A Conversation with Professor (Sir) Kostya Novoselov, Co-Nobel Prize Winner in Physics 2019 ~ Research into “The Graphene Flagship” and other 2D materials


Talking with SciTech Europa, Professor Novoselov, co-awarded the 2019 Nobel Prize in Physics, for the discovery and isolation of a single atomic layer of carbon for the first time, explores the research into Graphene Flagship and other 2D materials.

At the University of Manchester, UK, in 2004, Professor Sir Kostya Novoselov, along with his colleague Professor Sir Andre Geim, discovered and isolated a single atomic layer of carbon for the first time. The pair received the Nobel Prize in Physics in 2010 in recognition of their breakthrough.

On 28 January 2013, the European Commission announced that, out of the six pilot preparatory actions put forward for the Future and Emerging Technology (FET) Flagships competition, the Graphene Flagship, along with the Human Brain Project, had been selected to receive €1bn in funding over the course of a decade, tasking it with bringing together academic and industrial researchers to take graphene from the realm of academic laboratories into European society, thereby generating economic growth, new jobs, and new opportunities.

In February, SciTech Europa attended the Mobile World Congress in Barcelona, Spain. This event is the world’s largest exhibition for the mobile industry, and where, for the fourth consecutive year, the Graphene Flagship hosted its Graphene Pavilion – this year showcasing over 20 different graphene-based working prototypes and devices that will transform future telecommunications.

At the pavilion, SEQ met with Professor Novoselov to discuss research into graphene and other two dimensional materials, as well as how the Flagship is working to bolster both fundamental research and applications stemming from these advanced materials.

What do you think have been the biggest, and latest, developments in graphene (and other 2D materials) research?

There has been a lot of progress in recent years and, indeed, we are no longer talking only about graphene, but also about many other two dimensional materials as well.

First of all – new applications of graphene is one example of recent developments – we see new applications emerging on an almost monthly basis. Second, there is still a lot of progress being made in fundamental research on graphene and 2D materials. And those fundamental results are being implemented in applications.

In terms of other new 2D materials, there is a lot of activity on ferromagnetic materials.

What potential is there now to move graphene forwards, and how would you describe the role of the Flagship in this?

The basic technology is in place, and so what is important now is for entrepreneurs and SMEs to convert those developments into commercial applications, and, indeed, we need to help them to do so.

The Flagship, of course, has now reached the half way stage, and we therefore need to carefully balance the amount of effort we place on applications with the effort we place on the development of fundamental science, which remains crucial.

Nevertheless, we also need to ensure we are helping companies and industry to introduce this material into real products, and that is actually much more difficult, not least because of the fact that this has not been done at this scale before, and so nobody knows how to do it yet.

Are you able to utilise EU instruments to help fund commercialisation activities?

It is not necessarily funding that is a problem in in Europe; the challenge comes more in the form of bringing together scientists, entrepreneurs, and funders in the same room, and it is still not clear how to achieve that. There is thus the argument that we need to work more closely with entrepreneurs and we need to grow those entrepreneurs who are working on advanced materials because this is a much more challenging area than, say, ‘.com’ applications.

What do you feel are the biggest barriers here?

It is perhaps the mentality that exists around risk taking that needs to change. Bringing together entrepreneurs, scientists, the technology and the money around the same table is a challenge and, as I have mentioned, it needs to be understood that bringing new materials, especially nanomaterials, to market is much more challenging than it is to bring, for example, new software to consumers.

And, of course, the level of required investment is also much larger. Whether we have enough people in Europe who are ready to take this risk is a good question.

Would you say that Europe is too risk averse when it comes to this type of investment in comparison to, for instance, the USA?

Perhaps; there is certainly a sense that Europe needs to work much harder than the USA or South-East Asia. And the reason for that is not only a lack of those willing to take enhanced risks, but also the level and mobility of the available money and, indeed, how soon financiers expect a return on their investment.

Could 2D materials research spark a ‘revolution’ in real world applications?

I am not sure that we will see a ‘revolution’; the growth in real world applications utilising graphene is, and will continue to be, a gradual introduction. That is not to say, however, that this gradual process won’t speed up a little over time.

And it is great to see that, when it comes to graphene, this introduction, although gradual, is already happening much faster than with any other advanced material that we have seen before. The purpose of the Flagship is to help speed up this process.

The Flagship is now investing in research into the safety of graphene. How important is that?

This is an example of the sort of issue where the Flagship should take the initiative, because it is not only about graphene; we need to realise that many new nanomaterials are going to play an increasing role in the everyday lives of people, and we need to be prepared for that.

There are a great many regulations which have to be passed when bringing such advanced materials to market, including health and safety and toxicology regulations, and very often these are not very well defined because, quite simply, we have never been in this situation before. It can also be quite expensive to run the necessary projects to investigate things like toxicology, and so it is important for projects like the Flagship to take the initiative and help businesses to overcome these barriers.

Where are your own research interests going to lie, moving forwards?

I do indeed conduct my own research, and within that graphene is not the largest part. I go beyond graphene and work on many other 2D materials and heterostructures, but it is nevertheless exciting to remember that it was graphene that made all the other materials possible as we work on those heterostructures towards new discoveries.

Professor Sir Kostya Novoselov
Nobel Laureate 
Director, National Graphene Institute at the University of Manchester
Member, Strategic Advisory Council, Graphene Flagship
Tweet @GrapheneCA @UoMGraphene

www.graphene.manchester.ac.uk/about/ngi
www.graphene-flagship.eu

Advertisements

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s