DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices. Credit: ASU
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Much like flipping your light switch at home—-only on a scale 1,000 times smaller than a human hair—-an ASU-led team has now developed the first controllable DNA switch to regulate the flow of electricity within a single, atomic-sized molecule.
The new study, led by ASU Biodesign Institute researcher Nongjian Tao, was published in the advanced online journal Nature Communications.
“It has been established that charge transport is possible in DNA, but for a useful device, one wants to be able to turn the charge transport on and off. We achieved this goal by chemically modifying DNA,” said Tao, who directs the Biodesign Center for Bioelectronics and Biosensors and is a professor in the Fulton Schools of Engineering.
“Not only that, but we can also adapt the modified DNA as a probe to measure reactions at the single-molecule level. This provides a unique way for studying important reactions implicated in disease, or photosynthesis reactions for novel renewable energy applications.”
Engineers often think of electricity like water, and the research team’s new DNA switch acts to control the flow of electrons on and off, just like water coming out of a faucet.
Previously, Tao’s research group had made several discoveries to understand and manipulate DNA to more finely tune the flow of electricity through it. They found they could make DNA behave in different ways—and could cajole electrons to flow like waves according to quantum mechanics, or “hop” like rabbits in the way electricity in a copper wire works —creating an exciting new avenue for DNA-based, nano-electronic applications.
Tao assembled a multidisciplinary team for the project, including ASU postdoctoral student Limin Xiang and Li Yueqi performing bench experiments, Julio Palma working on the theoretical framework, with further help and oversight from collaborators Vladimiro Mujica (ASU) and Mark Ratner (Northwestern University).
Tao’s group, modified just one of DNA’s iconic double helix chemical letters, abbreviated as A, C, T or G, with another chemical group, called anthraquinone (Aq). Anthraquinone is a three-ringed carbon structure that can be inserted in …more
To accomplish their engineering feat, Tao’s group, modified just one of DNA’s iconic double helix chemical letters, abbreviated as A, C, T or G, with another chemical group, called anthraquinone (Aq). Anthraquinone is a three-ringed carbon structure that can be inserted in between DNA base pairs but contains what chemists call a redox group (short for reduction, or gaining electrons or oxidation, losing electrons).
These chemical groups are also the foundation for how our bodies’ convert chemical energy through switches that send all of the electrical pulses in our brains, our hearts and communicate signals within every cell that may be implicated in the most prevalent diseases.
The modified Aq-DNA helix could now help it perform the switch, slipping comfortably in between the rungs that make up the ladder of the DNA helix, and bestowing it with a new found ability to reversibly gain or lose electrons.
Through their studies, when they sandwiched the DNA between a pair of electrodes, they careful controlled their electrical field and measured the ability of the modified DNA to conduct electricity. This was performed using a staple of nano-electronics, a scanning tunneling microscope, which acts like the tip of an electrode to complete a connection, being repeatedly pulled in and out of contact with the DNA molecules in the solution like a finger touching a water droplet.
“We found the electron transport mechanism in the present anthraquinone-DNA system favors electron “hopping” via anthraquinone and stacked DNA bases,” said Tao. In addition, they found they could reversibly control the conductance states to make the DNA switch on (high-conductance) or switch-off (low conductance).
When anthraquinone has gained the most electrons (its most-reduced state), it is far more conductive, and the team finely mapped out a 3-D picture to account for how anthraquinone controlled the electrical state of the DNA.
For their next project, they hope to extend their studies to get one step closer toward making DNA nano-devices a reality.
“We are particularly excited that the engineered DNA provides a nice tool to examine redox reaction kinetics, and thermodynamics the single molecule level,” said Tao.
Explore further: Scientists engineer tunable DNA for electronics applications
More information: Gate-controlled conductance switching in DNA, Nature Communications, DOI: 10.1038/ncomms14471
Above: A perovskite/silicon tandem solar cell, created by research teams from Arizona State University and Stanford University, capable of record-breaking sunlight-to-electricity conversion efficiency. Photographer: Pete Zrioka/ASU
Some pairs are better together than their individual counterparts — peanut butter and chocolate, warm weather and ice cream, and now, in the realm of photovoltaic technology, silicon and perovskite.
