Rice University’s Laser-Induced Graphene makes Simple, Powerful Energy Storage Possible: Video


Published on Dec 3, 2015

Rice University researchers who pioneered the development of laser-induced graphene have configured their discovery into flexible, solid-state microsupercapacitors that rival the best available for energy storage and delivery.

The devices developed in the lab of Rice chemist James Tour are geared toward electronics and apparel. They are the subject of a new paper in the journal Advanced Materials.

Microsupercapacitors are not batteries, but inch closer to them as the technology improves. Traditional capacitors store energy and release it quickly (as in a camera flash), unlike common lithium-ion batteries that take a long time to charge and release their energy as needed.

 

Advertisements

Fuel Cells to Power Tomorrow’s Technology – Interview with Prof. Walter Mérida: Video


 

Prof. Walter Mérida is working on fuel cells powered by hydrogen to allow us to replace fossil fuels with a truly zero-emission chemical fuel.

Moving away from fossil fuels like coal and oil are an important step in making our energy consumption more sustainable. Alternative sources include hydro, solar, and wind, but once electricity is generated, it needs to be used right away because we lack a reliable method to store large amounts of power. Prof. Walter Mérida, Director of the Clean Energy Research Centre at the University of British Columbia, is looking for ways to bypass fossil fuels by using electricity to generate hydrogen as a zero-emission chemical fuel.

The simplest possible chemical that you can imagine is hydrogen. It is the lightest element, the simplest element, and it’s one of the elements that you can make from electricity and water. So if you use electrolysis in the one hand and water in the other to produce a chemical fuel, you can really envision a truly zero emission transportation system.

This move is driven by our increased power needs for modern services and technologies. However, to make a real change, we need a better system. “The main driver for energy system evolution is not scarcity. We didn’t abandon the stone age due to the scarcity of stones. We abandoned it because there were better things to build things with. And in the case of fossil fuel – these transitions you have seen from wood, to coal, to oil – are due to quality and convenience; the fuels are much more convenient,” explains Mérida.
READ THE WHOLE STORY:
http://research2reality.com/videos/fu…

DOWNLOAD THE TRANSCRIPT:
http://research2reality.com/wp-conten…

The Fourth Industrial Revolution: What it means – How to Respond – Will You be Ready?


Fourth Ind Revo Image large_helKfLkVvU9GCPsotiAWWIFJr_zmkPvRFSsuIC-Om24

We stand on the brink of a technological revolution that will fundamentally alter the way we live, work, and relate to one another. In its scale, scope, and complexity, the transformation will be unlike anything humankind has experienced before. We do not yet know just how it will unfold, but one thing is clear: the response to it must be integrated and comprehensive, involving all stakeholders of the global polity, from the public and private sectors to academia and civil society.

The First Industrial Revolution used water and steam power to mechanize production. The Second used electric power to create mass production. The Third used electronics and information technology to automate production. Now a Fourth Industrial Revolution is building on the Third, the digital revolution that has been occurring since the middle of the last century. It is characterized by a fusion of technologies that is blurring the lines between the physical, digital, and biological spheres.

4th-industrial-revolution

There are three reasons why today’s transformations represent not merely a prolongation of the Third Industrial Revolution but rather the arrival of a Fourth and distinct one: velocity, scope, and systems impact. The speed of current breakthroughs has no historical precedent. When compared with previous industrial revolutions, the Fourth is evolving at an exponential rather than a linear pace. Moreover, it is disrupting almost every industry in every country. And the breadth and depth of these changes herald the transformation of entire systems of production, management, and governance.

The possibilities of billions of people connected by mobile devices, with unprecedented processing power, storage capacity, and access to knowledge, are unlimited. And these possibilities will be multiplied by emerging technology breakthroughs in fields such as artificial intelligence, robotics, the Internet of Things, autonomous vehicles, 3-D printing, nanotechnology, biotechnology, materials science, energy storage, and quantum computing.

