Nanowires Boost Efficiency of Quantum Dot Solar Cells

Nano Wires 2147496528_220x220Solar cells made from quantum dots could be low-cost, flexible, and easy to make. But the efficiency with which they convert light into electricity remains too low for practical use. Researchers at the Massachusetts Institute of Technology now show that incorporating nanowires into quantum dot solar cells increases the cells’ efficiency by 35%. 



Quantum dots are semiconductor nanocrystals that absorb different wavelengths of light depending on their size. Solar cells made from different-sized crystals should absorb light over a much wider range of colors than silicon devices. What’s more, because quantum dots are made in solution, they could be easily printed or painted onto flexible surfaces. Scientists have calculated that quantum dots could be used to make thin-film solar cells that could convert light to electricity with 15% efficiency, the same as commercial silicon devices.

The best-performing quantum dot solar cells consist of a lead sulfide quantum dot layer butted up against a zinc oxide or titanium dioxide layer. The quantum dots absorb light, and electrons created in the process travel to the metal oxide layer to reach the electrical circuit. The problem is that the quantum dot layer has to be thick enough to absorb light efficiently, but thin enough for the electrons to quickly traverse it.

The MIT researchers, led by electrical engineering and computer science professor Vladimir Bulovic, overcame that tradeoff by replacing the flat ZnO layer with an array of vertical zinc oxide nanowires. The nanowires penetrate the quantum dot layer, providing conductive paths for the electrons to follow out to the electrical circuit, says Joel Jean, a graduate student in Bulovic’s group. The researchers published their results in the journal Advanced Materials.   

The researchers start with glass substrates that are coated with indium tin oxide transparent electrodes. They deposit a ZnO layer on top and float the entire susbtrate upside down in an aqueous solution of zinc precursors. An array of aligned nanowires grows downwards from the ZnO layer. After about an hour, the researchers rinse the substrates. Finally, they deposit PbS quantum dots, which fill up the space between the nanowires, and top it off with a gold electrode.

The nanowires boost the output current of the devices by 50% and the efficiency by 35% over planar ZnO devices. The overall light-to-electricity conversion efficiency of the new devices is 4.9 percent, among the highest reported for ZnO-based quantum dot solar cells, Jean says.

The researchers believe the efficiency could be further enhanced by using thicker light-absorbing layers and longer nanowires, as well as by controlling the spacing between nanowires to better accommodate quantum dots.

The idea of using ZnO nanowires to increase efficiency in quantum dot solar cells is not new, but this is the first significant implementation of the concept, says Matthew Beard, a senior scientist at the National Renewable Energy Laboratory. “The observed efficiency boost is promising and significant,” he says. “The efficiencies for these types of solar cells are increasing rapidly and this work demonstrates that the improvements in efficiency will continue.”

A key advantage of the nanowire-quantum dot cells, says Jean, is that they could be made on large areas. “One of the main benefits of quantum dots is that they’re grown in and deposited from solution,” he says. “This translates to fabrication of large-area films, which is necessary for making solar panels. Zinc oxide nanowires are also grown in an aqueous solution process. Scalability should be one of the primary practical advantages of this type of solar cell.” 

Read the Abstract in Advanced Materials  here.


Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.