MIT launches the “MIT Intelligence Quest … MIT IQ” (Video)


MIT AI IQ 87e48072-b50e-4701-b38e-f236c0c22280-original

At a time of rapid advances in intelligence research across many disciplines, the Intelligence Quest — MIT IQ — will encourage researchers to investigate the societal implications of their work as they pursue hard problems lying beyond the current horizon of what is known. Courtesy of MIT IQ

New Institute-wide initiative will advance human and machine intelligence research

MIT today announced the launch of the MIT Intelligence Quest, an initiative to discover the foundations of human intelligence and drive the development of technological tools that can positively influence virtually every aspect of society.

The announcement was first made in a letter MIT President L. Rafael Reif sent to the Institute community.

At a time of rapid advances in intelligence research across many disciplines, the Intelligence Quest — MIT IQ — will encourage researchers to investigate the societal implications of their work as they pursue hard problems lying beyond the current horizon of what is known. (continued below)

Watch and Read About: Scott Zoldi, Director of Analytics at FICO, has published a report that “we are just at the beginning of the golden age of analytics, in which the value and contributions of artificial intelligence (AI), machine learning (AA) and of deep learning can only continue to expand as we accept and incorporate those tools into our businesses. ” And according to the expert’s predictions, in 2018, the development and use of these technologies will continue to expand and strengthen. And consider that next year:

 

(Continued)

Some of these advances may be foundational in nature, involving new insight into human intelligence, and new methods to allow machines to learn effectively. Others may be practical tools for use in a wide array of research endeavors, such as disease diagnosis, drug discovery, materials and manufacturing design, automated systems, synthetic biology, and finance.

“Today we set out to answer two big questions, says President Reif. “How does human intelligence work, in engineering terms? And how can we use that deep grasp of human intelligence to build wiser and more useful machines, to the benefit of society?”

MIT IQ: The Core and The Bridge

MIT is poised to lead this work through two linked entities within MIT IQ. One of them, “The Core,” will advance the science and engineering of both human and machine intelligence. A key output of this work will be machine-learning algorithms. At the same time, MIT IQ seeks to advance our understanding of human intelligence by using insights from computer science. brain-quantum-2-b2b_wsf

The second entity, “The Bridge” will be dedicated to the application of MIT discoveries in natural and artificial intelligence to all disciplines, and it will host state-of-the-art tools from industry and research labs worldwide.

The Bridge will provide a variety of assets to the MIT community, including intelligence technologies, platforms, and infrastructure; education for students, faculty, and staff about AI tools; rich and unique data sets; technical support; and specialized hardware.

Along with developing and advancing the technologies of intelligence, MIT IQ researchers will also investigate the societal and ethical implications of advanced analytical and predictive tools. There are already active projects and groups at the Institute investigating autonomous systems, media and information quality, labor markets and the work of the future, innovation and the digital economy, and the role of AI in the legal system.

In all its activities, MIT IQ is intended to take advantage of — and strengthen — the Institute’s culture of collaboration. MIT IQ will connect and amplify existing excellence across labs and centers already engaged in intelligence research. It will also establish shared, central spaces conducive to group work, and its resources will directly support research.

“Our quest is meant to power world-changing possibilities,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. Chandrakasan, in collaboration with Provost Martin Schmidt and all four of MIT’s other school deans, has led the development and establishment of MIT IQ.

“We imagine preventing deaths from cancer by using deep learning for early detection and personalized treatment,” Chandrakasan continues. “We imagine artificial intelligence in sync with, complementing, and assisting our own intelligence. And we imagine every scientist and engineer having access to human-intelligence-inspired algorithms that open new avenues of discovery in their fields. Researchers across our campus want to push the boundaries of what’s possible.”

Engaging energetically with partners

In order to power MIT IQ and achieve results that are consistent with its ambitions, the Institute will raise financial support through corporate sponsorship and philanthropic giving.