As existing solar energy technologies near their theoretical efficiency limits, researchers are exploring new methods to improve performance — such as stacking two photovoltaic materials in a tandem cell. Collaboration between researchers at Arizona State University and Stanford University has birthed such a cell with record-breaking conversion efficiency — effectively finding the peanut butter to silicon’s chocolate.
The results of their work, published February 17 in Nature Energy, outline the use of perovskite and silicon to create a tandem solar cell capable of converting sunlight to energy with an efficiency of 23.6 percent, just shy of the all-time silicon efficiency record.
“The best silicon solar cell alone has achieved 26.3 percent efficiency,” says Zachary Holman, an assistant professor of electrical engineering at the Ira A. Fulton Schools of Engineering. “Now we’re gunning for 30 percent with these tandem cells, and I think we could be there within two years.”
Assistant Professor Zachary Holman, holds one of the many solar cells his research group has created. Photographer: Jessica Hochreiter/ASU
Silicon solar cells are the backbone of a $30 billion a year industry, and this breakthrough shows that there’s room for significant improvement within such devices by finding partner materials to boost efficiency.
The high-performance tandem cell’s layers are each specially tuned to capture different wavelengths of light. The top layer, composed of a perovskite compound, was designed to excel at absorbing visible light. The cell’s silicon base is tuned to capture infrared light.
Perovskite, a cheap, easily manufacturable photovoltaic material, has emerged as a challenger to silicon’s dominance in the solar market. Since its introduction to solar technology in 2009, the efficiency of perovskite solar cells has increased from 3.8 percent to 22.1 percent in early 2016, according to the National Renewable Energy Laboratory.
The perovskite used in the tandem cell came courtesy of Stanford researchers Professor Michael McGehee and doctoral student Kevin Bush, who fabricated the compound and tested the materials.
The research team at ASU provided the silicon base and modeling to determine other material candidates for use in the tandem cell’s supporting layers.
OVERCOMING CHALLENGES WITH PEROVSKITES
Though low-cost and highly efficient, perovskites have been limited by poor stability, degrading at a much faster rate than silicon in hot and humid environments. Additionally, perovskite solar cells have suffered from parasitic absorption, in which light is absorbed by supporting layers in the cell that don’t generate electricity.
“We have improved the stability of the perovskite solar cells in two ways,” says McGehee, a materials science and engineering professor at Stanford’s School of Engineering. “First, we replaced an organic cation with cesium. Second, we protected the perovskite with an impermeable indium tin oxide layer that also functions as an electrode.”
Though McGehee’s compound achieves record stability, perovskites remain delicate materials, making it difficult to employ in tandem solar technology.
“In many solar cells, we put a layer on top that is both transparent and conductive,” says Holman, a faculty member in the School of Electrical, Computer and Energy Engineering. “It’s transparent so light can go through and conductive so we can take electrical charges off it.”
This top conductive layer is applied using a process called sputtering deposition, which historically has led to damaged perovskite cells. However, McGehee was able to apply a tin oxide layer with help from chemical engineering Professor Stacey Bent and doctoral student Axel Palmstrom of Stanford. The pair developed a thin layer that protects the delicate perovskite from the deposition of the final conductive layer without contributing to parasitic absorption, further boosting the cell’s efficiency.
The deposition of the final conductive layer wasn’t the only engineering challenge posed by integrating perovskites and silicon.
“It was difficult to apply the perovskite itself without compromising the performance of the silicon cell,” says Zhengshan (Jason) Yu, an electrical engineering doctoral student at ASU.
Silicon wafers are placed in a potassium hydroxide solution during fabrication, which creates a rough, jagged surface. This texture, ideal for trapping light and generating more energy, works well for silicon, but perovskite prefers a smooth — and unfortunately reflective — surface for deposition.
