.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state, and municipal agencies to help them solve their specific problems, advance America’s scientific leadership, and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub, is a major partnership that integrates researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Led by the U.S. Department of Energy’s Argonne National Laboratory, partners include national leaders in science and engineering from academia, the private sector, and national laboratories. Their combined expertise spans the full range of the technology-development pipeline from basic research to prototype development to product engineering to market delivery.

The Fuel Tank of Tomorrow – A Super Capacitor? +YouTube Video


 

KiloWatt Labs CEO Omer Ghani explains in the above interview, filmed at the IDTechEX Show!, that his company has overcome these challenges and has begun shipping large-scale, super capacitor-based energy storage solutions for applications such as microgrid, renewable, utility and mobility. He indicates their solution is a cost-competitive replacement for traditional battery approaches,

 

NREL Charges Forward to Reduce Time at EV Stations



Shortening recharge times may diminish range anxiety, increase EV market viability, however Speeding up battery charging will be crucial to improving the convenience of owning and driving an electric vehicle (EV). 




The Energy Department’s National Renewable Energy Laboratory (NREL) is collaborating with Argonne National Laboratory (ANL), Idaho National Laboratory (INL), and industry stakeholders to identify the technical, infrastructure, and economic requirements for establishing a national extreme fast charging (XFC) network.


Today’s high power EV charging stations take 20 minutes or more to provide a fraction of the driving range car owners get from 10 minutes at the gasoline pump. 

Porsche is leading the industry with the deployment of two XFC 350kW EV charging stations in Europe that will begin to approach the refueling time of gasoline vehicles. Photo courtesy of Porsche.

Drivers can pump enough gasoline in 10 minutes to carry them a few hundred miles. Most of today’s fast charging stations take 20 minutes to provide 50-70 miles of electric driving range. 

A series of articles in the current edition of the Journal of Power Sources summarizes the NREL team’s findings on how battery, vehicle, infrastructure, and economic factors impact XFC feasibility.

“You can charge an EV today at one of 44,000 stations across the country, but if you can’t leave your car plugged in for a few hours, you may only get enough juice to travel across town a few times,” says NREL Senior Engineer and XFC Project Lead Matthew Keyser

“We’re working to match the time, cost, and distance that generations of drivers have come to expect—with the additional benefits of clean, energy-saving technology.”

While XFC can help overcome real (and perceived) EV driving range limitations, the technology also introduces a series of new challenges. More rapid and powerful charging generates higher temperatures, which can lead to battery degradation and safety issues. 

Power electronics found in commercially available EVs are built for slower overnight charging and may not be able to withstand the stresses of higher voltage battery systems which are expected for higher power charging systems. XFC’s extreme, intermittent demands for electricity could also pose challenges to grid stability.

The XFC research team is exploring solutions for these issues, examining factors related to vehicle technology, gaps in existing technology, new demands on system design, and additional thermal management requirements. Researchers are also looking beyond vehicle systems to consider equipment and station design and potential impact on the grid.


NREL’s intercity travel analysis revealed that recharge times comparable to the time it takes to pump gas will require charge rates of at least 400 kW. 

Current DC Fast Charging rates are limited to 50-120 kW, and most public charging stations are limited to 7kW. 




XFC researchers have concluded that this will necessitate increases in battery charging density and new designs to minimize potential related increases in component size, weight, and cost. 

It appears that a more innovative battery thermal management system will be needed if XFC is to become a reality, and new strategies and materials will be needed to improve battery cell and pack cooling, as well as the thermal efficiency of cathodes and anodes.




“Yes, this substantial increase in charging rate will create new technical issues, but they are far from insurmountable—now that we’ve identified them,” says NREL Engineer Andrew Meintz.

Development of a network of XFC stations will depend on cost, market demand, and management of intermittent power demands. 
The team’s research revealed a need for more extensive analysis of potential station siting, travel patterns, grid resources, and business cases. 

At the same time, it is clear that any XFC network will call for new infrastructure technology and operational practices, along with cooperation and standardization across utilities, station operators, and manufacturers of charging systems and EVs.

These studies provide an initial framework for effectively establishing XFC technology. The initiative has attracted keen interest from industry members, who realize that faster charging will ultimately lead to wider market adoption of EV technologies.

This research is supported by the DOE Vehicle Technologies Office. Learn more about NREL’s energy storage and EV grid integration research.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Nanosheets Make Batteries Better: New method may be the next step for high performance lithium-ion batteries.


Graphene Sheets 20170627-ASTAR-lithium-343yoafotmqoi1thc5hj40

Lithium-ion batteries are used to power many things from mobile phones, laptops, tablets to electric cars. But they have some drawbacks, including limited energy storage capacity, low durability and long charging time.

Now, researchers at the Institute of Bioengineering and Nanotechnology (IBN) at Singapore’s Agency for Science, Technology and Research (A*STAR) have developed a way of producing more durable and longer lasting lithium-ion batteries. This finding was reported in Advanced Materials. Led by IBN Executive Director Professor Jackie Y. Ying, the researchers invented a generalized method of producing anode materials for lithium-ion batteries. The anodes are made from metal oxide nanosheets, which are ultrathin, two-dimensional materials with excellent electrochemical and mechanical properties.

These nanosheets are 50,000 times thinner than a sheet of paper, allowing faster charging of power compared to current battery technology. The wide surface area of the nanosheets makes better contact with the electrolyte, thus increasing the storage capacity. The material used is also highly durable and does not break easily, which improves the battery shelf life. Existing methods of making metal oxide nanosheets are time-consuming and difficult to scale up.

The IBN researchers came up with a simpler and faster way to synthesize metal oxide nanosheets using graphene oxide. Graphene oxide is a 2D carbon material with chemical reactivity that facilities the growth of metal oxides on its surface. Graphene oxide was used as the template to grow metal oxides into nanosheet structures via a simple mixing process, followed by heat treatment. The researchers were able to synthesize a wide variety of metal oxides as nanosheets, with control over the composition and properties. The new technique produces the nanosheets in one day, compared to one week for previously reported methods.

It does not require the use of a pressure chamber and involves only two steps in the synthesis process, making the nanosheets easy to manufacture on a large scale. Tests showed that the nanosheets produced using this generalized approach have excellent lithium-ion battery anode performance, with some materials lasting three times longer than graphite anodes used in current batteries. “Our nanosheets have shown great promise for use as lithium-ion anodes.

This new method could be the next step toward the development of metal oxide nanosheets for high performance lithium-ion batteries. It can also be used to advance other applications in energy storage, catalysis and sensors,” said Ying.

The article can be found at: AbdelHamid et al. (2017) Generalized Synthesis of Metal Oxide Nanosheets and Their Application as Li-Ion Battery Anodes. ——— Source: A*STAR.

Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/07/tech/nanosheet-lithium-batteries/