NIST Offers Electronics Industry New Tools & Methods to Snoop on Self-Organizing Molecules


2-NIST 14CNST006_tem_block_co_polymer_on_posts_LRNIST Offers Electronics Industry Two Ways to Snoop on Self-Organizing Molecules

From NIST Tech Beat: October 22, 2014
*

A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed … well, cool, sure, but also a little fantastic.

Now the day isn’t far off when your cell phone may depend on it. Two recent papers emphasize the point by demonstrating complementary approaches to fine-tuning the key step: depositing thin films of a uniquely designed polymer on a template so that it self-assembles into neat, precise, even rows of alternating composition just 10 or so nanometers wide.

Computer simulations of two possible morphologies of a block copolymer film demonstrate the need for an accurate 3D imaging tool. Red and blue areas represent the two different phases of the polymer film, seen from the side.

2-NIST 14CNST006_tem_block_co_polymer_on_posts_LR

Transmission electron microscope (TEM) tomography provides a nanoscale, 3D visualization of the structure of a templated block copolymer. The purple features are silica posts fabricated by electron-beam lithography that direct the self-assembly of the copolymer. The material self-assembles to form two orthogonal layers of cylinders (green).
Credit: Winterstein/NIST
View hi-resolution image

Each phase is about 12 nm wide. Viewed from the top, both would appear to have evenly separated rows of the “red” phase, the bottom sample in fact has an unwanted horizontal band that will disrupt the pattern transfer. Soft X-ray scattering data can distinguish the two.

The work by researchers at the National Institute of Standards and Technology (NIST), the Massachusetts Institute of Technology, and IBM Almaden Research Center focuses on block copolymers a special class of polymers that under the proper conditions, will segregate on a microscopic scale into regularly spaced “domains” of different chemical composition.

The two groups demonstrated ways to observe and measure the shape and dimensions of the polymer rows in three dimensions. The experimental techniques can prove essential in verifying and tuning the computational models used to guide the fabrication process development.

It’s old news that the semiconductor industry is starting to run up against physical limits to the decades-long trend of ever-denser integrated chips with smaller and smaller feature sizes, but it hasn’t reached bottom yet.

Just recently, Intel Corp. announced that it had in production a new generation of chips with a 14-nanometer minimum feature size. That’s a little over five times the width of human DNA.

At those dimensions, the problem is creating the multiple masking layers, sort of tiny stencils, needed to define the microscopic patterns on the production wafer.

The optical lithography techniques used to create the masks in a process akin to old-school wet photography are simply not capable of reliably reproducing the extremely small, extremely dense patterns. There are tricks you can use such as creating multiple, overlapping masks, but they are very expensive.

Transmission electron microscope (TEM) tomography provides a nanoscale, 3D visualization of the structure of a templated block copolymer. The purple features are silica posts fabricated by electron-beam lithography that direct the self-assembly of the copolymer.

Hence the polymers. “The issue in semiconductor lithography is not really making small features—you can do that—but you can’t pack them close together,” explains NIST materials scientist Alexander Liddle. “Block copolymers take advantage of the fact that if I make small features relatively far apart, I can put the block copolymer on those guiding patterns and sort of fill in the small details.”

The strategy is called “density multiplication” and the technique, “directed self-assembly.”
Block copolymers (BCPs) are a class of materials made by connecting two or more different polymers that, as they anneal, will form predictable, repeating shapes and patterns.

With the proper lithographed template, the BCPs in question will form a thin film in a pattern of narrow, alternating stripes of the two polymer compositions.

Alternatively, they can be designed so one polymer forms a pattern of posts embedded in the other. Remove one polymer, and in theory, you have a near-perfect pattern for lines spaced 10 to 20 nanometers apart to become, perhaps, part of a transistor array.
If it works. “The biggest problem for the industry is the patterning has to be perfect. There can’t be any defects,” says NIST materials scientist Joseph Kline. “In both of our projects we’re trying to measure the full structure of the pattern.

Normally, it’s only easy to see the top surface, and what the industry is worried about is that they make a pattern, and it looks okay on the top, but down inside the film, it isn’t.”
Kline’s group, working with IBM, demonstrated a new measurement technique* that uses low-energy or “soft” X rays produced by the Advanced Light Source at Lawrence Berkeley National Labs to probe the structure of the BCP film from multiple angles.