Additionally, the perovskite layer of the tandem cell is less than a micron thick, opposed to the 250-micron thick silicon layer. This means when the thin perovskite layer was deposited, it was applied unevenly, pooling in the rough silicon’s low points and failing to adhere to its peaks.
Yu developed a method to create a planar surface only on the front of the silicon solar cell using a removable, protective layer. This resulted in a smooth surface on one side of the cell, ideal for applying the perovskite, while leaving the backside rough, to trap the weakly-absorbed near-infrared light in the silicon.
“With the incorporation of a silicon nanoparticle rear reflector, this infrared-tuned silicon cell becomes an excellent bottom cell for tandems,” says Yu.
Likewise, Holman has considerable experience working with silicon and tandem cells.
“We’ve tried to position our research group as the go-to group in the U.S. for silicon bottom cells for tandems,” says Holman, who’s been pursuing additional avenues to create high-efficiency tandem solar cells.
In fact, Holman and Yu published a comment in Nature Energy in September 2016 outlining the projected efficiencies of different cell combinations in tandems.
“People often ask, ‘given the fundamental laws of physics, what’s the best you can do?’” says Holman. “We’ve asked and answered a different, more useful question: Given two existing materials, if you could put them together, ideally, what would you get?”’
The publication is a sensible guide to designing a tandem solar cell, specifically with silicon as the bottom solar cell, according to Holman.
It calculates what the maximum efficiency would be if you could pair two existing solar cells in a tandem without any performance loss. The guide has proven useful in directing research efforts to pursue the best partner materials for silicon.
“We have eight projects with different universities and organizations, looking at different types of top cells that go on top of silicon,” says Holman. “So far out of all our projects, our perovskite/silicon tandem cell with Stanford is the leader.”
ERCs produce both transformational technology and innovative-minded engineering graduates. Credit and Larger Version
NSF-funded Nanosystems Engineering Research Center to enable deployment of mobile, efficient water treatment and desalination systems
** NEWT is a joint designated collaboration between Rice University, ASU, UTEP and Yale University
Water, water is everywhere, but we need more drops to drink.
The primary mission of the recently founded Nanotechnology Enabled Water Treatment (NEWT) Center, a consortium based at Rice University and led by environmental engineer Pedro Alvarez, is to produce more drinkable drops where they’re needed the most.
According to Alvarez, treated water is too often unavailable in parts of the world that cannot afford large treatment plants or miles of pipes to deliver it. Moreover, large-scale treatment and distribution uses a great deal of energy. “About 25 percent of the energy bill for a typical city is associated with the cost of moving water,” he said.
The center, funded by a five-year, $18.5 million National Science Foundation (NSF) award was founded to transform the economics of water treatment by using nanotechnology to develop compact, mobile, off-grid systems to provide clean water to millions of people around the world. A second goal is to make U.S. energy production more sustainable and cost-effective in regards to its water use.
NEWT is the first NSF Engineering Research Center (ERC) based in Houston. ERCs are interdisciplinary, multi-institutional centers that join academia, industry and government in partnership to produce both transformational technology and innovative-minded engineering graduates primed to lead the global economy. ERCs often become self-sustaining and typically leverage more than $40 million in federal and industry research funding during their first decade.
Water has long been a passion for Alvarez, who studies treatment and reuse, remediation strategies for contaminated aquifers and the water footprints of biofuels. His work also covers the environmental implications of using nanotechnology, and the transport — and eventual fate of — toxic chemicals in the environment. As NEWT director, he partners with researchers at Arizona State University (ASU), Yale University and the University of Texas at El Paso.
The consortium set as its first goal the development of modular water treatment systems that can deploy almost anywhere in the world. But Alvarez said the potential to make a significant impact is already expanding, with opportunities to address wastewater treatment at oil and gas drilling sites, nano-infused desalination in urban environments, and improved water treatment through more efficient filtration at existing plants.
