Stanford University: Solving the “Storage Problem” for Renewable Energies: A New Cost Effective Re-Chargeable Aluminum Battery


stanford-alum-urea-battery-160405175659_1_540x360

One of the biggest missing links in renewable energy is affordable and high performance energy storage, but a new type of battery developed at Stanford University could be the solution.

Solar energy generation works great when the sun is shining [duh…like taking a Space Mission to the Sun .. but only at night! :-)] and wind energy is awesome when it’s windy (double duh…), but neither is very helpful for the grid after dark and when the air is still. That’s long been one of the arguments against renewable energy, even if there are plenty of arguments for developing additional solar and wind energy installations without large-scale energy storage solutions in place. However, if low-cost and high performance batteries were readily available, it could go a long way toward a more sustainable and cleaner grid, and a pair of Stanford engineers have developed what could be a viable option for grid-scale energy storage.

With three relatively abundant and low-cost materials, namely aluminum, graphite, and urea, Stanford chemistry Professor Hongjie Dai and doctoral candidate Michael Angell have created a rechargeable battery that is nonflammable, very efficient, and has a long lifecycle.

“So essentially, what you have is a battery made with some of the cheapest and most abundant materials you can find on Earth. And it actually has good performance. Who would have thought you could take graphite, aluminum, urea, and actually make a battery that can cycle for a pretty long time?” – Dai

A previous version of this rechargeable aluminum battery was found to be efficient and to have a long life, but it also employed an expensive electrolyte, whereas the latest iteration of the aluminum battery uses urea as the base for the electrolyte, which is already produced in large quantities for fertilizer and other uses (it’s also a component of urine, but while a pee-based home battery might seem like just the ticket, it’s probably not going to happen any time soon).

According to Stanford, the new development marks the first time urea has been used in a battery, and because urea isn’t flammable (as lithium-ion batteries are), this makes it a great choice for home energy storage, where safety is of utmost importance. And the fact that the new battery is also efficient and affordable makes it a serious contender when it comes to large-scale energy storage applications as well.

“I would feel safe if my backup battery in my house is made of urea with little chance of causing fire.” – Dai

According to Angell, using the new battery as grid storage “is the main goal,” thanks to the high efficiency and long life cycle, coupled with the low cost of its components. By one metric of efficiency, called Coulombic efficiency, which measures the relationship between the unit of charge put into the battery and the output charge, the new battery is rated at 99.7%, which is high.WEF solarpowersavemoney-628x330

In order to meet the needs of a grid-scale energy storage system, a battery would need to last at least a decade, and while the current urea-based aluminum ion batteries have been able to last through about 1500 charge cycles, the team is still looking into improving its lifetime in its goal of developing a commercial version.

The team has published some of its results in the Proceedings of the National Academy of Sciences, under the title “High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.”

 

PNL Battery Storage Systems 042016 rd1604_batteriesGrid-scale energy storage to manage our electricity supply would benefit from batteries that can withstand repeated cycling of discharging and charging. Current lithium-ion batteries have lifetimes of only 1,000-3,000 cycles. Now a team of researchers from Stanford University, Taiwan, and China have made a research prototype of an inexpensive, safe aluminum-ion battery that can withstand 7,500 cycles. In the aluminum-ion battery, one electrode is made from affordable aluminum, and the other is composed of carbon in the form of graphite.

Read: A step towards new, faster-charging, and safer batteries

 

Harvard: Renewable Energy: Long-lasting flow battery could run for more than a decade


Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar.

Posted: Feb 09, 2017

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new flow battery that stores energy in organic molecules dissolved in neutral pH water. 

This new chemistry allows for a non-toxic, non-corrosive battery with an exceptionally long lifetime and offers the potential to significantly decrease the costs of production.

The research, published in ACS Energy Letters (“A Neutral pH Aqueous Organic/Organometallic Redox Flow Battery with Extremely High Capacity Retention”), was led by Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science.

Renewable Energy 

Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar.

Flow batteries store energy in liquid solutions in external tanks — the bigger the tanks, the more energy they store. Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar but today’s flow batteries often suffer degraded energy storage capacity after many charge-discharge cycles, requiring periodic maintenance of the electrolyte to restore the capacity.

By modifying the structures of molecules used in the positive and negative electrolyte solutions, and making them water soluble, the Harvard team was able to engineer a battery that loses only one percent of its capacity per 1000 cycles.

“Lithium ion batteries don’t even survive 1000 complete charge/discharge cycles,” said Aziz.

“Because we were able to dissolve the electrolytes in neutral water, this is a long-lasting battery that you could put in your basement,” said Gordon. “If it spilled on the floor, it wouldn’t eat the concrete and since the medium is noncorrosive, you can use cheaper materials to build the components of the batteries, like the tanks and pumps.”

This reduction of cost is important. The Department of Energy (DOE) has set a goal of building a battery that can store energy for less than $100 per kilowatt-hour, which would make stored wind and solar energy competitive to energy produced from traditional power plants.

“If you can get anywhere near this cost target then you change the world,” said Aziz. “It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target.”

“This work on aqueous soluble organic electrolytes is of high significance in pointing the way towards future batteries with vastly improved cycle life and considerably lower cost,” said Imre Gyuk, Director of Energy Storage Research at the Office of Electricity of the DOE. “I expect that efficient, long duration flow batteries will become standard as part of the infrastructure of the electric grid.”

The key to designing the battery was to first figure out why previous molecules were degrading so quickly in neutral solutions, said Eugene Beh, a postdoctoral fellow and first author of the paper. By first identifying how the molecule viologen in the negative electrolyte was decomposing, Beh was able to modify its molecular structure to make it more resilient.