Already, artificial intelligence is all around us, from self-driving cars and drones to virtual assistants and software that translate or invest. Impressive progress has been made in AI in recent years, driven by exponential increases in computing power and by the availability of vast amounts of data, from software used to discover new drugs to algorithms used to predict our cultural interests. Digital fabrication technologies, meanwhile, are interacting with the biological world on a daily basis. Engineers, designers, and architects are combining computational design, additive manufacturing, materials engineering, and synthetic biology to pioneer a symbiosis between microorganisms, our bodies, the products we consume, and even the buildings we inhabit.

Challenges and opportunities

Like the revolutions that preceded it, the Fourth Industrial Revolution has the potential to raise global income levels and improve the quality of life for populations around the world. To date, those who have gained the most from it have been consumers able to afford and access the digital world; technology has made possible new products and services that increase the efficiency and pleasure of our personal lives. Ordering a cab, booking a flight, buying a product, making a payment, listening to music, watching a film, or playing a game—any of these can now be done remotely.

In the future, technological innovation will also lead to a supply-side miracle, with long-term gains in efficiency and productivity. Transportation and communication costs will drop, logistics and global supply chains will become more effective, and the cost of trade will diminish, all of which will open new markets and drive economic growth. Fourth I Revo II Blog-1-Industrial-Revolution1

At the same time, as the economists Erik Brynjolfsson and Andrew McAfee have pointed out, the revolution could yield greater inequality, particularly in its potential to disrupt labor markets. As automation substitutes for labor across the entire economy, the net displacement of workers by machines might exacerbate the gap between returns to capital and returns to labor. On the other hand, it is also possible that the displacement of workers by technology will, in aggregate, result in a net increase in safe and rewarding jobs.

We cannot foresee at this point which scenario is likely to emerge, and history suggests that the outcome is likely to be some combination of the two. However, I am convinced of one thing—that in the future, talent, more than capital, will represent the critical factor of production. This will give rise to a job market increasingly segregated into “low-skill/low-pay” and “high-skill/high-pay” segments, which in turn will lead to an increase in social tensions.

In addition to being a key economic concern, inequality represents the greatest societal concern associated with the Fourth Industrial Revolution. The largest beneficiaries of innovation tend to be the providers of intellectual and physical capital—the innovators, shareholders, and investors—which explains the rising gap in wealth between those dependent on capital versus labor. Technology is therefore one of the main reasons why incomes have stagnated, or even decreased, for a majority of the population in high-income countries: the demand for highly skilled workers has increased while the demand for workers with less education and lower skills has decreased. The result is a job market with a strong demand at the high and low ends, but a hollowing out of the middle.

This helps explain why so many workers are disillusioned and fearful that their own real incomes and those of their children will continue to stagnate. It also helps explain why middle classes around the world are increasingly experiencing a pervasive sense of dissatisfaction and unfairness. A winner-takes-all economy that offers only limited access to the middle class is a recipe for democratic malaise and dereliction.

Discontent can also be fueled by the pervasiveness of digital technologies and the dynamics of information sharing typified by social media. More than 30 percent of the global population now uses social media platforms to connect, learn, and share information. In an ideal world, these interactions would provide an opportunity for cross-cultural understanding and cohesion. However, they can also create and propagate unrealistic expectations as to what constitutes success for an individual or a group, as well as offer opportunities for extreme ideas and ideologies to spread.

The impact on business

An underlying theme in my conversations with global CEOs and senior business executives is that the acceleration of innovation and the velocity of disruption are hard to comprehend or anticipate and that these drivers constitute a source of constant surprise, even for the best connected and most well informed. Indeed, across all industries, there is clear evidence that the technologies that underpin the Fourth Industrial Revolution are having a major impact on businesses.

On the supply side, many industries are seeing the introduction of new technologies that create entirely new ways of serving existing needs and significantly disrupt existing industry value chains. Disruption is also flowing from agile, innovative competitors who, thanks to access to global digital platforms for research, development, marketing, sales, and distribution, can oust well-established incumbents faster than ever by improving the quality, speed, or price at which value is delivered.

Major shifts on the demand side are also occurring, as growing transparency, consumer engagement, and new patterns of consumer behavior (increasingly built upon access to mobile networks and data) force companies to adapt the way they design, market, and deliver products and services.

