New theranostic nanoparticle delivers, tracks cancer drugs


201306047919620(Nanowerk News) University of New South Wales (UNSW)  chemical engineers have synthesised a new iron oxide nanoparticle that delivers  cancer drugs to cells while simultaneously monitoring the drug release in real  time.
The result, published online in the journal ACS Nano (“Using Fluorescence Lifetime Imaging Microscopy to  Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin  Release”), represents an important development for the emerging field of  theranostics – a term that refers to nanoparticles that can treat and diagnose  disease.
Iron oxide nanoparticles that can track drug delivery will  provide the possibility to adapt treatments for individual patients,” says  Associate Professor Cyrille Boyer from the UNSW School of Chemical Engineering.
By understanding how the cancer drug is released and its effect  on the cells and surrounding tissue, doctors can adjust doses to achieve the  best result.
Importantly, Boyer and his team demonstrated for the first time  the use of a technique called fluorescence lifetime imaging to monitor the drug  release inside a line of lung cancer cells.
“Usually, the drug release is determined using model experiments  on the lab bench, but not in the cells,” says Boyer. “This is significant as it  allows us to determine the kinetic movement of drug release in a true biological  environment.”
Magnetic iron oxide nanoparticles have been studied widely  because of their applications as contrast agents in magnetic resonance imaging,  or MRI. Several recent studies have explored the possibility of equipping these  contrast agents with drugs.
However, there are limited studies describing how to load  chemotherapy drugs onto the surface of magnetic iron oxide nanoparticles, and no  studies that have effectively proven that these drugs can be delivered inside  the cell. This has only been inferred.
With this latest study, the UNSW researchers engineered a new  way of loading the drugs onto the nanoparticle’s polymer surface, and  demonstrated for the first time that the particles are delivering their drug  inside the cells.
“This is very important because it shows that bench chemistry is  working inside the cells,” says Boyer. “The next step in the research is to move  to in-vivo applications.”
Source: University of New South Wales

Read more: http://www.nanowerk.com/news2/newsid=32972.php#ixzz2j9WI0HAR

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.