Next, the team turned to ferrocene, a molecule well known for its electrochemical properties, for the positive electrolyte.

“Ferrocene is great for storing charge but is completely insoluble in water,” said Beh. “It has been used in other batteries with organic solvents, which are flammable and expensive.”

But by functionalizing ferrocene molecules in the same way as with the viologen, the team was able to turn an insoluble molecule into a highly soluble one that could also be cycled stably.

“Aqueous soluble ferrocenes represent a whole new class of molecules for flow batteries,” said Aziz.

The neutral pH should be especially helpful in lowering the cost of the ion-selective membrane that separates the two sides of the battery. Most flow batteries today use expensive polymers that can withstand the aggressive chemistry inside the battery. They can account for up to one third of the total cost of the device. With essentially salt water on both sides of the membrane, expensive polymers can be replaced by cheap hydrocarbons.

This research was coauthored by Diana De Porcellinis, Rebecca Gracia, and Kay Xia. It was supported by the Office of Electricity Delivery and Energy Reliability of the DOE and by the DOE’s Advanced Research Projects Agency-Energy.

With assistance from Harvard’s Office of Technology Development (OTD), the researchers are working with several companies to scale up the technology for industrial applications and to optimize the interactions between the membrane and the electrolyte. Harvard OTD has filed a portfolio of pending patents on innovations in flow battery technology.

Source: By Leah Burrows, Harvard School of Engineering and Applied Sciences

Georgia Institute of Technology: New Low-Cost Technique Converts Bulk Alloys to Oxide Nanowires


git-nanowires-rd_1702_nanotech
Researchers have developed a new low-cost technique for converting bulk powders directly to oxide nanowires. Shown is a crucible in which an alloy of lithium and aluminum is being formed. Credit: Rob Felt, Georgia Tech

 

A simple technique for producing oxide nanowires directly from bulk materials could dramatically lower the cost of producing the one-dimensional (1D) nanostructures. That could open the door for a broad range of uses in lightweight structural composites, advanced sensors, electronic devices – and thermally-stable and strong battery membranes able to withstand temperatures of more than 1,000 degrees Celsius.

The technique uses a solvent reaction with a bimetallic alloy – in which one of the metals is reactive – to form bundles of nanowires (nanofibers) upon reactive metal dissolution. The process is conducted at ambient temperature and pressure without the use of catalysts, toxic chemicals or costly processes such as chemical vapor deposition. The produced nanowires can be used to improve the electrical, thermal and mechanical properties of functional materials and composites.

The research, which was reported this week in the journal Science, was supported by the National Science Foundation and California-based Sila Nanotechnologies. The process is believed to be the first to convert bulk powders to nanowires at ambient conditions.

“This technique could open the door for a range of synthesis opportunities to produce low-cost 1D nanomaterials in large quantities,” said Gleb Yushin, a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “You can essentially put the bulk materials into a bucket, fill it with a suitable solvent and collect nanowires after a few hours, which is way simpler than how many of these structures are produced today.”

Yushin’s research team, which included former graduate students Danni Lei and James Benson, has produced oxide nanowires from lithium-magnesium and lithium-aluminum alloys using a variety of solvents, including simple alcohols. Production of nanowires from other materials is part of ongoing research that was not reported in the paper.

The dimensions of the nanowire structures can be controlled by varying the solvent and the processing conditions. The structures can be produced in diameters ranging from tens of nanometers up to microns.

“Minimization of the interfacial energy at the boundary of the chemical reaction front allows us to form small nuclei and then retain their diameter as the reaction proceeds, thus forming nanowires,” Yushin explained. “By controlling the volume changes, surface energy, reactivity and solubility of the reaction products, along with the temperature and pressure, we can tune conditions to produce nanowires of the dimensions we want.”

One of the attractive applications may be separator membranes for lithium-ion batteries, whose high power density has made them attractive for powering everything from consumer electronics to aircraft and motor vehicles. However, the polymer separation membranes used in these batteries cannot withstand the high temperatures generated by certain failure scenarios.

As result, commercial batteries may induce fires and explosions, if not designed very carefully and it’s extremely hard to avoid defects and errors consistently in tens of millions of devices.

Using low-cost paper-like membranes made of ceramic nanowires could help address those concerns because the structures are strong and thermally stable, while also being flexible – unlike many bulk ceramics. The material is also polar, meaning it would more thoroughly wetted by various battery electrolyte solutions.

“Overall, this is a better technology for batteries, but until now, ceramic nanowires have been too expensive to consider seriously,” Yushin said. “In the future, we can improve mechanical properties further and scale up synthesis, making the low-cost ceramic separator technology very attractive to battery designers.”

Fabrication of the nanowires begins with formation of alloys composed of one reactive and one non-reactive metal, such as lithium and aluminum (or magnesium and lithium). The alloy is then placed in a suitable solvent, which could include a range of alcohols, such as ethanol. The reactive metal (lithium) dissolves from the surface into the solvent, initially producing nuclei (nanoparticles) comprising aluminum.

Though bulk aluminum is not reactive with alcohol due to the formation of the passivation layer, the continuous dissolution of lithium prevents the passivation and allows gradual formation of aluminum alkoxide nanowires, which grow perpendicular to the surface of the particles starting from the nuclei until the particles are completely converted. The alkoxide nanowires can then be heated in open air to form aluminum oxide nanowires and may be formed into paper-like sheets.