A key trend is the development of technology-enabled platforms that combine both demand and supply to disrupt existing industry structures, such as those we see within the “sharing” or “on demand” economy. These technology platforms, rendered easy to use by the smartphone, convene people, assets, and data—thus creating entirely new ways of consuming goods and services in the process. In addition, they lower the barriers for businesses and individuals to create wealth, altering the personal and professional environments of workers. These new platform businesses are rapidly multiplying into many new services, ranging from laundry to shopping, from chores to parking, from massages to travel.

On the whole, there are four main effects that the Fourth Industrial Revolution has on business—on customer expectations, on product enhancement, on collaborative innovation, and on organizational forms. Whether consumers or businesses, customers are increasingly at the epicenter of the economy, which is all about improving how customers are served. Physical products and services, moreover, can now be enhanced with digital capabilities that increase their value. New technologies make assets more durable and resilient, while data and analytics are transforming how they are maintained. A world of customer experiences, data-based services, and asset performance through analytics, meanwhile, requires new forms of collaboration, particularly given the speed at which innovation and disruption are taking place. And the emergence of global platforms and other new business models, finally, means that talent, culture, and organizational forms will have to be rethought.

Overall, the inexorable shift from simple digitization (the Third Industrial Revolution) to innovation based on combinations of technologies (the Fourth Industrial Revolution) is forcing companies to reexamine the way they do business. The bottom line, however, is the same: business leaders and senior executives need to understand their changing environment, challenge the assumptions of their operating teams, and relentlessly and continuously innovate.

The impact on government

As the physical, digital, and biological worlds continue to converge, new technologies and platforms will increasingly enable citizens to engage with governments, voice their opinions, coordinate their efforts, and even circumvent the supervision of public authorities. Simultaneously, governments will gain new technological powers to increase their control over populations, based on pervasive surveillance systems and the ability to control digital infrastructure. On the whole, however, governments will increasingly face pressure to change their current approach to public engagement and policymaking, as their central role of conducting policy diminishes owing to new sources of competition and the redistribution and decentralization of power that new technologies make possible.

Ultimately, the ability of government systems and public authorities to adapt will determine their survival. If they prove capable of embracing a world of disruptive change, subjecting their structures to the levels of transparency and efficiency that will enable them to maintain their competitive edge, they will endure. If they cannot evolve, they will face increasing trouble.

This will be particularly true in the realm of regulation. Current systems of public policy and decision-making evolved alongside the Second Industrial Revolution, when decision-makers had time to study a specific issue and develop the necessary response or appropriate regulatory framework. The whole process was designed to be linear and mechanistic, following a strict “top down” approach.

But such an approach is no longer feasible. Given the Fourth Industrial Revolution’s rapid pace of change and broad impacts, legislators and regulators are being challenged to an unprecedented degree and for the most part are proving unable to cope.

How, then, can they preserve the interest of the consumers and the public at large while continuing to support innovation and technological development? By embracing “agile” governance, just as the private sector has increasingly adopted agile responses to software development and business operations more generally. This means regulators must continuously adapt to a new, fast-changing environment, reinventing themselves so they can truly understand what it is they are regulating. To do so, governments and regulatory agencies will need to collaborate closely with business and civil society.

The Fourth Industrial Revolution will also profoundly impact the nature of national and international security, affecting both the probability and the nature of conflict. The history of warfare and international security is the history of technological innovation, and today is no exception. Modern conflicts involving states are increasingly “hybrid” in nature, combining traditional battlefield techniques with elements previously associated with nonstate actors. The distinction between war and peace, combatant and noncombatant, and even violence and nonviolence (think cyberwarfare) is becoming uncomfortably blurry.

As this process takes place and new technologies such as autonomous or biological weapons become easier to use, individuals and small groups will increasingly join states in being capable of causing mass harm. This new vulnerability will lead to new fears. But at the same time, advances in technology will create the potential to reduce the scale or impact of violence, through the development of new modes of protection, for example, or greater precision in targeting.