Alvarez paused between classes recently to talk about the center’s plans.
Q. Where do you think NEWT’s greatest impact will be in 10 years?
A. It will be in drinking water, providing cleaner water to millions of people who now lack it. I think it’s going to be in developing small, portable units that will not only provide humanitarian water but also emergency response.
There will be other Flints. There will be other Elk River spills that will impact municipalities and water. I think we will be able to respond to those things.
We will probably have tremendous impact on desalination. Low-energy desalination will be one of our hallmarks, I believe. Of course, we will be very good also at treating some of the oil-and-gas water issues, but that’s a more difficult problem.
I expect we’ll also have high institutional impact because people may be more ready to consider unconventional water sources using portable systems that are easier to deploy. People are going to start considering more and more decentralized water-treatment approaches, especially as new cities and neighborhoods and developments evolve.
Q. What kind of sources will your technology be able to treat?
A. Briny ground water, for example, could be a source of drinking water in areas experiencing drought. Or in coastal areas. I think we will see more of that. We’ll see more harvesting of storm water, certainly, and for some uses, even greywater.
Those are the kinds of things our technologies will enable, but it’s not just about technology. It’s about the philosophy of changing to more sustainable, integratable water management, where we reuse more water, where we tap water that we thought was of too low quality but, as it turns out, is perfectly fine and safe and more economical for a sole intended use.
Q. In what directions are the initial projects headed?
A. I think the first thing we’re going to have out there is an adsorbent filter being developed by [NEWT deputy director] Paul Westerhoff at ASU. It’s a block of carbon with embedded nanoparticles. These particles adsorb — that is, they grab onto and hold — oxyanion contaminants like nitrate, arsenic and chromate, and effectively remove them from the water supply. [Oxyanions are negatively charged ions that contain oxygen.] It will be part of a drinking-water treatment unit.
Q. Would the technology apply to large water treatment plants?
A. Yes. Though we originally intended to carve a niche in the decentralized water treatment market, we do aspire to bigger things as our products, materials and processes gain momentum.
I am sure there will be a lot that can be used by the municipal water treatment community. It’s a more difficult industry to penetrate because it’s very conservative. You have to convince them that a technology is going to save them a lot of money and that they don’t have to change too much of the infrastructure or the configuration of the plant.
We have some very good ideas of things that will fit them. If they’re already using membranes for filtration, for example, our membranes may offer better rejection of contaminants and perhaps less susceptibility to being fouled, so they will last longer without having to be replaced. They won’t clog up as easily. They will not use as much energy.
Q. Why did you pursue hosting this NSF center?
A. I think that we as scientists and as engineers, especially in developed countries, have a social debt toward many poor people who lack access to clean water because they are denied the right to a life consistent with their inalienable dignity.
The lack of clean water is a major hindrance to human capacity. It goes beyond public health: It’s directly tied to the need for economic development.
That is certainly one important factor in my passion to provide water to many. It’s related to the concept of world affirmation, the idea that the world can be a better place and we can do something about it. Providing clean water is one way to do it.
The other big incentive was to try to move towards energy self-sufficiency in the United States in a manner that is more cost-effective and more sustainable with regards to the water footprint.
A major challenge for our energy industry is that they need to operate and extract oil and gas in areas that are relatively dry and semi-arid, where water is scarce. And they need relatively large quantities of water to obtain this energy. To get a barrel of oil in Texas, you need about 10 barrels of water. To frack a well to get shale gas or shale oil, you may need up to 6 million gallons of water, again in areas where water is scarce.
Once it’s used, disposal of that water becomes a major challenge and a potentially serious source of pollution. So the solution to both scarcity and minimizing impact is to reuse this water. That’s one of the things we’re trying to do: develop systems that are small and easily deployed that can enable industrial wastewater reuse in remote areas.