The dissolved lithium can be recovered and reused. The dissolution process generates hydrogen gas, which could be captured and used to help fuel the heating step.

Though the process was studied first to make magnesium and aluminum oxide nanowires, Yushin believes it has a broad potential for making other materials. Future work will explore synthesis of new materials and their applications, and develop improved fundamental understanding of the process and predictive models to streamline experimental work.

The researchers have so far produced laboratory amounts of the nanowires, but Yushin believes that the process could be scaled up to produce industrial quantities. Though the ultimate cost will depend on many variables, he expects to see fabrication costs cut by several orders of magnitude over existing techniques.

“With this technique, you could potentially produce nanowires for a cost not much more than that of the raw materials,” he said. Beyond battery membranes, the nanowires could be useful in energy harvesting, catalyst supports, sensors, flexible electronic devices, lightweight structural composites, building materials, electrical and thermal insulation and cutting tools.

The new technique was discovered accidentally while Yushin’s students were attempting to create a new porous membrane material. Instead of the membrane they had hoped to fabricate, the process generated powders composed of elongated particles.

“Though the experiment didn’t produce what we were looking for, I wanted to see if we could learn something from it anyway,” said Yushin. Efforts to understand what had happened ultimately led to the new synthesis technique.

In addition to those already named, the research included Alexandre Magaskinski of Georgia Tech and Gene Berdichevsky of Sila Nanotechnologies.

Different aspects of this work were supported by NSF (grant 0954925) and Sila Nanotechnologies, Inc. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Gleb Yushin and Gene Berdichevsky are shareholders of Sila Nanotechnologies.

CITATION: Danni Lei, Jim Benson, Alexandre Magasinski, Gene Berdichevsky, Gleb Yushin, “Transformation of bulk alloys to oxide nanowires,” (Science, 2017).

Next-generation Lithium-Sulphur smart battery inspired by Our Stomachs: Proof of Principle for Now


new-lithium-battery-102616-id44921A new prototype of a lithium-sulphur battery – which could have five times the energy density of a typical lithium-ion battery – overcomes one of the key hurdles preventing their commercial development by mimicking the structure of the cells which allow us to absorb nutrients.

Researchers have developed a prototype of a next-generation lithium-sulphur battery which takes its inspiration in part from the cells lining the human intestine. The batteries, if commercially developed, would have five times the energy density of the lithium-ion batteries used in smartphones and other electronics.

 

 

The new design, by researchers from the University of Cambridge, overcomes one of the key technical problems hindering the commercial development of lithium-sulphur batteries, by preventing the degradation of the battery caused by the loss of material within it. The results are reported in the journal Advanced Functional Materials (“Advanced Lithium-Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush”).

 

Computer visualisation of villi-like battery material
Computer visualisation of villi-like battery material. (Image: Teng Zhao)
 

 

Working with collaborators at the Beijing Institute of Technology, the Cambridge researchers based in Dr Vasant Kumar’s team in the Department of Materials Science and Metallurgy developed and tested a lightweight nanostructured material which resembles villi, the finger-like protrusions which line the small intestine. In the human body, villi are used to absorb the products of digestion and increase the surface area over which this process can take place.
In the new lithium-sulphur battery, a layer of material with a villi-like structure, made from tiny zinc oxide wires, is placed on the surface of one of the battery’s electrodes. This can trap fragments of the active material when they break off, keeping them electrochemically accessible and allowing the material to be reused.
“It’s a tiny thing, this layer, but it’s important,” said study co-author Dr Paul Coxon from Cambridge’s Department of Materials Science and Metallurgy. “This gets us a long way through the bottleneck which is preventing the development of better batteries.”
A typical lithium-ion battery is made of three separate components: an anode (negative electrode), a cathode (positive electrode) and an electrolyte in the middle. The most common materials for the anode and cathode are graphite and lithium cobalt oxide respectively, which both have layered structures. Positively-charged lithium ions move back and forth from the cathode, through the electrolyte and into the anode.
The crystal structure of the electrode materials determines how much energy can be squeezed into the battery. For example, due to the atomic structure of carbon, each carbon atom can take on six lithium ions, limiting the maximum capacity of the battery.
Sulphur and lithium react differently, via a multi-electron transfer mechanism meaning that elemental sulphur can offer a much higher theoretical capacity, resulting in a lithium-sulphur battery with much higher energy density. However, when the battery discharges, the lithium and sulphur interact and the ring-like sulphur molecules transform into chain-like structures, known as a poly-sulphides. As the battery undergoes several charge-discharge cycles, bits of the poly-sulphide can go into the electrolyte, so that over time the battery gradually loses active material.
The Cambridge researchers have created a functional layer which lies on top of the cathode and fixes the active material to a conductive framework so the active material can be reused. The layer is made up of tiny, one-dimensional zinc oxide nanowires grown on a scaffold. The concept was trialled using commercially-available nickel foam for support. After successful results, the foam was replaced by a lightweight carbon fibre mat to reduce the battery’s overall weight.
“Changing from stiff nickel foam to flexible carbon fibre mat makes the layer mimic the way small intestine works even further,” said study co-author Dr Yingjun Liu.
This functional layer, like the intestinal villi it resembles, has a very high surface area. The material has a very strong chemical bond with the poly-sulphides, allowing the active material to be used for longer, greatly increasing the lifespan of the battery.
“This is the first time a chemically functional layer with a well-organised nano-architecture has been proposed to trap and reuse the dissolved active materials during battery charging and discharging,” said the study’s lead author Teng Zhao, a PhD student from the Department of Materials Science & Metallurgy. “By taking our inspiration from the natural world, we were able to come up with a solution that we hope will accelerate the development of next-generation batteries.”
For the time being, the device is a proof of principle, so commercially-available lithium-sulphur batteries are still some years away. Additionally, while the number of times the battery can be charged and discharged has been improved, it is still not able to go through as many charge cycles as a lithium-ion battery. However, since a lithium-sulphur battery does not need to be charged as often as a lithium-ion battery, it may be the case that the increase in energy density cancels out the lower total number of charge-discharge cycles.
“This is a way of getting around one of those awkward little problems that affects all of us,” said Coxon. “We’re all tied in to our electronic devices – ultimately, we’re just trying to make those devices work better, hopefully making our lives a little bit nicer.”
Source: University of Cambridge