Because the film has a regular, repeating structure, the scattering pattern can be interpreted, much as crystallographers do, to reveal the average shapes of the stripes in the film. If a poor match between the materials causes one set of stripes to broaden out at the base, for example, it will show up in the scattering pattern.

Their major innovation was to note that although the basic technique was developed using short-wavelength “hard” X rays that have difficulty distinguishing two closely related polymers, much better results can be obtained using longer wavelength X rays that are more sensitive to differences in the molecular structure.**

While X-ray scattering can measure average properties of the films, Liddle’s group, working with MIT, developed a method to look, in detail, at individual sections of a film by doing three-dimensional tomography with a transmission electron microscope (TEM).*** Unlike the scattering technique, the TEM tomography can actually image defects in the polymer structure—but only for a small area.

The technique can image an area about 500 nanometers across.

Between them, the two techniques can yield detailed data on the performance of a given BCP patterning system. The data, the researchers say, are most valuable for testing and refining computer models. “Our measurements are both fairly time-consuming, so they’re not something industry can use on the fab floor,” says Kline. “But as they’re developing the process, they can use our measurements to get the models right, then they can do a lot of simulations and let the computers figure it out.”

“It’s just so expensive and time-consuming to test out a new process,” agrees Liddle. “But if my model is well validated and I know the model is going to give me accurate results, then I can crank through the simulations quickly. That’s a huge factor in the electronics industry.”

*With the daunting name “resonant critical dimension small angle X-ray scattering” (res-CDSAXS).

**D.F. Sunday, M.R. Hammond, C. Wang, W. Wu, D. Delongchamp, M. Tjio, J. Cheng, J.W. Pitera, R.J. Kline.

Determination of the internal morphology of nanostructures patterned by directed self assembly. ACS Nano, 2014, 8 (8), pp 8426–8437 DOI: 10.1021/nn5029289.

***K.W. Gotrik, T. Lam, A.F. Hannon, W. Bai, Y. Ding, J. Winterstein, A. Alexander-Katz, J.A. Liddle, C.A. Ross. 3D TEM Tomography of templated bilayer films of block copolymers. Advanced Functional Materials. Article first published online Oct. 2, 2014 DOI: 10.1002/adfm.201402457.

The World Of Tomorrow: Nanotechnology: Interview with PhD and Attorney D.M. Vernon


Bricks and Mortar chemistsdemoThe Editor interviews Deborah M. VernonPhD, Partner in McCarter & English, LLP’s Boston office.

 

 

 

Why It Matters –

” … I would say the two most interesting areas in the last year or two have been in 3-D printing and nanotechnology. 3-D printing is an additive technology in which one is able to make a three-dimensional product, such as a screw, by adding material rather than using a traditional reduction process, like a CNC (milling) process or a grinding-away process.

The other interesting area has been nanotechnology. Nanotechnology is the science of materials and structures that have a dimension in the nanometer range (1-1,000 nm) – that is, on the atomic or molecular scale. A fascinating aspect of nanomaterials is that they can have vastly different material properties (e.g., chemical, electrical, mechanical properties) than their larger-scale counterparts. As a result, these materials can be used in applications where their larger-scale counterparts have traditionally not been utilized.”

nanotech

Editor: Deborah, please tell us about the specific practice areas of intellectual property in which you participate.

 

 

Vernon: My practice has been directed to helping clients assess, build, maintain and enforce their intellectual property, especially in the technology areas of material science, analytical chemistry and mechanical engineering. Prior to entering the practice of law, I studied mechanical engineering as an undergraduate and I obtained a PhD in material science engineering, where I focused on creating composite materials with improved mechanical properties.

Editor: Please describe some of the new areas of biological and chemical research into which your practice takes you, such as nanotechnology, three-dimensional printing technology, and other areas.

Vernon: I would say the two most interesting areas in the last year or two have been in 3-D printing and nanotechnology. 3-D printing is an additive technology in which one is able to make a three-dimensional product, such as a screw, by adding material rather than using a traditional reduction process, like a CNC (milling) process or a grinding-away process. The other interesting area has been nanotechnology. Nanotechnology is the science of materials and structures that have a dimension in the nanometer range (1-1,000 nm) – that is, on the atomic or molecular scale.

