Antifreeze materials, nanoparticle inks may lead to low-cost solar energy


QDOTS imagesCAKXSY1K 8(Nanowerk News) A process combining some comparatively  cheap materials and the same antifreeze that keeps an automobile radiator from  freezing in cold weather may be the key to making solar cells that cost less and  avoid toxic compounds, while further expanding the use of solar energy.
And when perfected, this approach might also cook up the solar  cells in a microwave oven similar to the one in most kitchens.
Engineers at Oregon State University have determined that  ethylene glycol, commonly used in antifreeze products, can be a low-cost solvent  that functions well in a “continuous flow” reactor – an approach to making  thin-film solar cells that is easily scaled up for mass production at industrial  levels.
The research, just published in Material Letters (“Continuous flow mesofluidic synthesis of Cu2ZnSnS4 nanoparticle  inks”), a professional journal, also concluded this approach will work with  CZTS, or copper zinc tin sulfide, a compound of significant interest for solar  cells due to its excellent optical properties and the fact these materials are  cheap and environmentally benign.
Nanoparticles in Solar Cell
These  copper zinc tin sulfide nanoparticles help form a solar cell that could cost  less and perform well.
“The global use of solar energy may be held back if the  materials we use to produce solar cells are too expensive or require the use of  toxic chemicals in production,” said Greg Herman, an associate professor in the  OSU School of Chemical, Biological and Environmental Engineering. “We need  technologies that use abundant, inexpensive materials, preferably ones that can  be mined in the U.S. This process offers that.”
By contrast, many solar cells today are made with CIGS, or  copper indium gallium diselenide. Indium is comparatively rare and costly, and  mostly produced in China. Last year, the prices of indium and gallium used in  CIGS solar cells were about 275 times higher than the zinc used in CZTS cells.
The technology being developed at OSU uses ethylene glycol in  meso-fluidic reactors that can offer precise control of temperature, reaction  time, and mass transport to yield better crystalline quality and high uniformity  of the nanoparticles that comprise the solar cell – all factors which improve  quality control and performance.
This approach is also faster – many companies still use “batch  mode” synthesis to produce CIGS nanoparticles, a process that can ultimately  take up to a full day, compared to about half an hour with a continuous flow  reactor. The additional speed of such reactors will further reduce final costs.
“For large-scale industrial production, all of these factors –  cost of materials, speed, quality control – can translate into money,” Herman  said. “The approach we’re using should provide high-quality solar cells at a  lower cost.”
The performance of CZTS cells right now is lower than that of  CIGS, researchers say, but with further research on the use of dopants and  additional optimization it should be possible to create solar cell efficiency  that is comparable.
Source: Oregon State University 

Read more: http://www.nanowerk.com/news2/newsid=31173.php#ixzz2YPG6QoL5

Please leave us your comments and any suggestions. Thanks! Administrator at GNT

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s