MIT IQ will build on the model that was established with the MIT–IBM Watson AI Lab, which was announced in September 2017. MIT researchers will collaborate with each other and with industry on challenges that range in scale from the very broad to the very specific.

“In the short time since we began our collaboration with IBM, the lab has garnered tremendous interest inside and outside MIT, and it will be a vital part of MIT IQ,” says President Reif.

John E. Kelly III, IBM senior vice president for cognitive solutions and research, says, “To take on the world’s greatest challenges and seize its biggest opportunities, we need to rapidly advance both AI technology and our understanding of human intelligence. Building on decades of collaboration — including our extensive joint MIT–IBM Watson AI Lab — IBM and MIT will together shape a new agenda for intelligence research and its applications. We are proud to be a cornerstone of this expanded initiative.”

MIT will seek to establish additional entities within MIT IQ, in partnership with corporate and philanthropic organizations.

Why MIT

MIT has been on the frontier of intelligence research since the 1950s, when pioneers Marvin Minsky and John McCarthy helped establish the field of artificial intelligence.

MIT now has over 200 principal investigators whose research bears directly on intelligence. Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Department of Brain and Cognitive Sciences (BCS) — along with the McGovern Institute for Brain Research and the Picower Institute for Learning and Memory — collaborate on a range of projects. MIT is also home to the National Science Foundation–funded center for Brains, Minds and Machines (CBMM) — the only national center of its kind.

Four years ago, MIT launched the Institute for Data, Systems, and Society (IDSS) with a mission promoting data science, particularly in the context of social systems. It is  anticipated that faculty and students from IDSS will play a critical role in this initiative.

Faculty from across the Institute will participate in the initiative, including researchers in the Media Lab, the Operations Research Center, the Sloan School of Management, the School of Architecture and Planning, and the School of Humanities, Arts, and Social Sciences.

“Our quest will amount to a journey taken together by all five schools at MIT,” says Provost Schmidt. “Success will rest on a shared sense of purpose and a mix of contributions from a wide variety of disciplines. I’m excited by the new thinking we can help unlock.”

At the heart of MIT IQ will be collaboration among researchers in human and artificial intelligence.

“To revolutionize the field of artificial intelligence, we should continue to look to the roots of intelligence: the brain,” says James DiCarlo, department head and Peter de Florez Professor of Neuroscience in the Department of Brain and Cognitive Sciences. “By working with engineers and artificial intelligence researchers, human intelligence researchers can build models of the brain systems that produce intelligent behavior. The time is now, as model building at the scale of those brain systems is now possible. Discovering how the brain works in the language of engineers will not only lead to transformative AI — it will also illuminate entirely new ways to repair, educate, and augment our own minds.”

Daniela Rus, the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT, and director of CSAIL, agrees. MIT researchers, she says, “have contributed pioneering and visionary solutions for intelligence since the beginning of the field, and are excited to make big leaps to understand human intelligence and to engineer significantly more capable intelligent machines. Understanding intelligence will give us the knowledge to understand ourselves and to create machines that will support us with cognitive and physical work.”

David Siegel, who earned a PhD in computer science at MIT in 1991 pursuing research at MIT’s Artificial Intelligence Laboratory, and who is a member of the MIT Corporation and an advisor to the MIT Center for Brains, Minds, and Machines, has been integral to the vision and formation of MIT IQ and will continue to help shape the effort. “Understanding human intelligence is one of the greatest scientific challenges,” he says, “one that helps us understand who we are while meaningfully advancing the field of artificial intelligence.” Siegel is co-chairman and a founder of Two Sigma Investments, LP.

The fruits of research

MIT IQ will thus provide a platform for long-term research, encouraging the foundational advances of the future. At the same time, MIT professors and researchers may develop technologies with near-term value, leading to new kinds of collaborations with existing companies — and to new companies.

Some such entrepreneurial efforts could be supported by The Engine, an Institute initiative launched in October 2016 to support startup companies pursuing particularly ambitious goals.