A fascinating aspect of nanomaterials is that they can have vastly different material properties (e.g., chemical, electrical, mechanical properties) than their larger-scale counterparts. As a result, these materials can be used in applications where their larger-scale counterparts have traditionally not been utilized.

Organ on a chip organx250

I was fortunate to work in the nanotech field in graduate school. During this time, I investigated and developed methods for forming ceramic composites, which maintain a nanoscale grain size even after sintering. Sintering is the process used to form fully dense ceramic materials. The problem with sintering is that it adds energy to a system, resulting in grain growth of the ceramic materials. In order to maintain the advantageous properties of the nanosized grains, I worked on methods that pinned the ceramic grain boundaries to reduce growth during sintering.

The methods I developed not only involved handling of nanosized ceramic particles, but also the deposition of nanofilms into a porous ceramic material to create nanocomposites. I have been able to apply this experience in my IP practice to assist clients in obtaining and assessing IP in the areas of nanolaminates and coatings, nanosized particles and nanostructures, such as carbon nanotubes, nano fluidic devices, which are very small devices which transport fluids, and 3D structures formed from nanomaterials, such as woven nanofibers.

Editor: I understand that some of the components of the new Boeing 787 are examples of nanotechnology.

Vernon: The design objective behind the 787 is that lighter, better-performing materials will reduce the weight of the aircraft, resulting in longer possible flight times and decreased operating costs. Boeing reports that approximately 50 percent of the materials in the 787 are composite materials, and that nanotechnology will play an important role in achieving and exceeding the design objective. (See, http://www.nasc.com/nanometa/Plenary%20Talk%20Chong.pdf).

While it is believed that nanocomposite materials are used in the fuselage of the 787, Boeing is investigating applying nanotechnology to reduce costs and increase performance not only in fuselage and aircraft structures, but also within energy, sensor and system controls of the aircraft.

Editor: What products have incorporated nanotechnology? What products are anticipated to incorporate its processes in the future?

Vernon: The products that people are the most familiar with are cosmetic products, such as hair products for thinning hair that deliver nutrients deep into the scalp, and sunscreen, which includes nanosized titanium dioxide and zinc oxide to eliminate the white, pasty look of sunscreens. Sports products, such as fishing rods and tennis rackets, have incorporated a composite of carbon fiber and silica nanoparticles to add strength. Nano products are used in paints and coatings to prevent algae and corrosion on the hulls of boats and to help reduce mold and kill bacteria. We’re seeing nanotechnology used in filters to separate chemicals and in water filtration.

The textile industry has also started to use nano coatings to repel water and make fabrics flame resistant. The medical imaging industry is starting to use nanoparticles to tag certain areas of the body, allowing for enhanced MRI imaging. Developing areas include drug delivery, disease detection and therapeutics for oncology. Obviously, those are definitely in the future, but it is the direction of scientific thinking.

Editor: What liabilities can product manufacturers incur who are incorporating nanotechnology into their products? What kinds of health and safety risks are incurred in their manufacture or consumption?Nano Body II 43a262816377a448922f9811e069be13

Vernon: There are three different areas that we should think about: the manufacturing process, consumer use and environmental issues. In manufacturing there are potential safety issues with respect to the incorporation or delivery of nanomaterials. For example, inhalation of nanoparticles can cause serious respiratory issues, and contact of some nanoparticles with the skin or eyes may result in irritation. In terms of consumer use, nanomaterials may have different material properties from their larger counterparts.

As a result, we are not quite sure how these materials will affect the human body insofar as they might have a higher toxicity level than in their larger counterparts. With respect to an environmental impact, waste or recycled products may lead to the release of nanoparticles into bodies of water or impact wildlife. The National Institute for Occupational Safety and Health has established the Nanotechnology Research Center to develop a strategic direction with respect to occupational safety and nanotechnology. Guidance and publications can be found at http://www.cdc.gov/niosh/topics/nanotech.

Editor: The European Union requires the labeling of foods containing nanomaterials. What has been the position of the Food & Drug Administration and the EPA in the United States about food labeling?

Vernon: So far the FDA has taken the position that just because nanomaterials are smaller, they are not materially different from their larger counterparts, and therefore there have been no labeling requirements on food products. The FDA believes that their current standards for safety assessment are robust and flexible enough to handle a variety of different materials. That being said, the FDA has issued some guidelines for the food and cosmetic industries, but there has not been any requirement for food labeling as of now. The EPA has a nanotechnology division, which is also studying nanomaterials and their impact, but I haven’t seen anything that specifically requires a special registration process for nanomaterials.