Q. What can you do with nanoparticles that you couldn’t have done before?
A. We need to recognize that at the nanoscale, the properties of matter change. Some elements, such as gold, that are very inert can become hypercatalytic at that scale, and materials that are good insulators like carbon can become superconductors.
When you exploit these extraordinary size-dependent properties, it allows you to introduce multifunctionality at both the reactor and materials level. This combination of multifunctionality — for example, membranes that have self-cleaning and self-healing properties — with the nanotechnology-enabled ability to selectively remove pollutants allows you to have smaller reactors. These can treat even unconventional sources of water, difficult sources, that currently would require huge reactors and very large and complex treatment trains that are impossible to take to remote locations.
Making them smaller, multifunctional and modular brings you tremendous versatility to handle a wide variety of challenges in water purification. Nanotechnology allows us to do that. It’s essential to our vision of decentralized water treatment systems.
Q. You’re an environmental engineer who knows aquatic chemistry, and you rely on other kinds of engineers and scientists for different parts of the water systems.
A. Absolutely. This has to be a multidisciplinary collaborative effort to build this innovation ecosystem. We need people who know how to make materials and people who know how to characterize them, how to immobilize them, how to manipulate them — how to assess their reactivity and bioavailability and mobility, and eventually scale them up.
We want people who are good at designing and building reactors all the way to systems to think about the whole lifecycle, the techno-economic implications of these materials, to make sure they’re feasible and improve on current practices.
They have to do it in a way that’s sustainable and avoids unintended, undesirable consequences as well.
Alvarez is the George R. Brown Professor of Environmental Engineering in the Department of Civil and Environmental Engineering at Rice University.
Investigators
Pedro Alvarez
Menachem Elimelech
Naomi Halas
Qilin Li
Paul Westerhoff
Related Institutions/Organizations William Marsh Rice University
Arizona State University
University of Texas-El Paso
Yale University
NEWT Center will use nanotechnology to transform economics of water treatment A Rice University-led consortium of industry, university and government partners has been chosen to establish one of the National Science Foundation’s (NSF) prestigious Engineering Research Centers in Houston to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it and make U.S. energy production more sustainable and cost-effective.
Nanotechnology Enabled Water Treatment Systems, or NEWT, is Houston’s first NSF Engineering Research Center (ERC) and only the third in Texas in nearly 30 years. It is funded by a five-year, $18.5 million NSF grant that can be renewed for a potential term of 10 years. NEWT brings together experts from Rice, Arizona State University, Yale University and the University of Texas at El Paso (UTEP) to work with more than 30 partners: including Shell, Baker Hughes, UNESCO, U.S. Army Corps of Engineers and NASA.
ERCs are interdisciplinary, multi-institutional centers that join academia, industry and government in partnership to produce both transformational technology and innovative-minded engineering graduates who are primed to lead the global economy. ERCs often become self-sustaining and typically leverage more than $40 million in federal and industry research funding during their first decade.
“The importance of clean water to global health and economic development simply cannot be overstated,” said NEWT Director Pedro Alvarez, the grant’s principal investigator. “We envision using technology and advanced materials to provide clean water to millions of people who lack it and to enable energy production in the United States to be more cost-effective and more sustainable in regard to its water footprint.”
NEWT Center will use nanotechnology to transform water treatment: Video
Houston-area Congressman John Culberson, R-Texas, chair of the House Subcommittee on Commerce, Justice and Science, said, “Technology is a key enabler for the energy industry, and NEWT is ideally located at Rice, in the heart of the world’s energy capital, where it can partner with industry to ensure that the United States remains a leading energy producer.”
Alvarez, Rice’s George R. Brown Professor of Civil and Environmental Engineering and professor of chemistry, materials science and nanoengineering, said treated water is often unavailable in rural areas and low-resource communities that cannot afford large treatment plants or the miles of underground pipes to deliver water. Moreover, large-scale treatment and distribution uses a great deal of energy. “About 25 percent of the energy bill for a typical city is associated with the cost of moving water,” he said.
