Graphene-perovskite hybrids make new super-detectors: Turning Light into Energy


Graphene Perovskite 081115 324x182EPFL scientists have created the first perovskite nanowire-graphene hybrid phototransistors. Even at room temperature, the devices are highly sensitive to light, making them outstanding photodetectors.

The lead-containing perovskite materials can turn light into electricity with high efficiency, which is why they have revolutionized solar cell technologies. On the other hand, graphene is known for its super-strength as well as its excellent electrical conductivity. Combining the two materials, EPFL scientists have created the first ever class of hybrid transistors that turn light into electricity with high sensitivity and at room temperature. The work is published in Small.

The lab of László Forró at EPFL, where the chemical activity is led by Endre Horváth, used its expertise in microengineering to create nanowires of the perovskite methylammonium lead iodide. This highly non-trivial route for the synthesis of nanowires was developed by him in 2014 and called slip-coating method. The advantage of nanowires is their consistency, while their manufacturing can be controlled to modify their architecture and explore different designs.

Making a device by depositing the perovskite nanowires onto graphene has increased the efficiency in converting light to electrical current at room temperature. “Such a device shows almost 750,000 times higher photoresponse compared to detectors made only with perovskite nanowires,” added Massimo Spina who fabricated the miniature photodetectors. Because of this exceptionally high sensitivity, the graphene/perovskite nanowire hybrid device is considered to be a superb candidate for even a single-photon detection.

This work was founded by the Swiss National Science Foundation. The hybrid devices were fabricated in part at EPFL’s Center for Micro/Nanotechnology.

Reference

Advertisements

2 comments on “Graphene-perovskite hybrids make new super-detectors: Turning Light into Energy

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s