Editor: What new regulations regarding nanotech products are expected? Should governmental regulations be adopted to prevent nanoparticles in foods and cosmetics from causing toxicity?

Vernon: The FDA has not telegraphed that any new regulations will be put into place. The agency is currently in the data collection stage to make sure that these materials are being safely delivered to people using current FDA standards – that materials are safe for human consumption or contact with humans. We won’t really understand whether or not regulations will be coming into place until we see data coming out that indicates that there are issues that are directly associated with nanomaterials. Rather than expecting regulations, I would suggest that we examine the data regarding nano products to optimize safe handling and use procedures.

Editor: Have there ever been any cases involving toxicity resulting from nano products?

Vernon: There are current investigations about the toxicity of carbon nano tubes, but the research is in its infancy. There is no evidence to show any potential harm from this technology. Unlike asbestos or silica exposure, the science is not there yet to demonstrate any toxicity link. The general understanding is that it may take decades for any potential harm to manifest. I believe my colleague, Patrick J. Comerford, head of McCarter’s product liability team in Boston, summarizes the situation well by noting that “if any supportable science was available, plaintiff’s bar would have already made this a high-profile target.”

Editor: While some biotech cases have failed the test of patentability before the courts, such as the case of Mayo v. Prometheus, what standard has been set forth for a biotech process to pass the test for patentability?

Vernon: There is no specified bright-line test for determining if a biotech process is patentable. But what the U.S. Patent and Trademark Office has done is to issue some new examination guidelines with respect to the Mayo decision that help examiners figure out whether a biotech process is patent eligible. Specifically, the guidelines look to see if the biotech process (i.e., a process incorporating a law of nature) also includes at least one additional element or step. That additional element needs to be significant and not just a mental or correlation step. If a biotech process patent claim includes this significant additional step, there still needs to be a determination if the process is novel and non-obvious over the prior art. So while this might not be a bright-line test to help us figure out whether a biotech process is patentable, it at least gives us some direction about what the examiners are looking for in the patent claims.

Editor: What effect do you think the new America Invents Act will have in encouraging biotech companies to file early in the first stages of product development? Might that not run the risk that the courts could deny patentability as in the Ariad case where functional results of a process were described rather than the specific invention?

Vernon: The AIA goes into effect next month. What companies, especially biotech companies, need to do is file early. Companies need to submit applications supported by their research to include both a written description and enablement of the invention. Companies will need to be more focused on making sure that they are not only inventing in a timely manner but are also involving their patent counsel in planned and well-thought-out experiments to make sure that the supporting information is available in a timely fashion for patenting.

Editor: Have there been any recent cases relating to biotechnology or nanotechnology that our readers should be informed about?

Vernon: The Supreme Court will hear oral arguments in April in the Myriad case. This case involves the BRCA gene, the breast cancer gene – and the issue is whether isolating a portion of a gene is patentable. While I am not a biotechnologist, I think this case will also impact nanotechnology as a whole. Applying for a patent on a portion of a gene is not too far distant from applying for a patent on a nanoparticle of a material that already exists but which has different properties from the original, larger-counterpart material. Would this nanosize material be patentable? This will be an important case to see what guidance the Supreme Court delivers this coming term.

Editor: Is there anything else you’d like to add?

Vernon: I think the next couple of years for nanotech will be very interesting. As I mentioned, I did my PhD thesis in the nanotechnology area a few years ago. My studies, like those of many other students, were funded in part with government grants. There is a great deal of government money being poured into nanotechnology. In the next ten years we will start seeing more and more of this research being commercialized and adopted into our lives. To keep current of developments, readers can visit www.nano.gov.

The Metropolitan Corporate Counsel
The Leading Resource For Corporate Counsel

As a leading publication in the corporate counsel community, MCC offers unique editorial content covering legal, regulatory, legislative and business developments, featuring original articles and interviews from experts at prestigious law firms, bar associations, accounting firms and legal service providers, as well as educators, business executives and high-level state, national and international officials.