NEWT Deputy Director Paul Westerhoff said the new modular water-treatment systems, which will be small enough to fit in the back of a tractor-trailer, will use nanoengineered catalysts, membranes and light-activated materials to change the economics of water treatment.
“NEWT’s vision goes well beyond today’s technology,” said Westerhoff, vice provost of academic research at ASU and co-principal investigator on the NSF grant. “We’ve set a path for transformative new technology that will move water treatment from a predominantly chemical treatment process to more efficient catalytic and physical processes that exploit solar energy and generate less waste.”
Co-principal investigator and NEWT Associate Director for Research Qilin Li, the leader of NEWT’s advanced treatment test beds at Rice, said the system’s technology will be useful in places where water and power infrastructure does not exist.
“The NEWT drinking water system will be able to produce drinking water from any source, including pond water, seawater and floodwater, using solar energy and even under cloudy conditions,” said Li, associate professor of civil and environmental engineering, chemical and biomolecular engineering, and of materials science and nanoengineering at Rice. “The modular treatment units will be easy to configure and reconfigure to meet desired water-quality levels. The system will include components that target suspended solids, microbes, dissolved contaminants and salts, and it will have the ability to treat a variety of industrial wastewater according to the industry’s need for discharge or reuse.”
NEWT will focus on applications for humanitarian emergency response, rural water systems and wastewater treatment and reuse at remote sites, including both onshore and offshore drilling platforms for oil and gas exploration.
Yale’s Menachem “Meny” Elimelech, co-principal investigator and lead researcher for membrane processes, said NEWT’s innovative enabling technologies are founded on rigorous basic research into nanomaterials, membrane dynamics, photonics, scaling, paramagnetism and more.
“Our modular water-treatment systems will use a combination of component technologies,” said Elimelech, Yale’s Roberto C. Goizueta Professor of Environmental and Chemical Engineering. “For example, we expect to use high-permeability membranes that resist fouling; engineered nanomaterials that can be used for membrane surface self-cleaning and biofilm control; capacitive deionization to eliminate scaly mineral deposits; and reusable magnetic nanoparticles that can soak up pollutants like a sponge.”
UTEP’s Jorge Gardea-Torresdey, co-principal investigator and co-leader of NEWT’s safety and sustainability effort, said the rapid development of engineered nanomaterials has brought NEWT’s transformative vision within reach.
“Treating water using fewer chemicals and less energy is crucial in this day and age,” said Gardea-Torresdey, UTEP’s Dudley Professor of Chemistry and Environmental Science and Engineering. “The exceptional properties of engineered nanomaterials will enable us to do this safely and effectively.”
Alvarez said another significant research thrust in nanophotonics will be headed by Rice co-principal investigator Naomi Halas, the inventor of “solar steam” technology, and co-led by ASU’s Mary Laura Lind.
“More than half of the cost associated with desalination of water comes from energy,” said Halas, Rice’s Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering. “We are working to develop several supporting technologies for NEWT, including nanophotonics-enabled direct solar membrane distillation for low-energy desalination.”
Rice’s Michael Wong, Yale’s Jaehong Kim and UTEP’s Dino Villagran will collaborate in efforts to develop novel multifunctional materials such as superior sorbents and catalysts, and Yale’s Julie Zimmerman will co-lead cross-cutting efforts in safety and sustainability. Rice’s Roland Smith will lead a comprehensive diversity program that aims to attract more women and underrepresented minority students and faculty, and Rice’s Brad Burke will head up innovation and commercialization efforts with private partners. Rice’s Rebecca Richards-Kortum will lead an innovative educational program that incorporates some of the “experiential learning” techniques she developed for the award-winning undergraduate research programs at Rice 360º: Institute for Global Health Technologies, and Rice’s Carolyn Nichol will lead the K-12 education efforts.
Alvarez said NEWT’s goal is to attract industry funding and become self-sufficient within 10 years. Toward that end, he said NEWT was careful to select industrial partners from every part of the water market, including equipment makers and vendors, system operators, industrial service firms and others.
