DARPA Program Seeks to Use Commercial Drones


Image: A FLA quadcopter self-navigates around boxes during initial flight data collection using only onboard sensors/software. DARPA’s FLA program aims to develop and test algorithms that could reduce the amount of processing power, communications, and human intervention needed for unmanned aerial vehicles (UAVs) to accomplish low-level tasks, such as navigation around obstacles in a cluttered environment
Image: A FLA quadcopter self-navigates around boxes during initial flight data collection using only onboard sensors/software. DARPA’s FLA program aims to develop and test algorithms that could reduce the amount of processing power, communications, and human intervention needed for unmanned aerial vehicles (UAVs) to accomplish low-level tasks, such as navigation around obstacles in a cluttered environment

Inside the Otis Air National Guard Base—in Cape Cod, Mass.—the commercial DJI Flamewheel drone zipped down a row lined with cardboard boxes and tarps. At the end of the row, it smacked against the aircraft hangar’s floor, bounced, and tumbled to a stop.

The Defense Advanced Research Project Agency (DARPA) is playing with commercial drones. Well, not so much playing as experimenting.

 

Recently, DARPA’s Fast Lightweight Autonomy (FLA) program completed their first-flight data collection. In it, the program’s three performer teams demonstrated the commercial drone’s capability of reaching manned speeds up to 20 m/s, or 45 mph, and successfully navigating obstacles at slower speeds without human aid.

 

“Very lightweight UAVs (Unmanned Aerial Vehicles) exist today that are agile and can fly faster than 20 m/s, but they can’t carry sensors and computation to fly autonomously in cluttered environments,”said the program’s manager Mark Micire. “And large UAVs exist that can fly high and fast with heavy computing payloads and sensors on board. What makes the FLA program so challenging is finding the sweetspot of a small size, weight and power air vehicle with limited onboard computing power to perform a complex mission completely autonomously.”

The drone—outfitted with E600 motors, 12 in. propellers, and a 3DR Pixhawk autopilot—carried a variety of high-definition cameras and sensors, such as LIDAR, sonar, and inertial measuring instruments.

The three performances teams included Draper, which teamed with Massachusetts Institute of Technology; Univ. of Pennsylvania; and Scientific Systems Company, Inc., which teamed with AeroVironment.

According to Defense News, DARPA was offering $5.5 million in research funding for the program.

“We’re excited that we were able to validate the airspeed goal during the first-flight data collection,” said Micire. “The fact that some teams also demonstrated basic autonomous flight ahead of schedule was an added bonus. The challenge for the teams now is to advance the algorithms and onboard computational efficiency to extend the UAV’s perception range and compensate for the vehicles’ mass to make extremely tight turns and abrupt maneuvers at high speeds.”

Once fully developed, these drone systems will aid the military in surveillance operations, either patrolling hazardous urban environments or responding to disasters. As trials continue, the testing environment will grow more complex, with more obstacles added.

Advertisements

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s