 

The Feynman Lectures on Physics now online


Feyman id37146The lectures of Nobel Prize winning physicist Richard Feynman were legendary. They are most famously preserved in The Feynman Lectures. The three-volume set may be the most popular collection of physics books ever written, and now you can access it online, in its entirety, for free.
Caltech and The Feynman Lectures Website are presenting this online edition of The Feynman Lectures on Physics. Now, anyone with internet access and a web browser can enjoy reading a high quality up-to-date copy of Feynman’s legendary lectures.

 

Richard Feynman talking with a teaching assistant
Richard Feynman talking with a teaching assistant after the lecture on The Dependence of Amplitudes on Time, Robert Leighton and Matthew Sands in background, April 29, 1963. (© California Institute of Technology)
Volume 1 – mainly mechanics, radiation and heat
Volume 2 – mainly electromagnetism and matter
Volume 3 – quantum mechanics
Please note that this edition is only free to read online, and the posting on Caltech’s website does not transfer any right to download all or any portion of The Feynman Lectures on Physics for any purpose.
This edition has been designed for ease of reading on devices of any size or shape; text, figures and equations can all be zoomed without degradation.
Source: Caltech

Read more: The Feynman Lectures on Physics now online http://www.nanowerk.com/nanotechnology-news/newsid=37146.php#ixzz3CMSX6Alt
Follow us: @nanowerk on Twitter

Genesis Nanotech News: Latest Updates


QDLED 08_Bulovic_QDs_inLiquidSolutionsGenesis Nanotech: Latest News & Updates in Nanotechnology

U of Maryland Researchers Discover New synthesis Method: Could Impact the Futures of Nanostructures, Clean Energy

 

 

New Patent Issued to Samsung for Quantum Dot Organic Light Emitting Device (QDLED)

 

 

Simpler process to grow germanium nanowires could improve lithium ion batteries

 

 

Nanotechnology will leapfrog development.|Hiru News Official Web Site|Sri Lanka

Sprinkling Spin Physics onto a Superconductor


JQI sprinkled_spins2JQI (Joint Quantum Institute)Fellow Jay Sau, in collaboration with physicists from Harvard and Yale, has been studying the effects of embedding magnetic spins onto the surface of a superconductor. They recently report in paper that was chosen as an “Editor’s Suggestion” in Physical Review Letters, that the spins can interact differently than previously thought. This hybrid platform could be useful for quantum simulations of complex spin systems, having the special feature that the interactions may be controllable, something quite unusual for most condensed matter systems.

The textbook quantum system known as a spin can be realized in different physical platforms. Due to advances in fabrication and imaging, magnetic impurities embedded onto a substrate have emerged as an exciting prospect for studying spin physics. Quantum ‘spin’ is related to a particle’s intrinsic angular momentum. What’s neat is that while the concept is fairly abstract, numerous effects in nature, such as magnetism, map onto mathematical spin models.

JQI sprinkled_spins2

A single spin is useful, but most practical applications and studies of complex phenomena require controlling many interacting spins. By themselves, spins will interact with each other, with the interaction strength vanishing as spins are separated. In experiments, physicists will often use techniques, such as lasers and/or magnetic fields, to control and modify the interplay between spins. While possible in atomic systems, controlling interactions between quantum spins has not been straightforward or even possible in most solid state systems.

In principle, the best way to enhance communication between spins in materials is to use the moving electrons as intermediaries. Mobile electrons are easy to come by in conductors, but from a quantum physics perspective, these materials are dirty and noisy. Here, electrons flow around, scattering from the countless numbers of vibrating atoms, creating disruptions and masking quantum effects. One way physicists get around this obstacle is to place the spins on a superconducting substrate, which happens to be a quiet, pristine quantum environment.

Why are superconductors are a clean quantum host for spins? To answer this, consider the band structure of this system.

Band structure describes the behavior of electrons in solids. Inside isolated atoms, electrons possess only certain discrete energies separated by forbidden regions. In a solid, atoms are arranged in a repeating pattern, called a lattice. Due to the atoms’ close proximity, their accompanying electrons are effectively shared. The equivalent energy level diagram for the collective arrangement of atoms in a solid consists not of discrete levels, but of bunches or bands of levels representing nearly a continuum of energy values. In a solid, electrons normally occupy the lowest lying energy levels. In conducting solids the next higher energy level (above the highest filled level) is close enough in energy that transitions are allowed, facilitating flow of electrons in the form of a current.

