Bosch Announces Breakthrough in Graphene Sensor Technology: 100X More Sensitive

Graphene Week 2015 was awash with outstanding research results, but one presentation created quite a stir at this Graphene Flagship conference. To a stunned audience, Robert Roelver of Stuttgart-based engineering firm Bosch reported on June 25, 2015, that company researchers, together with scientists at the Max-Planck Institute for Solid State Research, have created a graphene-based magnetic sensor 100 times more sensitive than an equivalent device based on silicon.

Bosch sensor portfolio

Bosch_breakthrough_in_graphene_sensor_technology_mlBosch has long been involved in sensor technology, notably in the automotive sector. In 2008, the company expanded beyond its pressure, acceleration and gyroscopic motion sensors, to geomagnetic, temperature, humidity, air quality and sound pressure devices, including for use in consumer electronics devices such as mobile phones. Roelver noted that Bosch is the world’s number one supplier of microelectromechanical sensors, with €1bn in sales.


Bosch looks at graphene

Interested in whether graphene could enable new applications and improved sensor performance, Bosch has been investigating the use of the two-dimensional material in its pressure, magnetic, humidity, gas and sound pressure devices. The first step was to look at fabrication methods.

Top-down approaches to graphene device fabrication such as mechanical and chemical exfoliation would not work on a commercial scale, so Bosch focused instead on bottom-up techniques such as the thermal decomposition of silicon carbide, and chemical vapor deposition onto metal surfaces. The latter is certainly suited to mass production, and the former possibly so.

Roelver cautioned that graphene-based sensor applications will require 5-10 years before they can compete with established technologies. This is due to the current lack of large-scale wafer-based and transfer-free synthesis techniques.

A graphene-based magnetic sensor

Various substrates were considered by the Bosch and Max-Planck researchers, who in the case of their magnetic sensor settled on hexagonal boron nitride. This is for reasons of both cost and technical performance.

Bosch’s magnetic sensors are based on the Hall effect, in which a magnetic field induces a Lorentz force on moving electric charge carriers, leading to deflection and a measurable Hall voltage. Sensor performance is defined by two parameters: (1) sensitivity, which depends on the number of charge carriers, and (2) power consumption, which varies inversely with charge carrier mobility. It is high carrier mobility that makes graphene useful in such applications, and the results achieved by the Bosch-led team confirm this.

Comparing and contrasting materials, Roelver in his Graphene Week presentation showed that the worst case graphene scenarios roughly match a silicon reference. In the best case scenario, the result is a huge improvement over silicon, with much lower source current and power requirements for a given Hall sensitivity. In short, graphene provides for a high-performance magnetic sensor with low power and footprint requirements.

Graphene sensor 100 times more sensitive

In terms of numbers, the remarkable result shown by Roelver centered on a direct comparison between the sensitivity of a silicon-based Hall sensor with that of the Bosch-MPI graphene device. The silicon sensor has a sensitivity of 70 volts per amp-tesla, whereas with the boron nitride and graphene device the figure is 7,000. That is a jaw-dropping two orders of magnitude improvement, hence the reaction in the conference hall.

After summarizing this stunning research result, Roelver concluded on a high note, stressing that Bosch takes graphene very seriously indeed as a future commercial technology.

“We are pleased to see that Graphene Week has been chosen as the forum to disclose such an important technological milestone,” says Andrea Ferrari, chairman of the Executive Board of the Graphene Flagship. “Bosch’s call for large-area integration of graphene into industrial processes fully matches and validates the flagship’s planned investments in this critical area for the mass production of devices.”

SOURCE: Graphene Flagship


Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s