Google Developing Nanotechnology To Detect Cancer, Heart Disease

1-google developGoogle Inc. revealed Tuesday at a conference in California that it is creating a wearable device and a pill with nanoparticles to detect certain developing diseases in the body, the Wall Street Journal reported.

Andrew Conrad, Google‘s head of the Life Sciences team at the Google X research lab, revealed that the company’s goal is to provide an early warning system for cancer and other diseases with a more efficient detection rate.

“Every test you ever go to the doctor for will be done through this system,” Conrad said. “That is our dream.”

Google X is designing tiny magnetic particles that seek out and attach to cells, proteins or other molecules inside the body. A wearable sensor with a magnet will attract the particles, along with the attached cells, and monitor the signs of medical trouble in the user’s bloodstream.

1-google develop

Google is developing a disease-detecting wristband sensor that can monitor your body for early signs of illnesses, such as cancer.
(Photo : Getty Images)

Experts said that the research is still on its early stages, according to the Daily Mail.

Researchers at Google X have yet to identify how the nanoparticles would bind itself to infected cells. Google said that its research team doesn’t know how much nanoparticles are needed for the system to work.

“Nanoparticles… give you the ability to explore the body at a molecular and cellular level,” Conrad explained. “Then [you can] recall those nanoparticles to a single location and that location is the superficial vasculature of the wrist, [where] you can ask them what they saw,” Conrad continued.

“In principle this is great. Any newcomers with new ideas are welcome in the field,” professor Paul Workman, chief executive of the Institute of Cancer Research in London, told BBC. “How much of this proposal is dream versus reality is impossible to tell because it is a fascinating concept that now needs to be converted to practice.”

A hundred Google employees, with expertise in molecular imaging, structural biology of neurodegenerative disease, astrophysics, chemistry and electrical engineering among others, have taken part in the nanoparticle project, TechCrunch has learned.

“We’re trying to stave off death by preventing disease. Our foe is unnecessary death,” said Conrad.


The Battle Between Cancer and the Immune System: ‘Cancer Cyberwarfare’

Breast cancer cellAbstract:
Two years ago, Prof. Eshel Ben-Jacob of Tel Aviv University’s School of Physics and Astronomy and Rice University’s Center for Theoretical Biological Physics made the startling discovery that cancer, like an enemy hacker in cyberspace, targets the body’s communication network to inflict widespread damage on the entire system. Cancer, he found, possessed special traits for cooperative behavior and used intricate communication to distribute tasks, share resources, and make decisions.

The “Cyberwar” Against Cancer Gets a Boost from Intelligent Nanocarriers: TAU researcher advances novel strategy to fight cancer by shoring up the immune system

New York, NY | Posted on October 7th, 2014

In research published in the Early Edition of the Proceedings of the National Academy of Sciences, Prof. Ben-Jacob and researchers from Rice University and the University of Texas M.D. Anderson Cancer Center, the leading cancer treatment center in the U.S., offer new insight into the lethal interaction between cancer cells and the immune system’s communications network. Prof. Ben-Jacob and the study co-authors developed a computer program that models a specific channel of cell-to-cell communication involving exosomes (nanocarriers with crucial cellular “intelligence”) that both cancer and immune cells harness to communicate with other cells.

“Recent research has found that cancer is already adept at using a kind of ‘cyberwarfare’ against the immune system. We studied the interplay between cancer and the immune system to see how we might be able to shift the balance against cancer,” said Prof. Ben-Jacob, noting a difference between the innate and the adaptive qualities of the immune system. “In the beginning, cancer is inhibited by the body’s innate immunity. But once cancer escapes the immunity, there is a race between the progression of cancer and the ability of the adaptive immune system to recognize and act against it.”

Cyberwarfare of the body

“What we are dealing with is cyberwarfare, pure and simple. Cancer uses the immune systems’ own communications network to attack not the soldiers but the generals that are coordinating the body’s defense,” said Prof. Ben-Jacob.

To better understand the role of exosome-mediated cell-to-cell communication in the battle between cancer and the immune system, the researchers created a computer model that captured the exosomal exchange between cancer cells, dendritic cells, and the other cells in the immune system.