Where do superconductors, in which electrical current flows freely without dissipation, fit into this energy level scheme? This effect is not the result of perfectly closing a gap–in fact the emergence of zero resistivity is a phase transition. As some materials are cooled the electrons can begin to interact, even over large distances, through vibrations in the crystal called phonons. This is called “Cooper pairing.” The pairs, though relatively weak, require some amount of energy to break, which translates into a gap in the band structure forming between the lowest energy superconducting state and the higher energy, non-superconducting states. In some sense, the superconducting state is a quantum environment that is isolated from the noise of the normal conducting state.

In this research, physicists consider what happens to the spin-spin interactions when the spins are embedded onto a superconductor. Generally, when the spins are separated by an amount greater than what’s called the coherence length, they are known to weakly interact antiferromagnetically (spin orientation alternating). It turns out that when the spins are closer together, their interactions are more complex than previously thought, and have the potential to be tunable. The research team corrects existing textbook theory that says that the spin-spin interactions oscillate between ferromagnetic (all spins having the same orientation) and antiferromagnetic. This type of interaction (called RKKY) is valid for regular conductors, but is not when the substrate is a superconductor.

What’s happening here is that, similar to semiconductors, the magnetic spin impurities are affecting the band structure. The spins induce what are called Shiba states, which are allowed electron energy levels in the superconducting gap. This means that there is a way for superconducting electron pairs to break-up and occupy higher, non-superconducting energy states. For this work, the key point is that when two closely-spaced spins are anti-aligned then their electron Shiba states mix together to strengthen their effective antiferromagnetic spin interaction. An exciting feature of this result is that the amount of mixing, and thus effective interaction strength, can be tuned by shifting around the relative energy of Shiba states within the gapped region. The team finds that when Shiba states are in the middle of the superconducting gap, the antiferromagnetic interaction between spins dominates.

Author and theorist Jay Sau explains the promise of this platform, “What this spin-superconductor system provides is the ability connect many quantum systems together with a definitive interaction. Here you can potentially put lots of impurity atoms in a small region of superconductor and they will all interact antiferromagnetically. This is the ideal situation for forming exotic spin states.”

Arrays of spins with controllable interactions are hard to come by in the laboratory and, when combined with the ability to image single spin impurities via scanning tunneling microscopy (STM), this hybrid platform may open new possibilities for studying complex interacting quantum phenomena.

From Sau’s perspective, “We are at the stage where our understanding of quantum many-body things is so bad that we don’t necessarily even want to target simulating a specific material. If we just start to get more examples of complicated quantum systems that we understand, then we have already made progress.”

– See more at: http://jqi.umd.edu/news/sprinkling-spin-physics-onto-superconductor#sthash.6SNA4foX.dpuf

Genesis Nanotech Headlines Are Out!


Organ on a chip organx250Genesis Nanotech Headlines Are Out! Read All About It!

https://paper.li/GenesisNanoTech/1354215819#!headlines

Visit Our Website: www.genesisnanotech.com

Visit/ Post on Our Blog: https://genesisnanotech.wordpress.com

 

SUBCOMMITTE EXAMINES BREAKTHROUGH NANOTECHNOLOGY OPPORTUNITIES FOR AMERICA

Chairman Terry: “Nanotech is a true science race between the nations, and we should be encouraging the transition from research breakthroughs to commercial development.”

WASHINGTON, DCThe Subcommittee on Commerce, Manufacturing, and Trade, chaired by Rep. Lee Terry (R-NE), today held a hearing on:

“Nanotechnology: Understanding How Small Solutions Drive Big Innovation.”

 

 

electron-tomography

“Great Things from Small Things!” … We Couldn’t Agree More!

 

Subcommittee Examines Breakthrough Nanotechnology Opportunities for America


Applications-of-Nanomaterials-Chart-Picture1SUBCOMMITTE EXAMINES BREAKTHROUGH NANOTECHNOLOGY OPPORTUNITIES FOR AMERICA
July 29, 2014

WASHINGTON, DCThe Subcommittee on Commerce, Manufacturing, and Trade, chaired by Rep. Lee Terry (R-NE), today held a hearing on “Nanotechnology: Understanding How Small Solutions Drive Big Innovation.” Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is approximately 1 to 100 nanometers (one nanometer is a billionth of a meter). This technology brings great opportunities to advance a broad range of industries, bolster our U.S. economy, and create new manufacturing jobs. Members heard from several nanotech industry leaders about the current state of nanotechnology and the direction that it is headed.UNIVERSITY OF WATERLOO - New $5 million lab

“Just as electricity, telecommunications, and the combustion engine fundamentally altered American economics in the ‘second industrial revolution,’ nanotechnology is poised to drive the next surge of economic growth across all sectors,” said Chairman Terry.