 

“Back to the Future” ~ Nanotechnology offers new approach to increasing storage ability of Capacitors: Applications for Portable Electronics & EV’s


back-to-the-future-bttf2For Back to the Future fans, this week marked a milestone that took three decades to reach.

Oct. 21, 2015, was the day that Doc Brown and Marty McFly landed in the future in their DeLorean, with time travel made possible by a “flux capacitor.”

While the flux capacitor still conjures sci-fi images, capacitors are now key components of portable electronics, computing systems, and electric vehicles.

In contrast to batteries, which offer high storage capacity but slow delivery of energy, capacitors provide fast delivery but poor storage capacity.

A great deal of effort has been devoted to improving this feature — known as energy density — of dielectric capacitors, which comprise an insulating material sandwiched between two conducting metal plates.

Now, a group of researchers at the University of Delaware and the Chinese Academy of Sciences has successfully used nanotechnology to achieve this goal.

dialectric Capacitor id41672.jpgDielectric Capacitor: A diagram of the dielectric capacitor research developed by a University of Delaware-led research team.

The work is reported in a paper, “Dielectric Capacitors with Three-Dimensional Nanoscale Interdigital Electrodes for Energy Storage”, published in Science Advances, the first open-access, online-only journal of AAAS.

“With our approach, we achieved an energy density of about two watts per kilogram, which is significantly higher than that of other dielectric capacitor structures reported in the literature,” says Bingqing Wei, professor of mechanical engineering at UD. (Article continues below)

Also Read About

Rice Nanoporus Battery 102315 untitledRice Nanoporous Nickel Super Capacitors

Researchers at Rice University in Houston, Texas, have developed a nanoporous material that has the energy density (the amount of energy stored per unit mass) of an electrochemical battery and the power density (the maximum amount of power that can be supplied per unit mass) of a supercapacitor. It’s important to note that the energy storage device enabled by the material is not claimed to be either of these types of energy storage devices.

Watch a New Video about a New Energy Storage Company commercializing the Rice University Technology: 

 

 

 

(Article Continued from above)

“To our knowledge, this is the first time that 3D nanoscale interdigital electrodes have been realized in practice,” he adds. “With their high surface area relative to their size, carbon nanotubes embedded in uniquely designed and structured 3D architectures have enabled us to address the low ability of dielectric capacitors to store energy.”

One of the keys to the success of the new capacitor is an interdigitated design — similar to interwoven fingers between two hands with “gloves” — that dramatically decreases the distance between opposing electrodes and therefore increases the ability of the capacitor to store an electrical charge.

Another significant feature of the capacitors is that the unique new three-dimensional nanoscale electrode also offers high voltage breakdown, which means that the integrated dielectric material (alumina, Al2O3) does not easily fail in its intended function as an insulator.

“In contrast to previous versions, we expect our newly structured dielectric capacitors to be more suitable for field applications that require high energy density storage, such as accessory power supply and hybrid power systems,” Wei says.

Source: By Diane Kukich, University of Delaware

gnt-new-thumbnail-2016Genesis Nanotechnology, Inc.

Facebook 042616.jpgFollow and ‘Like’ Us on Facebook: https://www.facebook.com/GenesisNanoTech/

Twitter Icon 042616.jpgFollow Us On Twitter: https://twitter.com/GenesisNanoTech

LinkedIn IconA 042316.jpg“Join the Conversation” on Our LinkedIn ‘Nano Network’ Group: https://www.linkedin.com/groups/3935461

Website Icon 042616Connect To Our Website: http://genesisnanotech.com/

YouTube small 050516Watch Our YouTube Video: https://youtu.be/Y1618kgUSXI

The Future of Batteries with Venkat Srinivasan: Lawrence Berkeley National Laboratory: Video


 

Lawrence Berkeley National Laboratory battery scientist Venkat Srinivasan chats with Sabin Russell, former San Francisco Chronicle reporter turned Berkeley Lab science writer. They explore the problems that prevent lithium-ion batteries from being widely used in electric, hybrid-electric, and plug-in-hybrid-electric vehicles. Series: “Lawrence Berkeley National Laboratory Summer Lecture Series” [Science] [Show]

Henrik Fisker is using a revolutionary new battery to power his Tesla killer … Two Words … Graphene Super – Capacitors


The Fisker Karma

*** Special to The Business Insider D. Muoio

Henrik Fisker’s first stab at an electric car went up in flames – literally.

His company, Fisker Automotive, was the force behind an electric hybrid called the Fisker Karma in 2012.

The $100,000 car had a host of battery issues that caused the automaker and its battery supplier, A123 Systems, to recall more than 600 Karmas, Wired reported at the time.

Separately, the Karma was known to burst into flames, which was said to be caused by the engine compartment rather than the battery. Fisker Automotive went bankrupt in 2011.