The impact on people

The Fourth Industrial Revolution, finally, will change not only what we do but also who we are. It will affect our identity and all the issues associated with it: our sense of privacy, our notions of ownership, our consumption patterns, the time we devote to work and leisure, and how we develop our careers, cultivate our skills, meet people, and nurture relationships. It is already changing our health and leading to a “quantified” self, and sooner than we think it may lead to human augmentation. The list is endless because it is bound only by our imagination.

I am a great enthusiast and early adopter of technology, but sometimes I wonder whether the inexorable integration of technology in our lives could diminish some of our quintessential human capacities, such as compassion and cooperation. Our relationship with our smartphones is a case in point. Constant connection may deprive us of one of life’s most important assets: the time to pause, reflect, and engage in meaningful conversation.

One of the greatest individual challenges posed by new information technologies is privacy. We instinctively understand why it is so essential, yet the tracking and sharing of information about us is a crucial part of the new connectivity. Debates about fundamental issues such as the impact on our inner lives of the loss of control over our data will only intensify in the years ahead. Similarly, the revolutions occurring in biotechnology and AI, which are redefining what it means to be human by pushing back the current thresholds of life span, health, cognition, and capabilities, will compel us to redefine our moral and ethical boundaries.

Fourth IR 2 enter-into-the-4th-industrial-revolution-1-638

Shaping the future

Neither technology nor the disruption that comes with it is an exogenous force over which humans have no control. All of us are responsible for guiding its evolution, in the decisions we make on a daily basis as citizens, consumers, and investors. We should thus grasp the opportunity and power we have to shape the Fourth Industrial Revolution and direct it toward a future that reflects our common objectives and values.

To do this, however, we must develop a comprehensive and globally shared view of how technology is affecting our lives and reshaping our economic, social, cultural, and human environments. There has never been a time of greater promise, or one of greater potential peril. Today’s decision-makers, however, are too often trapped in traditional, linear thinking, or too absorbed by the multiple crises demanding their attention, to think strategically about the forces of disruption and innovation shaping our future.

In the end, it all comes down to people and values. We need to shape a future that works for all of us by putting people first and empowering them. In its most pessimistic, dehumanized form, the Fourth Industrial Revolution may indeed have the potential to “robotize” humanity and thus to deprive us of our heart and soul. But as a complement to the best parts of human nature—creativity, empathy, stewardship—it can also lift humanity into a new collective and moral consciousness based on a shared sense of destiny. It is incumbent on us all to make sure the latter prevails.

This article was first published in Foreign Affairs

Author: Klaus Schwab is Founder and Executive Chairman of the World Economic Forum

Image: An Aeronavics drone sits in a paddock near the town of Raglan, New Zealand, July 6, 2015. REUTERS/Naomi Tajitsu

Edison Power Company and Sunvault Energy to Kickstart Smartphone Battery Case Prototype Using Graphene Energy Storage Device


sunvault-phone case slide-7EDMONTON, ALBERTA – SUNVAULT ENERGY INC. (“Sunvault”) announced today that in conjunction with the Edison Power Company, have completed a Smartphone Battery Case that is built initially for the IPhone. Smartphone case designs for major brands such as LG and Samsung and other Smartphone manufactured devices will follow shortly. The Company will be submitting this prototype for certification and verification in order to start to fulfill the demand that exists for this product line.

The Battery Case will provide approximately 5000 mAh (milliamp hours) of energy to the first prototype IPhone model. The Battery Case prototype will be the best performing battery case on the market because of one of its most compelling features.

That feature being that the case will charge in roughly 3 minutes and will provide approximately 200% of additional power for most smartphones that are in the average 2400 mAh battery range. As displays on Smartphones become larger and usage becomes more and more prevalent, increasing energy to these devices will be widely accepted by the pent up demand for better energy solutions by the 2 Billion Smartphone users worldwide.

In addition to the fast charging, the case will not experience or generate any significant heat, and will have the unique attributes of both a battery and Supercapacitor. Additional attributes will include superior cycles that will go far beyond the Lithium Ion spec of 500 cycles of charge / discharge before battery requires replacement. It will be considerably lighter than current products on the market and will form the perfect marriage between Smartphone requirements of protection and esthetics of a case, combined with energy release and quick recharge that is necessary for today’s enjoyment of these devices. The Company will start by focusing on the top Smartphone lines, which include: Samsung, Apple IPhone, Lenovo, LG, Huawei, Xiaomi and Sony.

