
Graphical abstract. Credit: DOI: 10.1
Australian researchers have developed a smart and super-efficient new way of capturing carbon dioxide and converting it to solid carbon, to help advance the decarbonisation of heavy industries.
The carbon dioxide utilization technology from researchers at RMIT University in Melbourne, Australia, is designed to be smoothly integrated into existing industrial processes.
Decarbonisation is an immense technical challenge for heavy industries like cement and steel, which are not only energy-intensive but also directly emit CO2 as part of the production process.
The new technology offers a pathway for instantly converting carbon dioxideas it is produced and locking it permanently in a solid state, keeping CO2 out of the atmosphere.
The research is published in the journal Energy & Environmental Science.
Co-lead researcher Associate Professor Torben Daeneke said the work built on an earlier experimental approach that used liquid metals as a catalyst.
“Our new method still harnesses the power of liquid metals but the design has been modified for smoother integration into standard industrial processes,” Daeneke said.
“As well as being simpler to scale up, the new tech is radically more efficient and can break down CO2 to carbon in an instant.
“We hope this could be a significant new tool in the push towards decarbonisation, to help industries and governments deliver on their climate commitments and bring us radically closer to net zero.”
A provisional patent application has been filed for the technology and researchers have recently signed a $AUD2.6 million agreement with Australian environmental technology company ABR, who are commercializing technologies to decarbonise the cement and steel manufacturing industries.
Co-lead researcher Dr. Ken Chiang said the team was keen to hear from other companies to understand the challenges in difficult-to-decarbonise industries and identify other potential applications of the technology.
You must be logged in to post a comment.