But, as first reported by Bloomberg, Fisker is back and working on an electric car under the newly minted Fisker Inc. that will be revealed in 2017. Fisker has promised a range exceeding 400 miles – which would be huge, considering the longest range currently belongs to the high-end version of the Model S, which gets 315 miles on a single charge.

We took a closer look at the revolutionary battery tech Fisker is planning to use in the electric car that would power what could very well be a Tesla killer.


2012 Karma Shadow with Henrik Fisker and Bernhard Koehler

A Nobel-prize winning material

Rather than working with conventional lithium-ion batteries, Fisker is turning to graphene supercapacitors.



Graphene is the thinnest material on Earth and strongest material known to man. Supercapacitors also store energy like batteries, but the way they do so allows them to have faster charge times.
However, the flip side is they don’t usually store as much of a charge.
The energy applications of graphene have been known for quite some time.

In 2010, the Nobel Prize in Physics went to Andre Geim and Konstantin Novoselov for pioneering research on graphene that opened the door for scientists to study its many applications, like its potential as a battery that can conduct energy better and charge faster.

“Graphene shows a higher electron mobility, meaning that electrons can move faster through it.

This will, e.g. charge a battery much faster,” Lucia Gauchia, an assistant professor of energy storage system at Michigan Technological University, told Business Insider.

 “Graphene is also lighter and it can present a higher active surface, so that more charge can be stored.”

But what has prevented it from having a real-world application has been the high cost associated with producing it.


“The reason we are not using it yet, even though the material is not a new one, is that there is no mass production for it yet that can show reasonable cost and scalability,” Gauchia explained.

But Fisker Inc.’s battery division, Fisker Nanotech, is patenting a machine can currently produce as much as 1,000 kilograms of graphene at a cost of just 10 cents a gram, Jack Kavanaugh, the head of Fisker Nanotech, told Business Insider.

Jack Kavanaugh

The ‘super battery’

Kavanaugh hails from Nanotech Energy, a research group composed of UCLA researchers who specialize in the graphene supercapacitor Fisker will use in his car.

“This particular technology that we’re working on and are using for Fisker Nanotech is a hybrid,” Kavanaugh told Business Insider.  “We have been able to take the best of what super-capacitors can do and the best of what batteries can do and are calling it a super battery.”

Aside from the prohibitive cost of using graphene, another limiting factor has conventionally been that supercapacitors don’t hold as much of a charge as standard lithium-ion batteries because they have a lower energy density. Kavanaugh claims his machine addresses that issue by “altering” the structure of graphene.

“The challenge with using graphene in a supercapacitor in the past has been that you don’t have the same density and ability to store as much energy. Well, we have solved that issue,” he said.  “Our testing has proven to us that we actually have much greater density than the other technologies out there.”

Hybrid supercapacitor

A hybrid supercapacitor made by Maher El-Kady and Richard Kaner at UCLA. The project was funded by Nanotech Energy.UCLA

Overall, Kavanaugh is promising a product that not only holds more charge and charges faster than lithium ion batteries, but also has a better cycle life. Improving the cycle life means you don’t have to swap out the battery for a new one as frequently as you need to for lithium ion batteries.

“Our battery technology is so much better than anything out there,” Fisker told Business Insider. “Our battery technology is the first battery technology that has taken the major leap, the next big step.”

UCLA researchers like Maher El-Kady and Richard Kaner hold several patents related to graphene superconductors. Both Kaner and El-Kady work for Nanotech Energy.

Kavanaugh said prototypes of the “super battery” have already been made, with new versions of the prototype coming in a few weeks. He said the plant that will actually produce the battery will most likely open in Janaury and will be located in northern California.


It’s worth noting that Tesla CEO Elon Musk actually came to Silicon Valley to earn a PhD working on supercapacitors, and has been on record saying that supercapacitors, not batteries, will be the big breakthrough for EVs.



Cheaper than the Chevy Bolt?

Fisker said he plans to reveal the electric car in the latter half of 2017.

Fisker told Business Insider that he first plans to roll out a luxury vehicle that will most likely be built at VLF Automotive, the car company Fisker is a part of that is building his supercar, the Force 1.

That first luxury electric car will have a limited production run.

“I don’t want to say what kind of car, but it won’t be a supercar,” he said. “It will probably be in the price range of the higher end of the Model S.”

Fisker said he will then produce a consumer-friendly electric car that will be in “an even lower cost segment of both the [Chevy] Bolt and the Model 3.”

The cars will boast ranges greater than 400 miles, Fisker claims.
But Fisker better move quickly because competition in the EV space is mounting quickly. 


As mentioned earlier, Tesla currently offers a Model S that can drive 315 miles on a single charge. By the time Fisker unveils his electric car, Tesla may have already beaten that range or gotten closer to it.

Additionally, the Chevy Bolt will be the first consumer-friendly electric car with a competitive range of 238 miles when it hits dealerships by the end of this year.
Like Tesla, Chevy will look to improve that range by the time 2017 rolls around.


And that only touches the surface of the competition out there. 

Electric car start-ups like Faraday Future and Atieva are looking for a piece of the pie. Big name brands like Mercedes and Volkswagen are also looking to roll out electric vehicles within the next 3 to 5 years.

It’s also hard to put too much faith in Fisker’s claims without seeing the patent application for the machine producing Fisker Nanotech’s graphene. But Fisker remains confident his product will be better in one key area:

“We will have the lowest cost electric vehicle in the world,” he said.

