NREL Wins Award for Isothermal Battery Calorimeters – Measuring Battery Heat Levels and Energy Efficiency with 98% Accuracy – Video


NREL engineer Matthew Keyser holds a A123 battery module over the calorimeter he designed and built with the help of his staff.

” …. The IBCs can determine heat levels and battery energy efficiency with 98% accuracy and provide precise measurements through complete thermal isolation.”

NREL’s R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs) are the only calorimeters in the world capable of providing the precise thermal measurements needed for safer, longer-lasting, and more cost-effective electric-drive vehicle (EDV) batteries. In order for EDVs hybrids (HEVs), plug-in hybrids (PHEVs), and all-electric vehicles (EVs) to realize ultimate market penetration, their batteries need to operate at maximum efficiency, performing at optimal temperatures in a wide range of driving conditions and climates, and through numerous charging cycles.

ibc_rotator_1Cutaway showing battery in the test chamber, heat flux gauges, isothermal fluid surrounding the test chamber, and outside container with insulation holding the bath fluid and the test chamber. Image: Courtesy of NETZSCH

 

NREL’s IBCs make it possible to accurately measure the heat generated by electric-drive vehicle batteries, analyze the effects of temperature on battery systems, and pinpoint ways to manage temperatures for the best performance and maximum life. Three models, the IBC 284, the Module IBC, and the Large-Volume IBC, make it possible to test energy devices at a full range of scales.

The World’s Most Precise Battery Calorimeters

Development of precisely calibrated battery systems relies on accurate measurements of heat generated by battery modules during the full range of charge/discharge cycles, as well as determination of whether the heat was generated electrochemically or resistively. The IBCs can determine heat levels and battery energy efficiency with 98% accuracy and provide precise measurements through complete thermal isolation. These are the first calorimeters designed to analyze heat loads generated by complete battery systems.

This video describes NREL’s R&D 100 Award-winning Isothermal Battery Calorimeters, the only calorimeters in the world capable of providing the precise thermal measurements needed for safer, longer-lasting, and more cost-effective electric-drive vehicle batteries.

Calorimeter Specifications
Specifications IBC 284 (Cell) Module IBC Large-Volume IBC (Pack)
Maximum Voltage (Volts) 50 500 600
Sustained Maximum Current (Amps) 250 250 450
Excursion Currents (Amps) 300 300 1,000
Volume (liters) 9.4 14.7 96
Maximum Dimensions (cm) 20.3 x 20.3 x 15.2 35 x 21 x 20 60 x 40 x 40
Operating Temperature (C) -30 to 60 -30 to 60 -40 to 100
Maximum Constant Heat Generation (W) 50 150 4,000

Working with Industry to Fine-Tune Energy Storage Designs

The IBCs’ capabilities make it possible for battery developers to predict thermal performance before installing batteries in vehicles. Manufacturers use these metrics to compare battery performance to industry averages, troubleshoot thermal issues, and fine-tune designs.

NREL in partnership with NETSCH Instrument North America and with support from the U.S. Department of Energy is using IBCs to help industry design better thermal management systems for EDV battery cells, modules, and packs. The U.S. Advanced Battery Consortium (USABC) and its partners rely on NREL for precise measurement of energy storage devices’ heat generation and efficiency under different states of charge, power profiles, and temperatures.

Advertisements

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s