Edison Power Company will be launching a KICKSTARTER campaign for all Smartphone users in the near future. Smartphone users will want to stay tuned for details of the campaign that will be further described just prior to launch. This will be a unique opportunity for Smartphone users to be first in line to receive the 5000 mAh battery case.

sunvault-solar panels slide-4

Will New Method of Making Perovskites Solar Cells Make Solar Energy More Efficient – Less Costly?


Perovsjite 1-solarcellPerovskites, substances that perfectly absorb light, are the future of solar energy. The opportunity for their rapid dissemination has just increased thanks to a cheap and environmentally safe method of production of these materials, developed by chemists from Warsaw, Poland. Rather than in solutions at a high temperature, perovskites can now be synthesized by solid-state mechanochemical processes: by grinding powders.
We associate the milling of chemicals less often with progress than with old-fashioned pharmacies and their inherent attributes: the pestle and mortar. It’s time to change this! Recent research findings show that by the use of mechanical force, effective chemical transformations take place in solid state. Mechanochemical reactions have been under investigation for many years by the teams of Prof. Janusz Lewinski from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and the Faculty of Chemistry of Warsaw University of Technology.
In their latest publication (“Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency”), the Warsaw researchers describe a surprisingly simple and effective method of obtaining perovskites – futuristic photovoltaic materials with a spatially complex crystal structure.
perovskite powders
A simple, fast and safe method of obtaining perovskites has been discovered by scientists from IPC PAS in Warsaw, Poland. The perovskite (a black powder) is milled from two powders: a white one, methylammonium iodide, and a yellow one, lead iodide.

 

“With the aid of mechanochemistry we are able to synthesize a variety of hybrid inorganic-organic functional materials with a potentially great significance for the energy sector. Our youngest ‘offspring’ are high quality perovskites. These compounds can be used to produce thin light-sensitive layers for high efficiency solar cells,” says Prof. Lewinski.
Perovskites are a large group of materials, characterized by a defined spatial crystalline structure. In nature, the perovskite naturally occurring as a mineral is calcium titanium(IV) oxide CaTiO3. Here the calcium atoms are arranged in the corners of the cube, in the middle of each wall there is an oxygen atom and at the centre of the cube lies a titanium atom. In other types of perovskite the same crystalline structure can be constructed of various organic and inorganic compounds, which means titanium can be replaced by, for example, lead, tin or germanium. As a result, the properties of the perovskite can be adjusted so as to best fit the specific application, for example, in photovoltaics or catalysis, but also in the construction of superconducting electromagnets, high voltage transformers, magnetic refrigerators, magnetic field sensors, or RAM memories.
At first glance, the method of production of perovskites using mechanical force, developed at the IPC PAS, looks a little like magic.
“Two powders are poured into the ball mill: a white one, methylammonium iodide CH3NH3I, and a yellow one, lead iodide PbI2. After several minutes of milling no trace is left of the substrates. Inside the mill there is only a homogeneous black powder: the perovskite CH3NH3PbI3,” explains doctoral student Anna Maria Cieslak (IPC PAS).
“Hour after hour of waiting for the reaction product? Solvents? High temperatures? In our method, all this turns out to be unnecessary! We produce chemical compounds by reactions occurring only in solids at room temperature,” stresses Dr. Daniel Prochowicz (IPC PAS).
The mechanochemically manufactured perovskites were sent to the team of Prof. Michael Graetzel from the Ecole Polytechnique de Lausanne in Switzerland, where they were used to build a new laboratory solar cell. The performance of the cell containing the perovskite with a mechanochemical pedigree proved to be more than 10% greater than a cell’s performance with the same construction, but containing an analogous perovskite obtained by the traditional method, involving solvents.
“The mechanochemical method of synthesis of perovskites is the most environmentally friendly method of producing this class of materials. Simple, efficient and fast, it is ideal for industrial applications. With full responsibility we can state: perovskites are the materials of the future, and mechanochemistry is the future of perovskites,” concludes Prof. Lewinski.
The described research will be developed within GOTSolar collaborative project funded by the European Commission under the Horizon 2020 Future and Emerging Technologies action.
Perovskites are not the only group of three-dimensional materials that has been produced mechanochemically by Prof. Lewinski’s team. In a recent publication the Warsaw researchers showed that by using the milling technique they can also synthesize inorganic-organic microporous MOF (Metal-Organic Framework) materials. The free space inside these materials is the perfect place to store different chemicals, including hydrogen.
Source: Institute of Physical Chemistry of the Polish Academy of Sciences