New applications for Ultra(super)Capacitors ~ Startup’s energy-storage devices find uses in drilling operations, aerospace applications, electric vehicles.


mit-fastcap_0

FastCAP Systems’ ultracapacitors (pictured) can withstand extreme temperatures and harsh environments, opening up new uses for the devices across a wide range of industries, including oil and gas, aerospace and defense, and electric vehicles. Courtesy of FastCAP Systems

Devices called ultra-capacitors have recently become attractive forms of energy storage: They recharge in seconds, have very long lifespans, work with close to 100 percent efficiency, and are much lighter and less volatile than batteries. But they suffer from low energy-storage capacity and other drawbacks, meaning they mostly serve as backup power sources for things like electric cars, renewable energy technologies, and consumer devices.

But MIT spinout FastCAP Systems is developing ultracapacitors, and ultracapacitor-based systems, that offer greater energy density and other advancements. This technology has opened up new uses for the devices across a wide range of industries, including some that operate in extreme environments.

Based on MIT research, FastCAP’s ultra-capacitors store up to 10 times the energy and achieve 10 times the power density of commercial counterparts. They’re also the only commercial ultra-capacitors capable of withstanding temperatures reaching as high as 300 degrees Celsius and as low as minus 110 C, allowing them to endure conditions found in drilling wells and outer space. Most recently, the company developed a AA-battery-sized ultra-capacitor with the perks of its bigger models, so clients can put the devices in places where ultra-capacitors couldn’t fit before.

Founded in 2008, FastCAP has already taken its technology to the oil and gas industry, and now has its sights set on aerospace and defense and, ultimately, electric, hybrid, and even fuel-cell vehicles. “In our long-term product market, we hope that we can make an impact on transportation, for increased energy efficiency,” says co-founder John Cooley PhD ’11, who is now president and chief technology officer of FastCAP.

FastCAP’s co-founders and technology co-inventors are MIT alumnus Riccardo Signorelli PhD ’09 and Joel Schindall, the Bernard Gordon Professor of the Practice in the Department of Electrical Engineering and Computer Science.

A “hairbrush” of carbon nanotubes

Ultracapacitors use electric fields to move ions to and from the surfaces of positive and negative electrode plates, which are usually coated with a porous material called activated carbon. Ions cling to the electrodes and let go quickly, allowing for quick cycling, but the small surface area limits the number of ions that cling, restricting energy storage. Traditional ultracapacitors can, for instance, hold about 5 percent of the energy that lithium ion batteries of the same size can.

In the late 2000s, the FastCAP founding team had a breakthrough: They discovered that a tightly packed array of carbon nanotubes vertically aligned on the electrode provided much more surface area. The array was also uniform, whereas the porous material was irregular and difficult for ions to move in and out of. “A way to look at it is the industry standard looks like a nanoscopic sponge, and the vertically aligned nanotube arrays look like a nanoscopic hairbrush” that provides the ions more efficient access to the electrode surface, Cooley says.

With funding from the Ford-MIT Alliance and MIT Energy Initiative, the researchers built a fingernail-sized prototype that stored twice the energy and delivered seven to 15 times more power than traditional ultracapacitors.

In 2008, the three researchers launched FastCAP, and Cooley and Signorelli brought the business idea to Course 15.366 (Energy Ventures), where they designed a three-step approach to a market. The idea was to first focus on building a product for an early market: oil and gas. Once they gained momentum, they’d focus on two additional markets, which turned out to be aerospace and defense, and then automotive and stationary storage, such as server farms and grids. “One of the paradigms of Energy Ventures was that steppingstone approach that helped the company succeed,” Cooley says.

FastCAP then earned a finalist spot in the 2009 MIT Clean Energy Prize (CEP), which came with some additional perks. “The value there was in the diligence effort we did on the business plan, and in the marketing effect that it had on the company,” Cooley says.

Based on their CEP business plan, that year FastCAP won a $5 million U.S. Department of Energy (DOE) Advanced Research Projects Agency-Energy grant to design ultracapacitors for its target markets in automotive and stationary storage. FastCAP also earned a 2012 DOE Geothermal Technologies Program grant to develop very high-temperature energy storage for geothermal well drilling, where temperatures far exceed what available energy-storage devices can tolerate. Still under development, these ultracapacitors have proven to perform from minus 5 C to over 250 C.

From underground to outer space

Over the years, FastCAP made several innovations that have helped the ultracapacitors survive in the harsh conditions. In 2012, FastCAP designed its first-generation product, for the oil and gas market: a high-temperature ultracapacitor that could withstand temperatures of 150 C and posed no risk of explosion when crushed or damaged. “That was an interesting market for us, because it’s a very harsh environment with [tough] engineering challenges, but it was a high-margin, low-volume first-entry market,” Cooley says. “We learned a lot there.”

In 2014, FastCAP deployed its first commercial product. The Ulysses Power System is an ultracapacitor-powered telemetry device, a long antenna-like system that communicates with drilling equipment. This replaces the battery-powered systems that are volatile and less efficient. It also amplifies the device’s signal strength by 10 times, meaning it can be sent thousands of feet underground and through subsurface formations that were never thought penetrable in this way before.

After a few more years of research and development, the company is now ready to break into aerospace and defense. In 2015, FastCAP completed two grant programs with NASA to design ultracapacitors for deep space missions (involving very low temperatures) and for Venus missions (involving very high temperatures).