NEWT is one of three new ERCs announced by the NSF today in Washington. They join 16 existing centers that are still receiving federal support, including Texas’ only other active ERC, the University of Texas at Austin’s NASCENT, as well as the other active center in which Rice is a partner, Princeton University’s MIRTHE.
Alvarez credited Culberson and the Texas Railroad Commission for helping facilitate partnerships that were crucial for NEWT. He said the consortium’s bid to land the NSF grant was also made possible by seed funding from Rice’s Energy and Environment Initiative, a sweeping institutional initiative to engage Rice faculty from all disciplines in creating sustainable, transformative energy technologies.
“Rice’s Energy and Environment Initiative was instrumental in developing a competitive proposal, in facilitating a team-building effort and in facilitating contacts with industry to get the necessary buy-in for our vision,” Alvarez said.
NEWT Center will use nanotechnology to transform economics of water treatment A Rice University-led consortium of industry, university and government partners has been chosen to establish one of the National Science Foundation’s (NSF) prestigious Engineering Research Centers in Houston to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it and make U.S. energy production more sustainable and cost-effective.
Nanotechnology Enabled Water Treatment Systems, or NEWT, is Houston’s first NSF Engineering Research Center (ERC) and only the third in Texas in nearly 30 years. It is funded by a five-year, $18.5 million NSF grant that can be renewed for a potential term of 10 years. NEWT brings together experts from Rice, Arizona State University, Yale University and the University of Texas at El Paso (UTEP) to work with more than 30 partners: including Shell, Baker Hughes, UNESCO, U.S. Army Corps of Engineers and NASA.
ERCs are interdisciplinary, multi-institutional centers that join academia, industry and government in partnership to produce both transformational technology and innovative-minded engineering graduates who are primed to lead the global economy. ERCs often become self-sustaining and typically leverage more than $40 million in federal and industry research funding during their first decade.
“The importance of clean water to global health and economic development simply cannot be overstated,” said NEWT Director Pedro Alvarez, the grant’s principal investigator. “We envision using technology and advanced materials to provide clean water to millions of people who lack it and to enable energy production in the United States to be more cost-effective and more sustainable in regard to its water footprint.”
NEWT Center will use nanotechnology to transform water treatment: Video
Houston-area Congressman John Culberson, R-Texas, chair of the House Subcommittee on Commerce, Justice and Science, said, “Technology is a key enabler for the energy industry, and NEWT is ideally located at Rice, in the heart of the world’s energy capital, where it can partner with industry to ensure that the United States remains a leading energy producer.”
Alvarez, Rice’s George R. Brown Professor of Civil and Environmental Engineering and professor of chemistry, materials science and nanoengineering, said treated water is often unavailable in rural areas and low-resource communities that cannot afford large treatment plants or the miles of underground pipes to deliver water. Moreover, large-scale treatment and distribution uses a great deal of energy. “About 25 percent of the energy bill for a typical city is associated with the cost of moving water,” he said.
NEWT Deputy Director Paul Westerhoff said the new modular water-treatment systems, which will be small enough to fit in the back of a tractor-trailer, will use nanoengineered catalysts, membranes and light-activated materials to change the economics of water treatment.
“NEWT’s vision goes well beyond today’s technology,” said Westerhoff, vice provost of academic research at ASU and co-principal investigator on the NSF grant. “We’ve set a path for transformative new technology that will move water treatment from a predominantly chemical treatment process to more efficient catalytic and physical processes that exploit solar energy and generate less waste.”
Co-principal investigator and NEWT Associate Director for Research Qilin Li, the leader of NEWT’s advanced treatment test beds at Rice, said the system’s technology will be useful in places where water and power infrastructure does not exist.