 

Mass-Produced, Printable (3D) Solar Cells Enter Market and could … Change Everything!


Australian solar power experts making up the Victorian Organic Solar Cell Consortium have developed and begun to market solar cells that are created with a 3D printer.

The group,  consisting of scientists from the CSIRO, the University of Melbourne and Monash University have been working on the technology for over seven years and have figured out a way to cheaply print the panels onto plastic, including smart-phones and laptops, enabling self charging electronics.  They are also able to print directly on to walls and windows using an opaque solar film and claim that they can line a skyscraper with panels, making it totally electrically self sufficient.

“We print them onto plastic in more or less the same way we print our plastic banknotes,” said Fiona Scholes, senior research scientist at CSIRO. “Connecting our solar panels is as simple as connecting a battery. It’s very cheap. The way in which it looks and works is quite different to conventional silicon rooftop solar.”

The next step is to create a solar spray coating to enhance the power of the panel.  “We would like to improve the efficiency of solar panels – we need to develop solar inks to generate more energy from sunlight,” said Scholes. “We are confident we can push the technology further in the years to come.”

To Read More: Science Alerts

Research from DOE & Argonne National Laboratory: Stable ‘superoxide’ could Provide New Class of Lithium Batteries


textWhile lithium-ion batteries have transformed our everyday lives, researchers are currently trying to find new chemistries that could offer even better energy possibilities. One of these chemistries, lithium-air, could promise greater energy density but has certain drawbacks as well.
Now, thanks to research at the U.S. Department of Energy’s (DOE’s) Argonne National Laboratory, one of those drawbacks may have been overcome (Nature, “A lithium–oxygen battery based on lithium superoxide”).

 

text
The lattice match between LiO2 and Ir3Li may be responsible for the LiO2 discharge product found for the Ir-rGO cathode material.

 

All previous work on lithium-air batteries showed the same phenomenon: the formation of lithium peroxide (Li2O2), a solid precipitate that clogged the pores of the electrode.
In a recent experiment, however, Argonne battery scientists Jun Lu, Larry Curtiss and Khalil Amine, along with American and Korean collaborators, were able to produce stable crystallized lithium superoxide (LiO2) instead of lithium peroxide during battery discharging. Unlike lithium peroxide, lithium superoxide can easily dissociate into lithium and oxygen, leading to high efficiency and good cycle life.
“This discovery really opens a pathway for the potential development of a new kind of battery,” Curtiss said. “Although a lot more research is needed, the cycle life of the battery is what we were looking for.”
The major advantage of a battery based on lithium superoxide, Curtiss and Amine explained, is that it allows, at least in theory, for the creation of a lithium-air battery that consists of what chemists call a “closed system.” Open systems require the consistent intake of extra oxygen from the environment, while closed systems do not — making them safer and more efficient.
“The stabilization of the superoxide phase could lead to developing a new closed battery system based on lithium superoxide, which has the potential of offering truly five times the energy density of lithium ion,” Amine said.
Curtiss and Lu attributed the growth of the lithium superoxide to the spacing of iridium atoms in the electrode used in the experiment. “It looks like iridium will serve as a good template for the growth of superoxide,” Curtiss said.
“However, this is just an intermediate step,” Lu added. “We have to learn how to design catalysts to understand exactly what’s involved in lithium-air batteries.”
Source: Argonne National Laboratory

 

WEF (World Economic Forum): World Unprepared to Deal with ‘Fourth Industrial Revolution’


World Economic Forum founder Klaus Schwab says the fusion of different technological advances, which are changing the world as never before, will be a major focus at the for Fundamental changes ahead

Taking center stage will be an in-depth discussion about what Klaus Schwab, the founder of the World Economic Forum, calls the Fourth Industrial Revolution. Schwab says the revolution is being driven by advances in artificial intelligence, robotics, autonomous vehicles, 3-D printing, nanotechnology and other areas of science.