The new model is based on earlier research, which showed that dendritic cells, mediators between the body’s innate and adaptive immune systems (the former protects against all threats at all times and the latter guards more efficiently against specific, established dangers), employed exosomes to fulfil their task. The researchers discovered that, overtaken by cancer, these nanocarriers, which contain such vital components as signaling proteins, RNA snippets, and microRNAs, can command cells to change their tasks, placing the entire system at risk.

Finding a better balance between the strong and the weak

According to the new research, three possible cancer states can exist: strong, intermediary, and weak. The intermediary state — in which cancer is neither strong nor weak and in which the immune system is on high alert — could be the key to a new therapeutic approach with reduced side effects. Prof. Ben-Jacob believes it is possible to force cancer from a strong to moderate state, and then from a moderate to weak state, by alternating cycles of radiation or chemotherapy with immune-boosting treatments.

“Our first important discovery is that this situation is due to the exosome-based cyberwar between cancer and the immune system,” said Prof. Ben-Jacob. “Without exosomes, the two possible states are only strong-weak and weak-strong. With exosomes, an intermediary state opens a new way to treat cancer using very a different approach.”

Prof. Ben-Jacob likened the exchange to a tug-of-war between cancer and the immune system. “The challenge is to be familiar with the battlefield so that we can manipulate cancer therapies to change the balance in favor of the immune system. When cancer is detected, it is almost always in the context of a cancer-immunity competition,” said Prof. Ben-Jacob. “We showed that the way to stop and reverse tumor progression without causing strong side effects is an individualized approach of mixed treatments — i.e., four days of radiation followed by a few days of immune system boosting, followed again by four days of radiation, and so on. If provided in the right order, the treatments could indeed shift the balance toward the immune system’s ‘victory’ in reducing the cancer to the moderate-strong state.”

The study was supported by the Cancer Prevention and Research Institute of Texas, the National Science Foundation, and the Tauber Family Funds.

Targeted Nanoparticles Combine Imaging Attack: Cancer + Other Conditions

targetednanoNanosystems that are ‘theranostic’—they combine both therapeutic and diagnostic functions—present an exciting new opportunity for delivering drugs to specific cells and identifying sites of disease.

Bin Liu of the A*STAR Institute of Materials Research and Engineering, and colleagues at the National University of Singapore, have created nanoparticles with two distinct anticancer functions and an imaging function, all stimulated on demand by a single light source. The nanoparticles also include the cell-targeting property essential for treating and imaging in the correct locations.

The system is built around a polyethylene-glycol-based polymer that carries a small peptide component that allows it to bind preferentially to specific cell types. The polymer itself serves as a photosensitizer that can be stimulated by light to release (ROS). It also carries the chemotherapy drug doxorubicin in a prodrug form.



Surface peptides (purple arrows) allow fluorescent nanoparticles to bind to a protein (green) on the target cells and be taken up into the cells. Light exposure prompts the nanoparticles to generate reactive oxygen species (ROS), kills the cells, and also liberates the drug doxorubicin (orange), which can then enter the cell nucleus. Credit: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The natural fluorescence of the polymer assists with diagnosis and monitoring of as it shows where have accumulated. The ROS generated by light stimulation have a direct ‘photodynamic’ therapeutic activity, which destroys the targeted cells. The ROS additionally break the link between the polymer and the doxorubicin. Thus, can be subjected to a two-pronged attack from the ROS therapy and the chemotherapy drug that is released within them (see image).

“This is the first nanoplatform that can offer on-demand and imaging-guided and chemotherapy with triggered drug release through one light switch,” explains Liu, emphasizing the significance of the system.

The researchers demonstrated the power of their platform by applying it to a mixture of cultured cancer cells, some of which overexpressed a surface protein that could bind to the targeting peptide on the nanoparticles. Fluorescence imaging indicated that the nanoparticles were taken up by the target cells and that ROS and doxorubicin were released within these cells—all at significantly higher levels than in used as controls. The doxorubicin that was released in the cell cytoplasm readily entered the nucleus—its site of activity. Crucially, the combined therapy had a greater cytotoxic effect than any one therapy alone.

“The white light used in this work does not penetrate tissue sufficiently for in vivo applications,” Liu explains, “but we are now attempting to use near-infrared laser light to improve the tissue penetration and move toward on-demand cancer therapy.” She also suggests that with a few modifications, the system may be suitable for the diagnosis and treatment of other pathological processes including inflammation and HIV infection.

Explore further: Introducing the multi-tasking nanoparticle