 

 

Applications of Nanomaterials Chart Picture1

Dr. Christian Binek, Associate Professor at the University of Nebraska-Lincoln, explained the potential of nanotechnology to transform a range of industries, stating, “Virtually all of the national and global challenges can at least in part be addressed by advances in nanotechnology. Although the boundary between science and fiction is blurry, it appears reasonable to predict that the transformative power of nanotechnology can rival the industrial revolution. Nanotechnology is expected to make major contributions in fields such as; information technology, medical applications, energy, water supply with strong correlation to the energy problem, smart materials, and manufacturing. It is perhaps one of the major transformative powers of nanotechnology that many of these traditionally separated fields will merge.”

Dr. James M. Tour at the Smalley Institute for Nanoscale Science and Technology at Rice University encouraged steps to help the U.S better compete with markets abroad. “The situation has become untenable. Not only are our best and brightest international students returning to their home countries upon graduation, taking our advanced technology expertise with them, but our top professors also are moving abroad in order to keep their programs funded,” said Tour. “This is an issue for Congress to explore further, working with industry, tax experts, and universities to design an effective incentive structure that will increase industry support for research and development – especially as it relates to nanotechnology. This is a win-win for all parties.”

** Follow Our Nano-Blog: “Great Things from Small Things” – Just Click on the ‘Follow Blog”

** Follow us on Twitter at: @Genesisnanotech1x2 logo sm

** ‘Like Us’ on Facebook

Professor Milan Mrksich of Northwestern University discussed the economic opportunities of nanotechnology, and obstacles to realizing these benefits. He explained, “Nanotechnology is a broad-based field that, unlike traditional disciplines, engages the entire scientific and engineering enterprise and that promises new technologies across these fields. … Current challenges to realizing the broader economic promise of the nanotechnology industry include the development of strategies to ensure the continued investment in fundamental research, to increase the fraction of these discoveries that are translated to technology companies, to have effective regulations on nanomaterials, to efficiently process and protect intellectual property to ensure that within the global landscape, the United States remains the leader in realizing the economic benefits of the nanotechnology industry.”

James Phillips, Chairman & CEO at NanoMech, Inc., added, “It’s time for America to lead. … We must capitalize immediately on our great University system, our National Labs, and tremendous agencies like the National Science Foundation, to be sure this unique and best in class innovation ecosystem, is organized in a way that promotes nanotechnology, tech transfer and commercialization in dramatic and laser focused ways so that we capture the best ideas into patents quickly, that are easily transferred into our capitalistic economy so that our nation’s best ideas and inventions are never left stranded, but instead accelerated to market at the speed of innovation so that we build good jobs and improve the quality of life and security for our citizens faster and better than any other country on our planet.”

Chairman Terry concluded, “Nanotech is a true science race between the nations, and we should be encouraging the transition from research breakthroughs to commercial development. I believe the U.S. should excel in this area.”

– See more at: http://energycommerce.house.gov/press-release/subcommittee-examines-breakthrough-nanotechnology-opportunities-america#sthash.YnSzFU10.dpuf

NANOTECHNOLOGY – On the Horizon and in the Far Future: Video


 

 

 

What is Nanotechnology?

 
A basic definition: Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced.

 

 
In its original sense, ‘nanotechnology’ refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products.

Nanotechnology (sometimes shortened to “nanotech”) is the manipulation of matter on an atomic and molecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold.

It is therefore common to see the plural form “nanotechnologies” as well as “nanoscale technologies” to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research.

Through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars. The European Union has invested 1.2 billion and Japan 750 million dollars

NIST Completes ‘Net-Zero Energy’ House Experiment


NIST conducted a year-long experiment to prove it could build a modern, spacious house that would create as much energy as it uses. This “net-zero” house was home to a virtual family that consumed as much energy as an average American family of four. Thanks to the house’s energy efficient construction and appliances, and solar panels for producing electricity and hot water, the house made more energy than the family used. The house will serve as a testbed for new energy efficient technologies for decades to come.