In May 2016, FastCAP continued its relationship with NASA to design an ultracapacitor-powered module for components on planetary balloons, which float to the edge of Earth’s atmosphere to observe comets. The company is also developing an ultracapacitor-based energy-storage system to increase the performance of the miniature satellites known as CubeSats. There are other aerospace applications too, Cooley says: “There are actuators systems for stage separation devices in launch vehicles, and other things in satellites and spacecraft systems, where onboard systems require high power and the usual power source can’t handle that.”

A longtime goal has been to bring ultracapacitors to electric and hybrid vehicles, providing high-power capabilities for stop-start and engine starting, torque assist, and longer battery life. In March, FastCAP penned a deal with electric-vehicle manufacturer Mullen Technologies. The idea is to use the ultracapacitors to augment the batteries in the drivetrain, drastically improving the range and performance of the vehicles. Based on their wide temperature capabilities, FastCAP’s ultracapacitors could be placed under the hood, or in various places in the vehicle’s frame, where they were never located before and could last longer than traditional ultracapacitors.

The devices could also be an enabling component in fuel-cell vehicles, which convert chemical energy from hydrogen gas into electricity that is then stored in a battery. These zero-emissions vehicles have difficulty handling surges of power — and that’s where FastCAP’s ultracapacitors can come in, Cooley says.

“The ultra-capacitors can sort of take ownership of the power and variations of power demanded by the load that the fuel cell is not good at handling,” Cooley says. “People can get the range they want for a fuel-cell vehicle that they’re anxious about with battery-powered electric vehicles. So there are a lot of good things we are enabling by providing the right ultra-capacitor technology to the right application.”

MIT: A New kind of super-capacitor made without carbon: Also Read About Rice University’s New Nano-Super Capacitors & Batteries


mit-supercapacitor_0-101016To demonstrate the supercapacitor’s ability to store power, the researchers modified an off-the-shelf hand-crank flashlight (the red parts at each side) by cutting it in half and installing a small supercapacitor in the center, in a conventional button battery case, seen at top. When the crank is turned to provide power to the flashlight, the light continues to glow long after the cranking stops, thanks to the stored energy. Photo: Melanie Gonick

Energy storage devices called supercapacitors have become a hot area of research, in part because they can be charged rapidly and deliver intense bursts of power. However, all supercapacitors currently use components made of carbon, which require high temperatures and harsh chemicals to produce.

Now researchers at MIT and elsewhere have for the first time developed a supercapacitor that uses no conductive carbon at all, and that could potentially produce more power than existing versions of this technology.

The team’s findings are being reported in the journal Nature Materials, in a paper by Mircea Dincă, an MIT associate professor of chemistry; Yang Shao-Horn, the W.M. Keck Professor of Energy; and four others.

“We’ve found an entirely new class of materials for supercapacitors,” Dincă says.

Dincă and his team have been exploring for years a class of materials called metal-organic frameworks, or MOFs, which are extremely porous, sponge-like structures. These materials have an extraordinarily large surface area for their size, much greater than the carbon materials do. That is an essential characteristic for supercapacitors, whose performance depends on their surface area. But MOFs have a major drawback for such applications: They are not very electrically conductive, which is also an essential property for a material used in a capacitor.

“One of our long-term goals was to make these materials electrically conductive,” Dincă says, even though doing so “was thought to be extremely difficult, if not impossible.” But the material did exhibit another needed characteristic for such electrodes, which is that it conducts ions (atoms or molecules that carry a net electric charge) very well.

“All double-layer supercapacitors today are made from carbon,” Dincă says. “They use carbon nanotubes, graphene, activated carbon, all shapes and forms, but nothing else besides carbon. So this is the first noncarbon, electrical double-layer supercapacitor.”

One advantage of the material used in these experiments, technically known as Ni3(hexaiminotriphenylene)2, is that it can be made under much less harsh conditions than those needed for the carbon-based materials, which require very high temperatures above 800 degrees Celsius and strong reagent chemicals for pretreatment.

The team says supercapacitors, with their ability to store relatively large amounts of power, could play an important role in making renewable energy sources practical for widespread deployment. They could provide grid-scale storage that could help match usage times with generation times, for example, or be used in electric vehicles and other applications.

The new devices produced by the team, even without any optimization of their characteristics, already match or exceed the performance of existing carbon-based versions in key parameters, such as their ability to withstand large numbers of charge/discharge cycles. Tests showed they lost less than 10 percent of their performance after 10,000 cycles, which is comparable to existing commercial supercapacitors.

But that’s likely just the beginning, Dincă says. MOFs are a large class of materials whose characteristics can be tuned to a great extent by varying their chemical structure. Work on optimizing their molecular configurations to provide the most desirable attributes for this specific application is likely to lead to variations that could outperform any existing materials. “We have a new material to work with, and we haven’t optimized it at all,” he says. “It’s completely tunable, and that’s what’s exciting.”

While there has been much research on MOFs, most of it has been directed at uses that take advantage of the materials’ record porosity, such as for storage of gases. “Our lab’s discovery of highly electrically conductive MOFs opened up a whole new category of applications,” Dincă says. Besides the new supercapacitor uses, the conductive MOFs could be useful for making electrochromic windows, which can be darkened with the flip of a switch, and chemoresistive sensors, which could be useful for detecting trace amounts of chemicals for medical or security applications. (MIT Article continued below)

rice-nanoporus-battery-102315-untitled-1You will Also Want To Read: Nanoporous Material Combines the Best of Batteries and Supercapacitors for ESS (Energy Storage Systems): Rice University: Dr. James M. Tour

Researchers at Rice University in Houston, Texas, have developed a nanoporous material that has the energy density (the amount of energy stored per unit mass) of an electrochemical battery and the power density (the maximum amount of power that can be supplied per unit mass) of a supercapacitor. It’s important to note that the energy storage device enabled by the material is not claimed to be either of these types of energy storage devices.