Other innovations stemming from MIT IQ could be absorbed into the innovation ecosystem surrounding the Institute — in Kendall Square, Cambridge, and the Boston metropolitan area. MIT is located in close proximity to a world-leading nexus of biotechnology and medical-device research and development, as well as a cluster of leading-edge technology firms that study and deploy machine intelligence.

MIT also has roots in centers of innovation elsewhere in the United States and around the world, through faculty research projects, institutional and industry collaborations, and the activities and leadership of its alumni. MIT IQ will seek to connect to innovative companies and individuals who share MIT’s passion for work in intelligence.

Eric Schmidt, former executive chairman of Alphabet, has helped MIT form the vision for MIT IQ. “Imagine the good that can be done by putting novel machine-learning tools in the hands of those who can make great use of them,” he says. “MIT IQ can become a fount of exciting new capabilities.”

“I am thrilled by today’s news,” says President Reif. “Drawing on MIT’s deep strengths and signature values, culture, and history, MIT IQ promises to make important contributions to understanding the nature of intelligence, and to harnessing it to make a better world.”

“MIT is placing a bet,” he says, “on the central importance of intelligence research to meeting the needs of humanity.”

Advertisements

A novel electric propulsion technology for nanorobots: 100K Faster computer controls for molecular machines


fastcomputerElectric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Credit: Enzo Kopperger / TUM

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date. This makes nanobots fast enough to do assembly line work in molecular factories. The new research results will appear as the cover story on 19th January in the renowned scientific journal Science.

Up and down, up and down. The points of light alternate back and forth in lockstep. They are produced by glowing molecules affixed to the ends of tiny robot arms. Prof. Friedrich Simmel observes the movement of the nanomachines on the monitor of a fluorescence microscope. A simple mouse click is all it takes for the points of light to move in another direction.

“By applying electric fields, we can arbitrarily rotate the arms in a plane,” explains the head of the Chair of Physics of Synthetic Biological Systems at TU Munich. His team has for the first time managed to control nanobots electrically and has at the same time set a record: The new technique is 100 000 times faster than all previous methods.

DNA-origami robots for the manufacturing plants of tomorrow

Scientists around the world are working on new technologies for the nanofactories of the future. They hope these will one day be used to analyse biochemical samples or produce active medical agents. The required miniature machines can already be produced cost-effectively using the DNA-origami technique.

The only reason these  have not been deployed on a large scale to date is that they are too slow. The building blocks are activated with enzymes, strands of DNA or light to then perform specific tasks, for example to gather and transport molecules.

Fast computer control for molecular machines
Rotation of the arm between two docking points (red and blue). Credit: Enzo Kopperger / TUM

However, traditional nanobots take minutes to carry out these actions, sometimes even hours. Therefore, efficient molecular assembly lines cannot, for all practical intents and purposes, be implemented using these methodologies.

Electronic speed boost

“Building up a nanotechnological assembly line calls for a different kind of propulsion technology. We came up with the idea of dropping biochemical nanomachine switching completely in favour of the interactions between DNA structures and electric fields,” explains TUM researcher Simmel, who is also the co-coordinator of the Excellence Cluster Nanosystems Initiative Munich (NIM).

The principle behind the propulsion technology is simple: DNA molecules have negative charges. The biomolecules can thus be moved by applying electric fields. Theoretically, this should allow nanobots made of DNA to be steered using electrical impulses.

Robotic movement under the microscope

To determine whether and how fast the robot arms would line up with an electric field, the researchers affixed several million nanobot arms to a glass substrate and placed this into a sample holder with electrical contacts designed specifically for the purpose.

Each of the miniature machines produced by the lead author Enzo Kopperger comprises a 400 nanometer arm attached to a rigid 55 by 55 nanometer base plate with a flexible joint made of unpaired bases. This construction ensures that the arms can rotate arbitrarily in the horizontal plane.