“This fourth revolution comes on us like a tsunami. The speed is not to be compared with last revolutions and… the speed of this revolution is so fast that it makes it difficult or even impossible for the political community to follow up with the necessary regulatory and legislative frameworks.”

Impact on employment

Schwab says robotics, with new innovations such as self-guided cars, will destroy employment and wipe out much of the middle class, a major pillar of democratic systems.

“My fear is, if we are not prepared…and we have a concentration of jobs in the high level, more innovative areas and in the low service areas, this could lead to a new problem of social exclusion, which we absolutely have to avoid,” he said.

Read the Full Article Here:

“World Unprepared to Deal with Fourth Industrial Revolution”

 

Do you agree with WEF Founder Klaus Schwab?  OR …

Do you believe that new Technologies, Materials, Abundant Renewable Energy Sources, Access to Clean Water and Advanced Health Care will propel mankind and our ‘Blue Planet’ … into a new era of Human accomplishment?hydrogen-earth-150x150

Please send us your thoughts and comments. We will post the results and some of the best comments we receive.

Read about Genesis Nanotechnology and ‘Our Vision’ here:

Genesis Nanotechnology Vision

 

 

 

New “Nanoconcentrators” Improves Catalytic Performance


2D Perovskite Berkeley Peidong-image-2A group of scientists at the University of Amsterdam (UvA) has developed a new approach in enhancing catalytic performance. In the current issue of Nature Chemistry (“Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions”) they present functionalised, self-assembled nanospheres that enable highly efficient catalytic conversion by acting as ‘nanocentrators’.

 

Schematic representation of the working principle of the nanoconcentrator
 

Schematic representation of the working principle of the nanoconcentrator. The gold(I) catalysts (drawn in red) are located in the sphere. Once the substrate (in black) is deprotonated the anionic substrate (in green) enters the sphere to pre-organize close to the catalyst via hydrogen bonding to the guanidine-binding site (displayed in blue). After rapid conversion of the substrate, the neutral cyclic product leaves the sphere. (Image: HIMS)

 

The new catalytic nanosphere concept was inspired by the working principles of natural enzymes. These bind molecules in well-defined pockets close to their active sites, thus introducing a pre-organization organisation that facilitates highly efficient transformations. The researchers mimic this enzymatic behaviour in synthetic nanocontainers that in addition , which can contain very high local catalyst concentrations , which and further enhances the catalytic performance.

 

Self-assembly
The new nanocontainers are formed by self-assembly: mixing 12 palladium metals and 24 so-called ditopic nitrogen ligands leads to formation of nano-sized spheres. The ligands are modified with guanidinium binding motifs so that the resulting nanocontainers are able to bind sulfonates and carboxylates in their interior. Sulfonate guests are thereby bound much more strongly than carboxylates because of so-called cooperative binding (employing multiple binding sites). The researchers use this to firmly fix the sulfonated gold-based catalyst, while the remaining binding sites are available for the pre-organisation of the carboxylate moieties that are to be converted (the substrates).

 

Enhanced reaction rates
The working principles of this ‘nanoconcentrator’ system were established using a gold-catalysed cyclization reaction (shown above). The local high concentration of the metal catalyst combined with the pre-organization of the substrate resulted in dramatically enhanced reaction rates in comparison to common systems where the catalyst and the reactants are not pre-organised but just both dissolved in a solvent. Reaction rates usually increase with catalyst and substrate concentration; however this is generally limited by solubility issues or unfavorable catalyst/reactant ratios. This issue has now been solved by taking advantage of local concentrations in the self-assembled nanoconcentrator.