Follow the Link Here: New Nanoporous Super Capacitors & Batteries from Rice Univeristy

 

 

(MIT continued … ) While the MOF material has advantages in the simplicity and potentially low cost of manufacturing, the materials used to make it are more expensive than conventional carbon-based materials, Dincă says. “Carbon is dirt cheap. It’s hard to find anything cheaper.” But even if the material ends up being more expensive, if its performance is significantly better than that of carbon-based materials, it could find useful applications, he says.

This discovery is “very significant, from both a scientific and applications point of view,” says Alexandru Vlad, a professor of chemistry at the Catholic University of Louvain in Belgium, who was not involved in this research. He adds that “the supercapacitor field was (but will not be anymore) dominated by activated carbons,” because of their very high surface area and conductivity. But now, “here is the breakthrough provided by Dinca et al.: They could design a MOF with high surface area and high electrical conductivity, and thus completely challenge the supercapacitor value chain! There is essentially no more need of carbons for this highly demanded technology.”

And a key advantage of that, he explains, is that “this work shows only the tip of the iceberg. With carbons we know pretty much everything, and the developments over the past years were modest and slow. But the MOF used by Dinca is one of the lowest-surface-area MOFs known, and some of these materials can reach up to three times more [surface area] than carbons. The capacity would then be astonishingly high, probably close to that of batteries, but with the power performance [the ability to deliver high power output] of supercapacitors.”

The research team included former MIT postdoc Dennis Sheberla (now a postdoc at Harvard University), MIT graduate student John Bachman, Joseph Elias PhD ’16, and Cheng-Jun Sun of Argonne National Laboratory. The work was supported by the U.S. Department of Energy through the Center for Excitonics, the Sloan Foundation, the Research Corporation for Science Advancement, 3M, and the National Science Foundation.

 

Creating the Future of Batteries


future-of-batts-ii-istock_78692681_large

 

We need better ways to store and use energy, that’s no secret. Cell phones need charging every day, electric cars only have a range of about a hundred miles and our ability to use solar and wind energy to feed the power grid is still very limited. These are things we’ve taken for granted, but if you look, historically, at the rate in which our technology improves — just think about cell phones and computers in the last 20 years — it’s easy to see that this area of technological development has severely lagged.

energy storage device.jpgWhile there are a number of political, philosophical and theoretical explanations for why energy storage development has fallen behind, experts agree that if the problem is going to be fixed in our lifetime, it needs to start now.

Energy storage is a limiting factor that researchers have been aware of for quite a while, but their work to improve our storage devices has taken many, disparate directions. In a recent edition of Nature Communications, Drexel materials science and engineering researchers Yury Gogotsi, PhD, and Maria Lukatskaya, PhD, who have been surveying the landscape of energy storage research for years, offer a unified route for bringing our energy storage and distribution capabilities level with our energy production and consumption.

rice-nanoporus-battery-102315-untitled-1You May Also Want To Read: Nanoporous Material Combines the Best of Batteries and Supercapacitors for ESS (Energy Storage Systems)

 

Read about the work of Dr. Jim Tour at Rice University – “Changing the Equation” for how we think about Batteries, Super Capacitors and Energy Storage.        Rice logo_rice3

 

 

Lukatskaya and Gogotsi unpacked the problem for the News Blog and offered up three ways in which energy storage research and development need to change right now to get things moving in the right direction:

 So, the directions where we want our energy storage devices — such as batteries — to go are pretty intuitive: we want them to store more energy per unit of volume (or mass) so that it would provide longer autonomy times for portable electronics without making them bulkier. We also want to enable fast charging of the devices, so that five minutes of charging would provide full-day power for device operation. And last, but not least, we want to increase the lifespan of batteries — meaning the number of charge/discharge cycles they can undergo without performance degradation.  

To achieve that, we need to rethink conventional electrode architectures and materials that are currently used in energy storage devices, such as batteries and supercapacitors.

  1. Clean up all the wasted space

For example, in state of the art batteries, too much volume is occupied by the cell components that do not store charge. It is estimated that in smaller devices more than 80 percent of the volume is occupied by the inert cell components: current collectors, separators and casings. So new design concepts that minimize use of current collectors would lead to substantial improvement in energy that can be stored per unit of mass or volume of the device.

  1. Come up with a better recipe

Secondly, new electrolyte and electrode chemistries should be explored. Currently, oxide materials dominate the “insides” of batteries. Oxides have many advantages, being among the most studied material, and they provided a reliable energy storage solution for quite a while, but in order to address growing needs for high-energy batteries, other electrode materials should be explored that have high electrical conductivity and can enable multielectron redox reactions (storing more charges per atom than lithium).

  1. Get electrons and ions on the expressway

In order to make energy storage devices fast, it is again necessary to reconsider electrode architectures to ensure rapid accessibility of ions and electrons toward active sites. Basically, we need to create such architectures where, instead of a “maze,” ions can move on “highways” providing fast charging.

 

Gogotsi is Distinguished University and Trustee Chair professor in the College of Engineering and director of the A.J. Drexel Nanomaterials Institute. Lukatskaya, was a doctoral candidate in the Department of Materials Science and Engineeringwhen she worked with Gogotsi on this research. She is now a post-doctoral research fellow at Stanford University.

You can read their Nature Communications paper “Multidimensional materials and device architectures for future hybrid energy storage” here:http://www.nature.com/articles/ncomms12647