In collaboration with fluorescence specialists headed by Prof. Don C. Lamb of the Ludwig Maximillians University Munich, the researchers marked the tips of the  using pigment molecules. They observed their motion using a . They then changed the direction of the electric field. This allowed the researchers to arbitrarily alter the orientation of the arms and control the locomotion process.

“The experiment demonstrated that molecular machines can be moved, and thus also driven electrically,” says Simmel. “Thanks to the electronic control process, we can now initiate movements on a millisecond time scale and are thus 100 000 times faster than with previously used biochemical approaches.”

On the road to a nanofactory

The new control technology is suited not only for moving around pigments and nanoparticles. The arms of the miniature robots can also apply force to molecules. These interactions can be utilized for diagnostics and in pharmaceutical development, emphasizes Simmel. “Nanobots are small and economical. Millions of them could work in parallel to look for specific substances in samples or to synthesize complex molecules – not unlike an .”

 Explore further: Scientists create world’s first ‘molecular robot’ capable of building molecules

More information: Enzo Kopperger et al. A self-assembled nanoscale robotic arm controlled by electric fields, Science (2018). DOI: 10.1126/science.aao4284

 

‘Neural Lace’ or BCI (brain computer interface) ~ Elon Musk & new start-up Neuralink hope to ‘inject’ the Possibilities: Video


brain-quantum-1-download (1)Elon Musk is funding research towards “neural lace,” a brain computer interface technology that could allow our brains to compete with AI.

“The Journal reported that the new startup will focus on “neural lace” technology which involves implanting tiny brain electrodes capable of uploading and downloading thoughts. The report said Musk has taken an active role setting up the company and may play a ‘significant leadership role’ even as he runs two other large companies. Musk has previously spoken about the idea of neural lacing, claiming it can magnify people’s brain power by linking them directly to computing capabilities.”

“Billionaire futurist space explorer Elon Musk has a new project: a ”medical research company’ called Neuralink that will make brain-computer interfaces. Musk’s projects are frequently inspired by science fiction, and this one is a direct reference to a device called a ‘neural lace,’ invented by the late British novelist Iain M. Banks for his Culture series. In those books, characters grow a semi-organic mesh on their cerebral cortexes, which allows them to interface wirelessly with AIs and create backups of their minds.”

“Smarter artificial intelligence is certainly being developed, but how far along are we on producing a neural lace? At the conference, Musk said he didn’t know of any company that was working on one. But last year, a team of researchers led by Charles Lieber, the Mark Hyman Professor of Chemistry at Harvard University, described in Nature Nanotechnology a lace-like electronic mesh that ‘you could literally inject’ into three-dimensional synthetic and biological structures like the brain.”

Read The Harvard/ Nature Nanotechnology Article: Will This “Neural Lace” Brain Implant Help Us Compete with AI? Charles Leiber Harvard Neural Lace 10262_0247f3dd84906223785fddb18353bafe

Dr. Charles Lieber, Harvard University

Watch the YouTube Video:

 So what do YOU think? Science of Science Fiction? Please leave us your Comments. ~ Team GNT   GNT New Thumbnail LARGE 2016        

Science in 360°: Say ‘hello’ to HERMAN, The Nanoparticle Robot: Video


fourth-ir-aaeaaqaaaaaaaag8aaaajdziytbjm2jlltblzgmtnddmyy1hnjdkltk0nzuyzdfjmgm0mg
Published on Mar 7, 2017
Science in 360°: Say hello to HERMAN, a robot that accelerates the synthesis of nanoparticles for a wide range of cool applications such as biosensors, smart window coatings, and display technologies. HERMAN (aka High-throughput Experimentation Robot for the Multiplexed Automation of Nanochemistry) is a one-of-a-kind robot at Berkeley Lab’s Molecular Foundry that brings parallel processing and an extreme level of precision to the materials discovery process.