Graphene Holds Great Promise for Electronics Applications – Wearable Electronics


mit-graphene-ii-shutterstock_62457640-610x406

Applications that have really spurred a huge amount of graphene and other two-dimensional (2D) material research over the years have come from the field of electronics. The fear that complementary metal–oxide–semiconductor (CMOS) technology is quickly nearing the end of its ability to ward off Moore’s Law, in which the number of transistors in a dense integrated circuit doubles approximately every two years, has been the spur for much graphene research.

However, there has always been the big problem for graphene that it does not have an intrinsic band gap. It’s a pure conductor and not a semiconductor, like silicon, capable turning on and off the flow of electrons through it. While graphene can be functionalized in a way that it does have a band gap, research for it in the field of electronics have looked outside of digital logic where an intrinsic band gap is such an advantage.

In the stories below, we see how graphene’s unrivaled conductivity is being exploited to take advantage of its strengths rather than trying to cover up for its weaknesses.

Graphene Comes to the Rescue of Li-ion Batteries

The role of graphene in increasing the charge capacity of the electrodes in lithium-ion (Li-ion) batteries has varied. There’s been “decorated graphene” in which nanoparticles are scattered across the surface of the graphene, and graphene nanoribbons, just to name a few of the avenues that have been pursued.

Another way in which graphene has been looked at is to better enable silicon to serve as the electrode material for Li-ion batteries. Silicon is a great material for increasing the storage capacity of electrodes in Li-ion batteries, but there’s one big problem: it cracks after just few charge/discharge cycles. The aim has been to find a way to make silicon so that it’s not so brittle and can withstand the swelling and shrinking during the charge charging and discharing of lithium atoms into the electrode material In these efforts, like those out Northwestern University, the role of graphene has been to sandwich silicon between layers graphene sheets in the anode of the battery.

Now, Yi Cui from both Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory, who has been at the forefront of research to get silicon to be more flexible and durable for Li-ion batteries, has turned to graphene to solve the issue.

Cui and his colleagues were able to demonstrate in research described in the journal Nature Energy, a method for to encasing each particle of silicon in a cage of graphene that enables the silicon to expand and contract without cracking. In a full-cell electrochemical test, the graphene-infused silicon anodes retained 90 percent of their charge capacity after 100 charge-discharge cycles.

Previous attempts by Cui and many others to create nanostructured silicon has been very difficult, making mass production fairly impractical. However, based on these latest results, Cui believes that this approach is not only technologically possible, but may in fact be commercially viable.

The process involves coating the silicon particles with a layer of nickel. The nickel coating is used as the surface and the catalyst for the second step: growing the graphene. The final step of the process involves using an acid on the graphene-coated silicon particles so that the nickel is etched away.

“This new method allows us to use much larger silicon particles that are one to three microns, or millionths of a meter, in diameter, which are cheap and widely available,” Cui said in a press release. “Particles this big have never performed well in battery anodes before, so this is a very exciting new achievement, and we think it offers a practical solution.”

While a practical manufacturing approach was much needed, the technique also leads to an electrode material with very high charge capacity.

“Researchers have tried a number of other coatings for silicon anodes, but they all reduced the anode’s efficiency,” said Stanford postdoctoral researcher Kai Yan, in a press release. “The form-fitting graphene cages are the first coating that maintains high efficiency, and the reactions can be carried out at relatively low temperatures.”

Graphene Provides the Perfect Touch to Flexible Sensors

 

Photo: Someya Laboratory

Flexible sensors are the technological backbone of artificial skin technologies. The idea is that you can impart the sense of touch to a flexible sensor, making it possible to cover a prosthetic device for either a robot or replacement limb so it can feel. Creating materials that tick the boxes of flexibility, durability and sensitivity has been a challenge. Over the years, researchers have increasingly turned to nanomaterials, and graphene in particular, as a possible solution.

Researchers at the University of Tokyo have found that nanofibers produced from a combination of carbon nanotubes and graphene overcomes some of the big problems facing flexible pressure sensors: they’re not that accurate after being bent or deformed. The researchers have suggested that the flexible sensor they have developed could provide a more accurate detection breast cancer.

In research described in the journal Nature Nanotechnology, the scientists produced their flexible sensor by employing organic transistors and a pressure sensitive nanofiber structure.

The researchers constructed the nanofiber structure using nanofibers with diameters ranging between 300 to 700 nanometers. The researchers produced the nanofibers by combining carbon nanotubes and graphene and mixing that into a flexible polymer. The nanofibers entangled with each other to form a thin, transparent structure.

In contrast to other flexible sensors in which the striving for accuracy makes the sensors too sensitive to being deformed in any way, the fibers in this new flexible sensor does not lose their accuracy in measuring pressures. These fibers achieve this because of their ability to change their relative alignment to accommodate the bending. This allows them to continue measuring pressure because it reduces the strain in individual fibers.

Tunable Graphene Plasmons Lead to Tunable Lasers

Illustration: University of Manchester

A few years ago, researchers found that the phenomenon that occurs when photons strike a metallic surface and stir up the movement of electrons on the surface to the point where the electrons form into waves—known as surface plasmons—also occurs in graphene.

This discovery along with the ability to tune the graphene plasmons has been a big boon for the use of graphene in optoelectronic applications.  Now research out of the University of Manchester, led by Konstantin Novoselov, who along with Andre Geim were the two University of Manchester scientists who won the Nobel Prize for discovering graphene, has leveraged the ability of tuning graphene plasmons and combined it with terahertz quantum cascade lasers, making it possible to reversibly alter their emission.

This ability to reversibly the alter the emission of quantum cascade lasers is a big deal in optoelectronic applicatiopns, such as fiber optics telecommunication technologies by offering potentially higher bandwidth capabilities.

“Current terahertz devices do not allow for tunable properties, a new device would have to be made each time requirements changed, making them unattractive on an industrial scale,” said Novoselov in a press release. “Graphene however, can allow for terahertz devices to be switched on and off, as well as altering their state.”

In research described in the journal Science, were able to manipulate the doping levels of a graphene sheet so that it generated plasmons on its surface. When this doped graphene sheet was combined with a terahertz quantum cascade laser, it became possible to tune the transmission of the laser by tuning the graphene plasmons, essentially changing the concentration of charge carriers.

Graphene Flakes Speed Up Artificial Brains

Illustration: Alexey Kotelnikov/Alamy
Researchers out of Princeton University have found that graphene flakes could be a key feature in computer chips that aim at mimicking the function of the human brain.
In the human brain, neurons are used to transmit information by passing electrical charges through them. In artificial brains, transistors would take the place of neurons. One approach has been to construct the transistors out of lasers that would turn and off and the time intervals between the on and off states of the lasers would represent the 1s and 0s of digital logic.

One of the challenges that researchers have faced in this design is getting the time intervals between the laser pulses down to picosecond time scales, one trillionth of a second.

In research described in the journal Nature Scientific Reports, the Princeton researchers placed graphene flakes inside a semiconductor laser to act as a kind of “saturable absorber,” that absorbed photons and then was able to emit them in a quick burst.

It turns out graphene possesses a number of properties that makes it attractive for this application. Not only can it absorb and release photons extremely quickly, but it can also work at any wavelength. What this means is that even if semiconductor lasers are emitting different colors, the graphene makes it possible for them to work together simultaneously without interfering with each other, leading to higher processing speeds.

Posted By Terrance Barkan 

Advertisements

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s