“The NEWT drinking water system will be able to produce drinking water from any source, including pond water, seawater and floodwater, using solar energy and even under cloudy conditions,” said Li, associate professor of civil and environmental engineering, chemical and biomolecular engineering, and of materials science and nanoengineering at Rice. “The modular treatment units will be easy to configure and reconfigure to meet desired water-quality levels. The system will include components that target suspended solids, microbes, dissolved contaminants and salts, and it will have the ability to treat a variety of industrial wastewater according to the industry’s need for discharge or reuse.”
NEWT will focus on applications for humanitarian emergency response, rural water systems and wastewater treatment and reuse at remote sites, including both onshore and offshore drilling platforms for oil and gas exploration.
Yale’s Menachem “Meny” Elimelech, co-principal investigator and lead researcher for membrane processes, said NEWT’s innovative enabling technologies are founded on rigorous basic research into nanomaterials, membrane dynamics, photonics, scaling, paramagnetism and more.
“Our modular water-treatment systems will use a combination of component technologies,” said Elimelech, Yale’s Roberto C. Goizueta Professor of Environmental and Chemical Engineering. “For example, we expect to use high-permeability membranes that resist fouling; engineered nanomaterials that can be used for membrane surface self-cleaning and biofilm control; capacitive deionization to eliminate scaly mineral deposits; and reusable magnetic nanoparticles that can soak up pollutants like a sponge.”
UTEP’s Jorge Gardea-Torresdey, co-principal investigator and co-leader of NEWT’s safety and sustainability effort, said the rapid development of engineered nanomaterials has brought NEWT’s transformative vision within reach.
“Treating water using fewer chemicals and less energy is crucial in this day and age,” said Gardea-Torresdey, UTEP’s Dudley Professor of Chemistry and Environmental Science and Engineering. “The exceptional properties of engineered nanomaterials will enable us to do this safely and effectively.”
Alvarez said another significant research thrust in nanophotonics will be headed by Rice co-principal investigator Naomi Halas, the inventor of “solar steam” technology, and co-led by ASU’s Mary Laura Lind.
“More than half of the cost associated with desalination of water comes from energy,” said Halas, Rice’s Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering. “We are working to develop several supporting technologies for NEWT, including nanophotonics-enabled direct solar membrane distillation for low-energy desalination.”
Rice’s Michael Wong, Yale’s Jaehong Kim and UTEP’s Dino Villagran will collaborate in efforts to develop novel multifunctional materials such as superior sorbents and catalysts, and Yale’s Julie Zimmerman will co-lead cross-cutting efforts in safety and sustainability. Rice’s Roland Smith will lead a comprehensive diversity program that aims to attract more women and underrepresented minority students and faculty, and Rice’s Brad Burke will head up innovation and commercialization efforts with private partners. Rice’s Rebecca Richards-Kortum will lead an innovative educational program that incorporates some of the “experiential learning” techniques she developed for the award-winning undergraduate research programs at Rice 360º: Institute for Global Health Technologies, and Rice’s Carolyn Nichol will lead the K-12 education efforts.
Alvarez said NEWT’s goal is to attract industry funding and become self-sufficient within 10 years. Toward that end, he said NEWT was careful to select industrial partners from every part of the water market, including equipment makers and vendors, system operators, industrial service firms and others.
NEWT is one of three new ERCs announced by the NSF today in Washington. They join 16 existing centers that are still receiving federal support, including Texas’ only other active ERC, the University of Texas at Austin’s NASCENT, as well as the other active center in which Rice is a partner, Princeton University’s MIRTHE.
Alvarez credited Culberson and the Texas Railroad Commission for helping facilitate partnerships that were crucial for NEWT. He said the consortium’s bid to land the NSF grant was also made possible by seed funding from Rice’s Energy and Environment Initiative, a sweeping institutional initiative to engage Rice faculty from all disciplines in creating sustainable, transformative energy technologies.
“Rice’s Energy and Environment Initiative was instrumental in developing a competitive proposal, in facilitating a team-building effort and in facilitating contacts with industry to get the necessary buy-in for our vision,” Alvarez said.
You must be logged in to post a comment.