 

Widely applicable strategy
Since many existing metal catalysts are utilized with sulfonate groups (generally to make them water soluble), the presented nanoconcentrator system potentially provides a widely applicable general strategy to many different reactions. Furthermore, the researchers established that the encapsulated sulfonate-containing gold catalysts did not (or only slowly) convert neutral (acid) substrates. This provides a starting point for the development of more complex catalyst systems with substrate-selective catalysis and base-triggered on/off switching.
Source: Universiteit van Amsterdam
 
      
 

Israel is the go-to place for nanotech research


Nano Israeil Conference 2016Cornell University professor Richard Robinson says Jewish State is ‘ahead of the curve’ when it comes to nanotechnology.

One day soon, a start-up somewhere – possibly in Israel – will come up with a system to manufacture precisely-formed nanoparticles that, when joined with other particles, will change the way electronics, clothing, computers and almost everything else can be used.

One day, but not yet, according to Richard Robinson, a visiting scholar at Hebrew University’s Institute of Chemistry. Based at Cornell University, Robinson is in Israel to do research in the area of nanotechnology, where scientists manipulate very tiny atomic particles to create surprising and unique effects that are far different than anything observed in physics until now.

“We know a lot about the principles of nanotechnology now, but there is still a lot to do at the research stage, which is one reason why nanotech hasn’t yet made its presence known to a large extent in the greater society,” Robinson told The Times of Israel. “Nevertheless nanotechnology is already having a major impact in certain applications, like lighting.”

In fact, one of the first commercially successful nano-based products to emerge came from the very Hebrew University lab where Robinson is doing research. Using unique quantum materials, Qlight developed semiconductor nanocrystals that can emit and provide extra brilliance to light, such as enhancing the color of display screens.

Last year the company was acquired by Merck, the German chemical and technology company. Qlight’s technology, said Merck CEO Karl-Ludwig Kley, is “far superior to anything currently on the market, and that will help us retain and expand our position as market leader.”

There will likely be many more such announcements and pronouncements in the future, and many of them are set to be based on technology developed in Israel, said Robinson. “Israel is ahead of the curve on nanotechnology research,” said Robinson.

And there’s plenty more research that needs to be done. “Over the past 20 years or so we have essentially been rewriting the textbooks on physics, because the laws that apply to ‘normal’ particles do not apply to nano-sized particles,” he added.

In other words, certain things happen when five nanometer-sized particles are combined with six nanometer-sized particles. “We’re still observing, categorizing and recording the reactions of these particles sizes with each other and others, in different kinds of materials, and their combinations,” said Robinson.

At home in Cornell, Robinson does a lot of work in materials, controlling their size, shape, composition and surfaces, and assembling the resulting building blocks into functional architectures. Among the applications Robinson’s lab is targeting are new materials for printable electronics and electrocatalysis. His group is also pioneering a new method to probe phonon transport in nanostructures.

On practical example of how nanotech will affect energy is to allow for a much more efficient production method for solar energy. In a solar energy system, the sun’s rays hit photovaltic cells that capture the energy and convert it into direct current (DC) electricity, which is then converted to alternating current (AC), for use in home electric systems or for transfer to the grid. But it turns out that the PV cells being used don’t capture as much of the sun’s rays as they can because of fluctuations in the wavelength of the rays due to time of day or time of year; only about 25% of the rays are captured on average.

PV cells are designed to capture the sun at its strongest in midday, but they can’t capture rays at other times of the day. Using nanomaterials that respond to specific wavelengths PV technology can be much more efficient, tripling the usable “bounty” from the sun, said Robinson.

Eventually, said Robinson, nanotech will live up to the hype that has surrounded it for the past two decades.

“The manufacturing process for nanoparticles is not yet precise. In order for nanotech to be fully commercialized, we need a way to produced nanoparticles on a mass basis with the right size needed for each application,” Robinson said. “We’re not there yet, but it’s on the way – and with all the nanotech research here in Israel, it may just be an Israeli start-up that develops it.”

GNT Thumbnail Alt 3 2015-page-001

 

Genesis Nanotech on Twitter

Genesisnanotech on Facebook

Genesis Nanotechnology – Follow Our Blog

Check Out Our Website